
Gridded GDP Projections Compatible
With the Five SSPs (Shared
Socioeconomic Pathways)
Daisuke Murakami1*, Takahiro Yoshida2 and Yoshiki Yamagata3

1Department of Statistical Data Science, The Institute of Statistical Mathematics, Tachikawa, Japan, 2Department of Urban
Engineering, School of Engineering, The University of Tokyo, Bunkyō, Japan, 3Graduate School of System Design and
Management, Keio University, Minato, Japan

Historical and future spatially explicit population and gross domestic product (GDP) data
are essential for the analysis of future climate risks. Unlike population projections that are
generally available, GDP projections—particularly for scenarios compatible with shared
socioeconomic pathways (SSPs)—are limited. Our objective is to perform a high-
resolution and long-term GDP estimation under SSPs utilizing a wide variety of
geographic auxiliary information. We estimated the GDP in a 1/12-degree grid scale.
The estimation is done through downscaling of historical GDP data for 1850–2010 and
SSP future scenario data for 2010–2100. In the downscaling, we first modeled the spatial
and economic interactions among cities and projected different future urban growth
patterns according to the SSPs. Subsequently, the projected patterns and other auxiliary
geographic data were used to estimate the gridded GDP distributions. Finally, the GDP
projections were visualized via three-dimensional mapping to enhance the clarity for
multiple stakeholders. Our results suggest that the spatial pattern of urban and peri-
urban GDP depends considerably on the SSPs; the GDP of the existing major cities grew
rapidly under SSP1, moderately grew under SSP 2 and SSP4, slowly grew under SSP3,
and dispersed growth under SSP5.

Keywords: shared socioeconomic pathways, gross domestic product, downscale, 1/12-degree grid scale, spatial
econometrics

INTRODUCTION

Building urban resilience against climate risks including flooding, storm, and heatwave, is an
emergent task across the world. Future scenarios for population, economic productivity, and other
socio-economic variables are required to estimate climate-related damage in the future and to
consider countermeasures. IPCC (Inter-governmental Panel on Climate Change) published Shared
Socioeconomic Pathways (SSP), which are future scenarios for socio-economic variables under
possible future developmental paths that is, sustainability (SSP1), middle of the road (SSP2), regional
rivalry (SSP3), inequality (SSP4), and fossil-fueled development (SSP5) (O’Neill et al., 2014; Jones
and O’Neill 2016). Roughly speaking, SSP1 assumes rapid and compact urban growth, SSP2 assumes
that the current state lasts in the future, SSP3 assumes failure of globalization that leads to a lower
level of economic growth and low international priority for addressing environmental concerns,
SSP4 assumes increasing inequality leading to higher growth in developed countries and lower
growth in less developed countries, and SSP5 assumes a fossil-fueled or car-oriented development
that results in large-scale urban sprawl. Additionally, the current COVID-19 pandemic may
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accelerate and entrench longer-term reduction in product-trades
and immigration flows. As the result, such a scenario would have
parallels to the SSP3 scenario which projects slower economic
growth than the other SSPs (Burgess et al., 2020).

While country-level SSPs data are available from the SSP
Database (Riahi et al., 2017), climate risk considerably changes
within countries. For example, flood risk of a city changes
depending on whether the city is in a water-front area or not.
Regional SSPs are needed to estimate climate risks in each
country. With this background, country-level population
scenarios have been downscaled into fine spatial grids under
SSPs (Jones and O’Neill 2016; Murakami and Yamagata 2019;
Wear and Prestemon 2019) and other future scenarios (Gaffin
et al., 2004; Bengtsson et al., 2007; McKee et al., 2015; Yamagata
et al., 2015).

