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In many current state-of-the-art bridge management systems, Markov models are used
for both the prediction of deterioration and the determination of optimal intervention
strategies. Although transition probabilities of Markov models are generally estimated
using inspection data, it is not uncommon that there are situations where there are
inadequate data available to estimate the transition probabilities. In this article, a method-
ology is proposed to estimate the transition probabilities from mechanistic-empirical
models for reinforced concrete elements. The proposed methodology includes the
estimation of the transition probabilities analytically when possible and when not through
the use of Bayesian statistics, which requires the formulation of a likelihood function
and the use of Markov Chain Monte Carlo simulations. In an example, the difference
between the average condition predicted over a 100-year time period with a Markov
model developed using the proposed methodology and the condition predicted using
mechanistic-empirical models were found to be 54% of that when the state-of-the-art
methodology, i.e., a methodology that estimates the transition probabilities using best fit
curves based on yearly condition distributions, was used. The variation in accuracy of
the Markov model as a function of the number of deterioration paths generated using the
mechanistic-empirical models is also shown.

Keywords: mechanistic-empirical corrosion models, Markov chain models, reinforced concrete bridges, Bayesian
statistics, bridge management

INTRODUCTION

Many state-of-the-art infrastructure management systems are making use of the Markov model
for the prediction of deterioration and the determination of the optimal intervention strategies.
When using the Markov model, elements of infrastructures are considered to be in discrete states
(deterioration condition states) defined using physical characteristics, and the deterioration of
elements over time is described as probable transitions between these states over time.

In estimating transition probabilities, there are two basic situations, (1) there are sufficient time-
series data, i.e., when sufficient data are available for a minimum of two consecutive time intervals
and (2) there are no sufficient time-series data, i.e., when there are no sufficient data available for a
minimum of two consecutive time intervals. Needless to say, infrastructure managers should make
decisions of interventions for all elements by reliable transition probabilities when the management
system uses Markov models. In the first situation, infrastructure managers use statistical methods
to estimate the transition probabilities of the Markov models. Many of the models were developed
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with the assumption that elements could jump no more than
one state per time period, such as those used in Klein (1962),
Carnahan et al. (1987), Jiang et al. (1988), Madanat and Ben-
Akiva (1994), and Thompson et al. (1998). However, others were
developed without this assumption, such as those developed by
Tsuda et al. (2006) and Kobayashi et al. (2012a,b). The former
have the advantage that they are relatively easy to compute. In the
former, however, as the deterioration being predicted is relatively
rapid with respect to the time periods selected, error becomes
non-negligible. For example, if it is assumed that the transition
probability from state i to i+ 2 in 5 years is 0, the model cannot
express rapid deterioration processes. The latter allow to avoid
this assumption and have the advantage that resulting transition
probabilities lead to more accurate prediction of deterioration.
In addition, they can be used when data have been collected at
non-uniform intervals.

Despite progressive development in the field ofmonitoring over
the last decades so that data can be collected more frequently and
more accurately, the second situation likely occurs in municipali-
ties with relatively small scale and it can be readily imagined that
not a few administrative organizations are facing this situation.
They are especially pertinent in developing nations, inwhich there
is too little attention paid to managing infrastructures, including
a vast number of concrete bridges. Situations such as (1) time-
series data cannot be used to estimate the transition probabilities
because historical intervention records between inspections are
unavailable, (2) time series data are not recorded as electronic
data, and (3) time-series data in current criteria of states are not
available because criteria of states had been changed recently,
come under this situation as well. In the situation where there are
no sufficient time-series data, infrastructure managers either rely
solely on expert opinion or use expert opinion in conjunctionwith
predictions made using mechanistic-empirical models.

In mechanistic-empirical models, deterioration processes are
modeled as physical processes that can be described using the
characteristics and properties of the materials of the elements
and their chemical and physical response/reaction against factors
of the environment. Using mechanistic-empirical models, once
the values of endogenous and exogenous factors governing the
deterioration process are determined, the condition evolution of
the bridge element over time can be estimatedwithout the need for
inspection data for a minimum of two consecutive time intervals.
Unlike Markov models, condition evolution over time is mod-
eled as being continuous (DuraCrete, 1998; Kirkpatricka et al.,
2002). When mechanistic-empirical models are used together
with expert opinion, it is usually assumed that an element cannot
transition more than one state in one time period.

An improvement to the estimation of transition probabilities to
be used in infrastructure management systems, and, therefore, an
improvement to infrastructure management, would be to have a
methodology to be used to estimate transition probabilities using
mechanistic-empirical models for use in the second situation. In
addition, it is desired that elements are modeled so that they
can transition more than one state in one time period. Such a
methodology is proposed in this article. The proposed methodol-
ogy makes use of two approaches: (1) the analytical approach and
(2) the Bayesian approach. The first is used in situations where it is

possible to find an analytical solution so that the transition prob-
ability can be derived directly from the mechanistic-empirical
models. The second is used in situations where it is not possible
to find the analytical solution. It makes use of Bayesian statistics,
which requires the formulation of a likelihood function of the
transition probabilities and the use of Markov ChainMonte Carlo
(MCMC) simulation.

The remainder of the article is structured as follows: Sections
“Finite State Markov Models and Transition Probabilities” and
“Estimating Transition Probabilities UsingMechanistic-Empirical
Models” include a background to position the contribution of
the proposed method. Specifically Section “Finite State Markov
Models and Transition Probabilities” contains an overview of
finite state Markov models and transition probabilities, and
Section “Estimating Transition Probabilities Using Mechanistic-
Empirical Models” contains a literature review regardingmethods
to estimate transition probabilities using mechanistic-empirical
models. Section “Mechanistic-Empirical Models” includes the
mechanistic-empirical models to be used in the work presented
in this article. In the Section “Relationship between Mechanistic-
Empirical Models and Transition Probabilities,” it is explained
how transition probabilities are to be estimated analytically using
mechanistic-empirical models. In Section “Methodology,” the
methodology is described, in which, the steps to formulate the
mechanistic-empirical model of deterioration process is given
along with a way to convert the condition evolution predicted
using this model to the discrete states required by the Markov
model. An example of how the method is to be used is given
in Section “Example.” In Section “Comparison with the State-
of-the-Art,” the Markov models developed using the proposed
methodology and a state-of-the-art methodology are compared.
In the Section “The Number of Deterioration Paths from the
Mechanistic-Empirical Models,” the effect of the number of dete-
rioration paths required to obtain a satisfactory result is shown
and discussed. Section “Conclusion” contains the conclusions of
the work and recommendations for future research.

FINITE STATE MARKOV MODELS AND
TRANSITION PROBABILITIES

In finite state Markov models, transition of condition states
between time point t1 and t2 = t1 + z is expressedwith a transition
probability matrix whose i∗j (i= 1, . . ., I; j= 1, . . ., I) element is
a transition probability defined as Prob[h(t2)= j|h(t1)= i]=πij.
h(t) is a function which denotes a condition state at t. πij is a
conditional probability which indicates the occurrence probability
of condition state j at t2 with given condition state i observed at t1.
In finite state Markov models, it is assumed that the transition
probability between time points t1 and t2 is only dependent on
the condition state at t1 so as to satisfy the Markov property.
Finite state Markov models have been used in the management
of deteriorating systems since the 1960s, when there was a rapid
development of mechanical and electrical systems (Howard, 1960;
Gertsbakh, 2000; Kolowrocki, 2014). They have been used to
ensure that to determine optimal intervention strategies, i.e., the
strategy to follow to ensure that the costs of executing interven-
tions are balanced with the costs of not executing interventions.
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Finite state Markov models allowed for the modeling of deterio-
ration processes that could not be perfectly modeled determinis-
tically, to be modeled as stochastic processes. They were, and are,
considered to be good models for systems where the transitions
from one state to another can be considered to be memoryless.
They are less good where this is not the case but are still often
used due to both their ease of use and ease of understanding
in situations where the assumptions of memoryless do not lead
to large deviations in condition evolution prediction from reality.
To ensure that a Markov model is developed to give accurate
predictions of deterioration using statistical methods, condition
state data are required. In general, the longer the time series of
inspections, the better.