By contrast, the SSP GDP scenario has rarely been downscaled,
whereas GDP scenarios other than SSP have been done (Gaffin
et al., 2004; Grübler et al., 2007; Fujimori et al., 2017; Kummu et al.,
2018). One of the reasons for the lack of SSP GDP scenario
downscaling is the difficulty compared to population
downscaling. In the case of population downscaling, high-
resolution population estimates from past to present are
available; fine-grained population projection is readily obtained
by extrapolating the past trend. Unfortunately, such extrapolation
is not possible for GDP because of the lack of such past-to-present
data. To the best of our knowledge, Murakami and Yamagata
(2019) is the only one downscaling SSP GDP scenarios into fine
grids. They estimated the explanatory power of each auxiliary
geographic data (e.g., urban population, road network, distance to
the ocean) on GDP distribution using an ensemble learning
technique, and country GDPs were downscaled into grids based

on the results. Unfortunately, their database has the following
limitations. First, their assumed spatial resolution of 0.5-degree
grids is not fine enough to estimate the climate risk of individual
cities. 0.5-degree nearly equals 55.83 (�111.66/2) km around the
equator while 42.64 km in a 40-degree area. Multiple cities could be
in one grid. Second, the authors did not consider SSP4 and SSP5.
Third, their estimates are not available before 2010.

The objective of this study is to overcome these limitations.
Specifically, we estimated GDPs by 1/12 grids for the period
between 1850 and 2100 by 10 years by downscaling actual GDPs
between 1850 and 2010 and projected GDPs under SSPs 1–5
between 2020 and 2100.

METHODS AND MATERIALS

We downscaled country GDPs into 1/12-degree grids. The
downscaling was performed from 1850 to 2100 by 10 years.
The procedure for each year after 2020 is summarized in
Figure 1. Table 1 summarizes the input data. In order to
project the extent of urbanization in the future, we first
estimated the growth of individual cities under each SSP ((1)
of Figure 1). Then, based on the results, we projected the
urbanization potential by the grids under each SSP ((2) of
Figure 1). Note that we cannot consider COVID-19 because
the SSPs, which we will downscaled, ignore it. Consideration of
COVID-19 will be an important next topic.

Projection of City Population
The following model was used for (1) the urban growth
projection ((1) in Figure 1):

FIGURE 1 | Procedure for population and GDP downscaling (after 2020). Variables by countries, cities, and grids are coloured by green, yellow, and red,
respectively. As this figure shows, the urban population was downscaled from countries to cities to estimate the potential of urbanization by the grids. The estimated
potential under SSP 1–5 was used together with the grid population estimates, and other auxiliary variables in the model ensemble-based downscaling.
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yt � (ρEWE + ρeWe + ρGWG + ρgWg)yt−5 + αyt−5 +∑
K

k�1
βkxk + εt ,

(1)

where yt is a vector of urban population difference between year
t-5 and t, xk is the k-th explanatory variable in year t, and εt is a
noise term. WE,We,WG,Wg}{ are matrices describing
connectivity among cities, which are recoded in the GRUMP
urban population database (see Table 1). WE and WE describe
international and national trade intensity respectively. The (i, j)-
th element of WE equals the amount of estimated international
trade between cities i and j that is assumed zero if cities i and j are
in the same country. The (i, j)-th element of We is the estimated
domestic trade amount between the cities i and j that is assumed
zero if they are in different countries. These trade amounts
between cities were estimated by a proportional distribution of
bilateral trade data based on urban population (see Table 1).
Concretely, the amount of trade between countries A and B was
downscaled to the amounts between NA cities in country A and
NB cities in country B. The distribution rates for each of theNANB

city pairs equals the product of the two urban populations. WG

describes the geographic proximity between cities in different
countries while Wg describes the same within the same country.
For both, the spatial proximity was defined by an exponentially
decaying function4.

In summary, Eq. 1 estimates the 5-year population growth of
individual cities based on international and domestic socio-
economic interaction, geographic proximity, the population of
the previous 5 years (yt−5), and other explanatory variables (xk).