Finite state Markov models are used in infrastructure man-
agement systems to model the deterioration of elements and to
determine optimal intervention strategies (AASHTO, 2004; Swei
et al., 2015). They are used instead of continuous Markov models
due to their convenience, in terms of using visual inspections (it
is easier to say that an element is in state 2 than to say if it is in
2.1, 2.2, or 2.3) and in terms of assessing the state of the element
that is to trigger an intervention (Howard, 1960; White, 1992;
Puterman, 1994). The estimation of the transition probabilities
for the Markov models is ideally done using available condition
state data that have been collected at uniform time intervals over a
long period of time (Lee, 1970). Although somewhatmore compli-
cated, when data have been collected at non-uniform intervals of
time over a long period of time, the transition probabilities can be
estimated using statisticalmethods, such as survival analysis,max-
imum likelihood estimation, and Bayesian estimation approaches
(Hastings, 1970; Lancaster, 1990; Kobayashi et al., 2012a;Mizutani
et al., 2013; Lethanh et al., 2015). When little to no condition state
data are available, transition probabilities have been estimated
using expert opinion or estimated in various ways to obtain a
best fit with the condition states predicted using mechanistic-
empirical models (Golroo and Tighe, 2012; Indiana Department
of Transportation, 2013).

To simplify the estimation of transition probabilities some
researchers and developers of management systems have assumed
that it is not possible for an element to move more than one
condition state in one time interval, e.g., Jiang et al. (1988),
Mishalani andMadanat (2002), and Robelin andMadanat (2007).
However, others have explicitly developed models where that is
not the case (Tsuda et al., 2006). Being able to estimate transition
probabilities with data that have been collected at both uniform
and non-uniform time intervals and allowing elements to move
more than one condition state per time interval, it has been shown
to increase the accuracy of the estimation of the transition prob-
abilities in Markov models (Tsuda et al., 2006; Kobayashi et al.,
2012b; Mizutani et al., 2013; Lethanh et al., 2015).

ESTIMATING TRANSITION PROBABILITIES
USING MECHANISTIC-EMPIRICAL
MODELS

In situations where there are little to no time-series condition
state data estimating transition probabilities so that the results of
a Markov model fit those of mechanistic-empirical models, using

mechanistic-empirical models is likely to yield more accurate
deterioration predictions.

However, fitting can be done in different ways. No research has
been conducted using an approach to find an analytical solution
so that the transition probability can be derived directly from the
mechanistic-empirical models.When this approach is unavailable
due to relatively complicated functional forms of the mechanistic-
empirical models, an approach is available to estimate the tran-
sition probabilities using the predictions of condition of the ele-
ments with theMarkovmodel andwith themechanistic-empirical
models. Roelfstra et al. (2004), which is perhaps the first work in
this area, used a restricted least squares approach to minimize the
difference between the predictions of the average condition of the
elements with theMarkov model and the predictions of condition
of the elements with the mechanistic-empirical models. They
assumed that there was a maximum transition of one state in one
time interval. Overcoming this assumption, Lethanh et al. (2017)
used a restricted least squares approach tominimize the difference
between the prediction of the probabilities of the elements being in
each condition state in each time interval within the investigated
time period estimated using the Markov model and those pre-
dicted using the mechanistic-empirical models. In other words,
they minimized the sum of the differences between the elements
of the state vectors, which are estimated using the Markov model
and the mechanistic-empirical models, respectively. In this pro-
cess, however, information of the transitions of the states in each
element, i.e., information of the transitions from state i to j of an
element, is lost by aggregating this information into the values
of the state vectors. To prevent this loss of information, in the
proposed methodology, a likelihood function of the transitions
of the states in each element is formulated, and the transition
probabilities are estimated based on the likelihood function. The
methodology used by Lethanh et al. (2017) is used as a reference
methodology in this article.

MECHANISTIC-EMPIRICAL MODELS

Many mechanistic-empirical models can be used to predict the
future condition state of reinforced concrete elements. In this
work, a mechanistic-empirical model was selected to predict
condition states of the element during the initiation phase of
chloride-induced corrosion, and another was selected to predict
condition states of the element during the propagation phase. The
models used were based on those given in DuraCrete (2000). An
illustration of the two phases, along with the ranges of chloride
concentrations (kg/m3) and crack widths (mm) used to define the
condition states, is given in Figure 1.

Chloride penetration was modeled using Fick’s second law of
diffusion (Fick, 1855).

δCcl
δt = Dcl

δ2Ccl
δx2 , (1)

where Ccl is the chloride ion concentration at the depth of the
reinforcement (here small notation “cl” denotes the abbreviation
for chloride); x is the depth; and Dcl is the chloride diffusion
coefficient.

The solution for partial differential equation (Eq. 1) gives the
following explicit form to calculate the chloride concentration as

Frontiers in Built Environment | www.frontiersin.org October 2017 | Volume 3 | Article 583

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Mizutani et al. Improving Estimation of Transition Probabilities

FIGURE 1 | Deterioration process of reinforced concrete due to chloride-induced corrosion [adopted from Lethanh et al. (2017)].

a function of the distance of the reinforcement from the concrete
surface xcl and time t (DuraCrete, 2000).

Ccl(xcl, t) = Cs

(
1 − erf

[
xcl

2
√
Dclt

])
, (2)

where Cs is the surface chloride content and erf[·] denotes the
error function.

The time required for corrosion to start, that is time t in Eq. 2
was estimated by setting the value ofCcl to be equal to the chloride
concentration. Then the value ofCcl is used to determine the entry
point into a condition state. In other words, by setting the upper
bounds on the values of Ccl to be used to define each discrete
condition state i, the time to arrive at that condition state was
obtained by solving Eq. 2 with respect to time t and a certain
depth of concrete cover from the reinforcement. The value of
variablesCcl,Cs, andDcl in the above equationswere considered to
be random, with each one being represented with a probabilistic
distribution.

After the value of chloride concentration reached a certain
lower limit, corrosion of the reinforcement was assumed to start.
After it reached a certain higher limit, cracking was assumed to
start. The following equations from DuraCrete (2000) were used:

w(t) = w0 + β(P(t) − P0), (3)

where w(t) is the crack width (mm) over time; β is the parameter
that controls the propagation; w0 is the crack width when it is
visible (≈0.05mm); P0 is the amount of loss of re-bar diameter
(mm) when the crack width is visible; and P(t) is the amount
of loss of re-bar diameter (mm) at time t, which is given by the
following equation:

P(t) =
∫ t

0
Vcorr · α · wet · τ dτ, (4)

where Vcorr is corrosion rate coefficient (mm/year); wet is the wet
period in a year (equal to the ratio between total numbers of rainy
day and 365 days); and α is pitting factor that takes non-uniform
corrosion of the re-bars into consideration.

RELATIONSHIP BETWEEN
MECHANISTIC-EMPIRICAL MODELS AND
TRANSITION PROBABILITIES

The relationship between the mechanistic-empirical models and
the transition probabilities is explained in this section. The two
phases of deterioration as illustrated in Figure 1 are expressed
as a function of a set of random variable X, where X represents
a vector of parameters such as Dcl, Vcorr, α, and wet. When the
mechanistic-empirical model, which is defined as the general
notation of deterioration function y= g(t, x), includes a single
random variable x with its probability density distribution f (x)
and y= g(t, x) is a monotonic increasing function, the relation-
ship between the mechanistic-empirical model and the transition
probabilities can be derived. Here, t is elapsed time. y is an indi-
cator of deterioration, and the value of y becomes larger as the
reinforced concrete element deteriorates. The inverse function of
y is denoted as x=m(y, t).

As x is a random variable, the value of i is also a random
variable. The occurrence probability of observing condition state
i is given by the following equation:

ξ(i, t) =
∫ m(yi,t)

m(yi−1,t)
f(x)e(t)dx, (5)

where e(t) is the probability density function of elapsed time t
and (yi−1, yi] denotes the pre-defined range of y for condition
state i.
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The probability of observing condition state j at any subsequent
time t+∆t is defined as follows:

η(i, j, t, ∆t) =
∫ m(y,t)

m(y,t)
f(x)e(t)dx, (6)

where y and y are the lower bound and the upper bound of y at t,
respectively, that function y= g(t, x) passes both ranges (yi−1, yi]
at t and (yj−1, yj] at t+∆t, which are given by the following
equations:

y = max(yi−1, g(t,m(yi−1, t + ∆t))), (7)

y = min(yi, g(t,m(yi, t + ∆t))). (8)

Since Markov transition probabilities are constant in the finite
state Markov model, it is assumed that t is selected randomly.
Consequently, the continuous uniform distribution U(0, tz) is
available as the probability density function of elapsed time e(t),
and tz is enough large number. The Markov transition probability
πij(∆t) is given by the following equation:

πij(∆t) =
π(i, j, ∆t)

π(i) , (9)

where π(i) is the marginal distribution of i, which is given by the
following equation:

π(i) =
∫ tZ

o
ξ(i, t)dt =

∫ tZ

0

∫ m(yi,t)

m(yi−1,t)
f(x)e(t)dxdt, (10)

and π(i, j, ∆t) is the marginal distribution of (i, j), which is given
by the following equation:

π(i, j, ∆t) =
∫ tZ

o
η(i, j, t, ∆t)dt =

∫ tZ

0

∫ m(y,t)

m(y,t)
f(x)e(t)dxdt.