The coefficients ρE, ρe, ρG, ρg, α, β1,/, βK}{ were estimated
from data. The GRUMP urban population data (1990, 1995,
2000; see Table 1) was used for the parameter estimation
employing the 2-step least square estimation method. Because
the city population data is available only between 1990 and 2000,
it is difficult to accurately estimate the temporal variation of the
parameters between 1850 and 2100. Therefore, in this study, the
values of the parameters α, β1,/, βK}{ were assumed constant
over the years.

Based on SSP storylines, we assumed different values for the
city-wise interaction parameters ρE, ρe, ρG, ρg}{ . Specifically, the
estimates from the current data were assumed unchanged in the

SSP2, which is a business-as-usual scenario. For the other
scenarios, the values were changed by multiplying the
multipliers, which equals 1.0 in 2010 and linearly increased/
decreased to the values for 2100 (Table 2). For SSP1, the
global socio-economic interaction was assumed to be double
in 2100 while the domestic interaction was halved following
the assumption of globalization. Following the assumption of
regional division in SSP3 and 4, international socio-economic
interactions were halved while national socio-economic
interactions were doubled in these scenarios. For SSP 5, the
international socio-economic interactions were doubled
assuming the increase of international trading under the fossil-
fueled development. Since SSPs have no quantitative assumption
regarding the amount of the interactions among cities, we
determined the amount of increase/decrease of the city
interactions in each scenario to be consistent with the scenario
assumptions and seem reasonable. In the future, we would like to
examine validity of our assumption for the interactions among
cities. Given these assumptions, the city-wise populations from
2020 to 2100 by 5 years were estimated by applying Eq. 1
sequentially.

Projection of Urbanization Projection
The projected city-wise populations were used to estimate the
urbanization potential by the grid ((2) in Figure 1). The
potential p̂g,t in the g-th grid in the t-th year was estimated
by p̂g,t � ŷc,t exp(−dc,g

r ), where ŷc,t is the estimated population
in the c-th city and dc,g is the great circle distance between the
geometric center of the g-th grid and the c-th city. The r
parameter determines the range of the spatial spill-over from
each city. A large r yields large-scale urban sprawl, whereas a
small r yields compact urban growth. The value was estimated
by maximizing the correlation between the urban area by the
grids in 2000 (see Table 1) and the p̂g,t values in the same year.
The estimated r value equaled 16.4 km. The value was assumed
constant over the years in SSP2 and SSP4. To emulate compact
urban development, the value was halved in SSP1, which is a
sustainable development scenario. The r value was doubled in
SSP3 and SSP5, both of which assume a low level of
environmental awareness that will lead to a car-dependent
development and urban sprawl as well.

TABLE 1 | Auxiliary variables.

Description Spatial unit Source Year

Urban population by SSP 1–5
Non-urban population by SSP 1–5

1/12-degree grids History Database of the Global Environment (HYDE:
Klein Goldewijk et al., 2010; Klein Goldewijk et al., 2010)

1980–2,100, by 10 years

Urban population 67,934 cities Global Rural-Urban Mapping Project (GRUMP:
Socioeconomic Data and Applications Center (2011))

1990, 1995, 2000

Urban area [km2] 1/12-degree grids Schneider et al (2009) 2001–2002
Agricultural area [km2]
Distance [km] from the grid left to the
nearest major road

Natural Earth (2017) 2012

Distance [km] from the grid left to the
nearest ocean

2010

Amount of bilateral trade [current US dollars] Country CoW: Barbieri and Omar (2016) 2009
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Downscale of Country GDPs
The gridded urbanization potential under SSPs, which was
estimated in Projection of urbanization projection, was used as
an auxiliary variable for the GDP downscaling ((2) in
Figure 1). The other auxiliary variables are as follows:
urban and non-urban populations by the 1/12 grids by
SSPs, urban area, agricultural area, accessibility measures
including distance to the nearest major road, airport, and
ocean. See Table 1 for further detail.

Generally, downscaling is performed by proportionally
distributing the target variable according to an auxiliary
weight variable such as population and area. For accurate
downscaling, it is crucially important to appropriately specify
the weight variable. We optimize the weight variable using a
gradient boosting technique. The weight in the g-th grid is defined
by ẑg � ∑P

p�q ωqzg,q where zg,q is the value of the q-th auxiliary
variable on the grid, and ωq is a parameter estimating the
importance of the q-th variable. The parameter is estimated by
using a gradient boosting technique. This technique iteratively
updates the ωq value using the gradient of the loss function to
minimize a loss function until the loss value converges. The mean
squared error for the country GDP is used as the loss function. In
a word, the importance/weight of each auxiliary variable was

estimated using the technique, and GDPs by the 1/12 grids were
estimated using the estimated weights. The estimation is done by
SSPs by year. Overall, population is estimated as the most
significant factor explaining GDP distribution in the past while
building area and urban potential from the present to the future.

RESULTS

Figures 2, 3 plot the gridded GDP estimates in 2010 and 2100
under SSP 1-5 in Europe and Eastern Asia, respectively. Our
estimates produced considerably different map patterns across
SSPs. SSPs 1 and 2 indicated a higher level of urban growth within
the existing major cities. Still, growth in non-urban areas were as
slow as SSP 3, which is a less urbanized scenario. This tendency
was prominent in SSP1. These results are consistent with the
assumption of rapid and compact urban growth in the SSP 1
scenario. Conversely, SSP 5 resulted in severe urban expansion.
Because SSP 5 assumes a fossil-fueled development that yields
widespread road networks, this result is reasonable. SSPs 3 and 4
had a lower level of urban growth, especially in Asian countries
because of the assumption of the limited globalization. SSP 3
results in a notably small GDP growth nearby major cities (e.g.,

TABLE 2 | Assumptions for the parameters in 2,100 in the urban growth model (SSP2: 1.0).

Model Effect SSP1 SSP2 SSP3 SSP4 SSP5

Urban growth model International socio-economic interactionρE 2.0 1.0 0.5 0.5 2.0
National socio-economic interactionρe 0.5 1.0 2.0 2.0 1.0
International spatial interactionρG 1.0 1.0 0.0 0.0 1.0
National spatial interactionρg 1.0 1.0 1.0 1.0 1.0

Urban potential model Spread of urbanization potential: r 0.5 1.0 2.0 1.0 2.0

FIGURE 2 | Downscaled gross productivities in 2010 and those in 2,100 the SSP 1–5 (Europe).
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London, Paris, Shanghai). All these results are consistent with the
assumptions underlying SSPs.

DISCUSSION

This section examines the accuracy of the downscaling. We first
compared our GDP estimates with those of Kummu et al (2018),
which were calculated based on a time-series modelling of sub-
national GDPs and downscaling based on gridded population

estimates. Here, GDP estimates in 2010 by 1/12-degree grids,
which are available in both our estimates and Kummu et al
(2018)’s estimates are compared. The study areas for the
comparison include the NUTS 2 regions, which usually have
populations between 800,000 and 3 million people, in Europe
(Eurostat 2020), United States excluding Hawaii and Alaska
(United States Cencus Bureau 2020), and Japan (Statistics
Bureau of Japan 2015).

Figure 4 compares our GDP estimates with the gridded GDP
of Kummu et al (2018) in 2010. This plot suggests that these

FIGURE 3 | Downscaled gross productivities in 2010 and 2,100 in SSP 1–5 (Eastern Asia).

FIGURE 4 | Comparison of our GDP estimates with Kummu et al (2018).
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estimates have similar patterns. The R-squares between the
two GDP estimates are 0.720 (Europe), 0.885 (United States),
and 0.834 (Japan), respectively, confirming the similarity of
these estimates. On the other hand, our estimates have lower
GDP values than Kummu et al (2018) in developed areas. This
is because we distribute national GDP for not only developed
areas but also the neighbouring areas based on the distribution
weight depending on auxiliary attributes (urbanization
potentials, road networks. . .), which is optimized by the
gradient boosting technique. In other words, the lower GDP
value in developed area is attributable to our optimized
distribution weights allocating more GDP on the
neighboring areas.