(11)

METHODOLOGY

The methodology proposed to estimate the transition probabil-
ities is shown in Figure 2. The first two tasks are required to
select the mechanistic-empirical models. Once the models are
selected, the values of their parameters are to be defined, as are the
condition states to be used to map the continuous values deter-
mined using the mechanistic-empirical models to the discrete
states used in the Markov model. When transition probabilities
can be calculated directly from themechanistic-empirical models,
transition probabilities are determined analytically. When this is
not possible, the transition probabilities are to be estimated using
the Bayesian approach shown in Figure 2 as the sub-process. The
use of the Bayesian approach is explained inmore detail in the rest
of this section.

Generate Sample Deterioration Paths
In this step, a set of values for the vector X are generated using
its parametric inferences (e.g., mean and SD of a probability dis-
tribution). The generated set of values of X is then used, together

with the mechanistic-empirical models to generate a sample path
of deterioration for the concrete element. N paths are generated,
and Xn (n= 1, . . .,N) denotes X used to generate path n. Path n
is considered to be independent from the other paths 1, . . ., n− 1,
n+ 1, . . .,N. These paths are then discretized into Z time inter-
vals as condition states at time points on a discrete time axis
tz+1 = tz + a (z= 1, . . .,Z− 1). a is the time interval of the discrete
time axis. The condition state of the element associated with path
n at time tz is denoted as qn(tz). The sample paths are generated
using the following rules:

θ
n,z
i,j =

{
1 qn(tz) = i, qn(tz+1) = j
0 Otherwise

, (12)

where θ
n,z
i,j is a dummy variable. The total number of sample paths

is then expressed as the vector Θ = (θ1,11,1, . . . , θ
N,Z
I,I ).

At time tz+1, the condition value associated with sample path n,
is as follows:

yntz+1 = g(tz+1,Xn). (13)

As the same Xn is used to generate path n, the condition states
of the element, for time points tz and tz+1, satisfy the following
constraint:

qn(tz) ≤ qn(tz+1) ∀z. (14)

Estimate the Transition Probabilities
In this step, Bayesian estimation is used to estimate the transition
probabilities. This includes the three sub-steps of

o specify the initial values of unknown parameters, Π(0), and
the prior probability distribution function p(Π) through the
specification of its parameters a1, . . ., aI−1 based on the prior
information;

o define the likelihood function L(Θ, Π) using the obtained
data Θ;

o determine the posterior probability density function p(Π|Θ) as
the product of the prior probability density function and the
likelihood function in accordance with the Bayes’ theorem.

Here, Π denotes the unknown parameter vector. It is assumed
thatΠ is a random variable and is subjected to the prior probabil-
ity density function p(Π). Under these conditions and according
to Bayes’ theorem (Bayes and Price, 1763), when the observed data
Θ are given, the posterior probability density function p(Π|Θ) of
the unknown parameters Π is defined as follows:

p(Π|Θ) =
L(Θ, Π)p(Π)∫

Ξ
L(Θ, Π)p(Π)dΠ

, (15)

whereΞ represents the parameter space. At this time, p(Π|Θ) can
be expressed as follows:

p(Π|Θ) ∝ L(Θ, Π)p(Π), (16)

where the symbol “∝” denotes “be proportional to.”

Specify the Prior Probability Distribution
The specification of the prior probability density function requires
that the random variables of the prior probability density function
have same domains as the unknown parameters. The distribution
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FIGURE 2 | Methodology.

to be used has to satisfy the condition of the transition probabili-
ties, that is

I∑
j=1

πij = 1, (17)

0 ≤ πij ≤ 1. (18)

The Dirichlet distribution is a good example. The function of
the distribution is given by the following equation:

p(πi) =
1

B(πi)

I∏
j=1

(πij)αi,j−1, (19)
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where B(·) is a beta function; πi = (πi ,1, . . .,πi ,I) holds; and
αi = (αi ,1, . . ., αi ,I) is a parameter vector of the Dirichlet
distribution.