Then, to examine consistency of our estimates with actual
GDP, we compared our estimates for 2010 with the regional
GDPs in the NUTS 2 regions, the 49 states of the United States,
and the prefectural GDP in Japan. In each region, our estimates
were aggregated into the aggregate units which these databases
assume. Figure 5 summarizes the comparison results. The
R-squares were 0.685 in the NUTS2 regions, 0.937 in the
United States, and 0.735 in the prefectures in Japan. The
results suggest that our estimates are fairly accurate despite the
fact that our downscaling did not use any regional GDP statistics.

The downscaled GDP data is potentially useful for decision
making toward sustainable development. For example, by
spatially overlaying hazard map with our estimates, possible

FIGURE 5 | Comparison of our GDP estimates with the reported GDP in 2010. For comparison, our estimates were aggregated.

FIGURE 6 | Image of the website for GDP data visualization.
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economic loss due to flood, earthquake, and other natural
disasters can be estimated. The result will be useful for
disaster risk management. The estimated GDPs are also useful
to estimate the map pattern of carbon emissions in the future and
consider policies toward low carbon development.

CONCLUSION

SSP scenarios on population and GDP used by IPCC are central for
the analysis of future climate risks and policy. Population projections
are generally available; however, GDP projections—particularly for
scenarios compatible with SSPs—are limited. In this study, we
estimated the GDP in a 1/12-degree grid scale for the period of
1850–2100 in 10-year intervals by using spatial econometric based
downscaling algorithm. Our results suggest that the spatial pattern of
urban and peri-urban GDP depends considerably on the SSPs; e.g.,
the urban GDP under SSP1 grew rapidly within the existing major
cities. These cities grewmoderately under SSP2 and SSP4. In contrast,
that under SSP3 exhibited a lower growth level, and that under SSP5
exhibited extreme dispersion.

The major improvements relative to Murakami and Yamagata
(2019) are as follows: (i) GDPs by the 1/12 grids, which are
considerably finer than their assumed grids, were estimated; (ii)
GDPs were downscaled under SSP4 and SSP5; GDPs were
downscaled not only in the future but also in the past. The
high resolution and long-term GDP estimates will be useful to
analyse the relationship between urban development and climate
change in detail.

Some important issues remain in this study. First, spatially
finer auxiliary data are needed to sophisticate our downscaling
approach. For example, microscale urban data, such as industrial
structure, detailed road network, and traffic volume, are required
to consider urban phenomena including industrial
agglomeration, growth of transportation networks.
Consideration of the birth of new cities is also an important
topic. Since consideration of these factors can increase the
uncertainty of downscaling, it is crucial to employ a robust
estimation approach like Bayesian estimation (see, e.g., Raftery
et al., 2012 for population projection).

Second, assumptions for the parameters in the urban
growth model should be enhanced. As discussed in

Hausfather and Peters (2020), and Pielke and Ritchie
(2020), high emission scenarios should not be used as the
reference baseline in climate research. Future scenario should
be developed considering a wider range of assumptions due to
the uncertainty in urban growth. Another important topic is to
estimate the difference in urban metabolism pattern in each
country/city. For instance, road density might have stronger
impact on GDP in United States, which has developed heavily
dependent on cars, while weaker impact in Europe.
Unfortunately, our model, which assumes the relative
importance of each auxiliary variable as constant across
countries, ignores such spatial heterogeneity. Estimation of
the heterogeneity for example by incorporating our model with
country-level local models is an important next subject.

It is also important to consider the impact of COVID-19
pandemic that may change economic systems (Burgess et al.,
2020). Spatially fine scale projection can be useful for
policymaking for city-level economic development and
climate risk mitigation. It is important to update scenario
assumptions considering uncertainty relating COVID-19 and
other factors.
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