Define the Likelihood Function
The definition of the likelihood function requires determining
the number of sample paths and number of condition states
to be used. In the likelihood function, the transition probabil-
ities from condition states i to j are the model parameters and
the data used to estimate the transition probabilities are the
sample paths generated using the mechanistic-empirical mod-
els. The likelihood function, therefore, consists of the probabil-
ities of having specific values of the transition probabilities, as
follows:

L(Θ, Π) =
N∏

n=1

Z−1∏
z=1

I∏
i=1

I∏
j=i

(πij)θ
n,z
i,j . (20)

Determine the Posterior Probability Density Function
The posterior probability density function p(Π|Θ) is determined
through the definition of the unknown parameters. It has the
following form:

p(Π|Θ) = L(Θ, Π)
I−1∏
i=1

p(πi). (21)

The unknown parameters are determined Π(c) using MCMC
simulation with Gibbs sampling (Geman and Geman, 1984) and
the randomwalkMetropolis Hastings (MH) algorithm (Hastings,
1970), and recorded Π(c). MCMC simulation has been used suc-
cessfully in this way to estimate the posterior distributions in the
past in situations where the multidimensional integration of the
objective function of a model was not possible (Robert, 1996).

For each MCMC simulation, the random walk MH algorithm
estimates the transition probabilities (π(c)

ij , π
(c)
ĩj ) in each loop

c(c= 1, . . .,C) by comparing a candidate set of transition prob-
abilities (π′

ij, π
′
ĩj) with a sample (π̃ij, π̃ĩj). π̃ij is the transition

probability that is comparedwith the candidate of transition prob-
abilities. π̃ij is defined asπ(c−1)

ij and is i× j element of Π̃. The can-
didate set of transition probabilities must satisfy the constraint of
theMarkovmodel,

∑I
j=i πij = 1.Here, j̃ represents the state that is

most likely to occur. For example, when i= 1, I= 4, and j= 2, and
the transition probabilities are (πi1, . . .,πi4)= (0.1, 0.1, 0.7, 0.1),
j̃ becomes 3. When π′

ij is generated so that the sum of π′
ij and

π′
ĩj is same as the sum of π̃ij and π̃ĩj,

∑I
j=i πij = 1 is satisfied.

At this time, π′
ij has to be within the interval [0, U], and U =

π̃ij + π̃ĩj holds. To do this, π′
ij is generated using a truncated

normal distribution with mean π̃ij, on [0, U] and variance µjump,
ψ(π′

ij, π̃ij, µjump,U). Whenπ′
ij is generated,π′

ĩj is fixed uniquely
as π′

ĩj = U − π′
ij. Thus, the occurrence probability of π′

ij cor-
responds to the joint occurrence probability of the set (π′

ij, π
′
ĩj),

ζ(π′
ij, π

′
ĩj|π̃ij, π̃ĩj), as follows:

ψ(π′
ij, π̃ij, µjump,U) = ζ(π′

ij, π
′
ĩj|π̃ij, π̃ĩj)

=
1

µjump
ϕ

(
π′

ij−π̃ij
µjump

)
Φ

(
U−π̃ij
µjump

)
− Φ

(
0−π̃ij
µjump

) , (22)

where π̃ij is the expected value, µjump is the variance, and π′
ĩj is

U−π′
ij.ϕ(·) is a probability density function of a standard normal

distribution, and Φ(·) is a cumulative distribution function of a
standard normal distribution. The probability that a candidate set
(π′

ij, π
′
ĩj) is accepted is expressed as follows:

ι(π′
ij, π

′
ĩj|π̃ij, π̃ĩj) =

min

(
p(Θ, Π̃−(i,j)(i,̃j), π

′
ij, π

′
ĩj)ζ(π

′
ij, π

′
ĩj|π̃ij, π̃ĩj)

p(Θ, Π̃−(i,j)(i,̃j), π̃ij, π̃ĩj)ζ(π̃ij, π̃ĩj|π′ ij, π′
ĩj)

, 1

)
, (23)

where Π̃−(i,j)(i,̃j) is the parameter set which consists of Π̃ except
π̃ij and π̃ĩj. Equation 23 means that a candidate is accepted with
probability 1 if it has a better fit with the paths, and a candidate is
accepted with the probability formulated as a ratio of the product
of the posterior probability density function and the occurrence
probability of the candidate if it does not have a better fit with
paths. Using this probability, parameters following the posterior
distribution are sampled numerically avoiding falling into local
optima.

(π̃ij, π̃ĩj) is sampled as follows:

(π̃ij, π̃ĩj) =

{
(π̃ij, π̃ĩj) uic > ι(π′

ij, π
′
ĩj|π̃ij, π̃ĩj)

(π′
ij, π

′
ĩj) uic ≤ ι(π′

ij, π
′
ĩj|π̃ij, π̃ĩj)

, (24)

where uic is a uniform random number drawn from the uniform
distribution whose domain is [0,1]. In Gibbs sampling, (π̃ij, π̃ĩj)
can be sampled from the other elements of Π̃. In the iterative pro-
cedure, the elements of Π̃ are defined successively in order from
j= i to j= I in each i, and (π(c)

ii , . . . , π
(c)
iI ) is fixed as (π̃ii, . . . , π̃iI)

if j= I.

Evaluate the Results
AGeweke test statistic (Geweke, 1992) is used to evaluate conver-
gence during sampling. The Geweke test statistic indicates differ-
ence between the first 10% (Π(̄c+1), . . . , Π(0.1(C−c̄)+c̄)) and the
last 50% (Π(0.5(C−c̄)+c̄), . . . , Π(C)) of sampled transition proba-
bilities. c̄ is burn-in. A statistical hypothesis test is conducted using
theGeweke test statistic.When the statistics are less than 1.96 (sig-
nificance level 5%), it is judged that sampling has converged and
(Π(̄c+1), . . . , Π(C)) are samples from the posterior distribution.

The expected transition probabilities, which are used as the
estimated values, are then given by the following equation:

π̃ij =

∑C
c=c̄+1 π

(c)
ij

C − c̄ (i = 1, . . . , I − 1; j = i, . . . , I). (25)

The 100(1− 2κ)% Bayesian credible interval of each parameter,
[πκ

ij, π
κ
ij], is calculated by (Π(̄c+1), . . . , Π(C)) as follows:

π
κ
ij = arg max

π∗
ij

{
#(π(c)

ij ≤ π∗
ij , c = c̄ + 1, . . . ,C)
C − c̄ ≤ κ

}
,

(26)

π
κ
ij = arg max

π∗∗
ij

{
#(π(c)

ij ≥ π∗∗
ij , c = c̄ + 1, . . . ,C)
C − c̄ ≤ κ

}
.

(27)
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Here, the symbol #(·) indicates the number of c that satisfies
the logical expression in parentheses. [πκ

ij, π
κ
ij] indicates that the

probability that the expected transition probability lies in [πκ
ij, π

κ
ij]

is 1− 2κ.
The length of time required to transition to condition state i− 1

(i= 2, . . ., I) and i in the deterioration path of s%, l(c)i,s , is calculated
using following equation:

l(c)i,s = t̃z +
a
(

s
100 −

∑i
j=1 ν

(c)
j,t̃z

)
∑i

j=1 ν
(c)
j,t̃z+1 −

∑i
j=1 ν

(c)
j,t̃z

− l(c)i−1,s, (28)

where
∼z = max z Subject to

i∑
j=1

ν
(c)
j,tz ≤ s

100
, (29)

where l(c)1,s = 0 and ν
(c)
j,tz is jth element of state vector ν(c)(tz)

at tz calculated by Π(c). l(c)i,s is defined so that the probability
that length of time required to transition to condition state i− 1
(i= 2, . . ., I) and i is less than l(c)i,s is s%. The first term on the
right hand side of Eq. 28 is the expected length of time to tran-
sition from the initial time point to condition state i. The second
is the condition value obtained from the mechanistic-empirical
model. The ratio of the difference between

∑i
j=1 ν

(c)
j,t̃z and s/100

is added to the difference between
∑i

j=1 ν
(c)
j,t̃z and

∑i
j=1 ν

(c)
j,t̃z+1

to express the length of time more precisely. For example, when
a= 1,

∑i
j=1 ν

(c)
j,t̃z+1 = 0.33,

∑i
j=1 ν

(c)
j,t̃z+1 = 0.27, and s= 30(%),

1× (30/100− 0.27)/(0.33− 0.27) = 0.5 is added to t̃z to evaluate
the length of time between t̃z and t̃z+1. For example, when t̃z = 20
and t̃z+1 = t̃z + a = 21, the sum of the first and second term on
the right hand side of Eq. 28 is calculated as 20.5.

The estimated transition probabilities are evaluated using the
Bayesian credible intervals of expected length of time required to
transition between condition states. The Bayesian credible interval
of the expected length of time to make transitions between condi-
tion states 1 and I isT(c) =

∑I
i=1 l

(c)
i,50. The 100(1− 2κ)%Bayesian

credible interval of the expected duration T(c) (c = c̄, . . . ,C) is
defined as [Tκ,Tκ], i.e., the probability that the expected duration
lies in [Tκ,Tκ] is 1− 2κ, treating the expected length of time as a
random variable. The magnitude of the difference r = T κ − T κ

can be used to determine how good the estimated values are. If
they are good enough, then the estimated transition probabilities
are considered correct. If not, then more sample paths are gen-
erated using the mechanistic-empirical models and the process is
started over again. This process is illustrated in the sub-process of
Figure 2.

T κ and Tκ are defined as sample order statistics as follows:

Tκ = arg max
T∗

{
#(T(c) ≤ T∗, c = c̄ + 1, . . . ,C)

C − c̄ ≤ κ

}
,

(30)

T κ = arg max
T∗∗

{
#(T(c) ≥ T∗∗, c = c̄ + 1, . . . ,C)

C − c̄ ≤ κ

}
.

(31)

Here, the symbol #(·) indicates the number of c which satisfies
the logical expression in parentheses. As shown in Figure 2, using
a threshold value R that is established in advance and depends
on the desired amount of accuracy. If r is smaller than R, the
algorithm is controlled to be stopped. On the other hand, if r is
greater than R, the algorithm returns to the sample generation
phase and redefine N.

EXAMPLE

Overview
The methodology was tested by using it to estimate the transition
probabilities for a reinforced concrete element. The mechanistic-
empiricalmodels used for the initiation phase and the propagation
phase were given by the following equations:

y1 = g1(tz, x1,1) = Cs

(
1 − erf

[
d

2
√x1,1tz

])
(32)

and
y2 = g2(tz, x2,1, x2,2) = x2,1 + (tz)2

x2,2
2

, (33)

respectively.
In these equations, x1,1, x2,1, and x2,2 were considered as ran-

dom variables. As information about distributions of the param-
eters Cs, xcl, Dcl, Vcorr, α, wet, w0, β, and P0 in Eqs 2–4 was
not available, they are summarized as Cs =Cs, d= xcl, x1,1 =Dcl,
x2,1 =w0 − βP0, and x2,2 = β∗Vcorr

∗α∗wet in Eqs 32 and 33, and it
is assumed that x1,1, x2,1, and x2,2 are distributed based on normal
distributions. The values of these variables used are shown in
Table 1.

The condition values obtained from Eqs 32 and 33 were
mapped to condition state as shown in Table 2.

Estimation Based on Relationship between
Mechanistic-Empirical Models and
Transition Probabilities
When the mechanistic-empirical models in Eqs 32 and 33 are
used, the transition probabilities cannot be estimated analyti-
cally based on their relationship shown in Section “Relationship
between Mechanistic-Empirical Models and Transition Probabil-
ities.” The transition probabilities π11 and π12, however, can be
estimated with numerical integration (e.g., Monte Carlo simula-
tion) based on the relationship between the initiation model and
the transition probabilities because the initiation model includes

TABLE 1 | Parameters of ME model.

Initiation Propagation

Cs d x1,1 x2,1 x2,2

Expected value 2.4 20 10 0.0004 0.05
Variance – – 10 0.00001 0.001
Minimum value – – 0 0 0
Maximum value – – ∞ ∞ ∞
Distribution Const. Const. Truncated

normal
Truncated
normal

Truncated
normal
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a single random variable x1,1. Here, as an example, π11(1) is
estimated. It can be expressed, using probability density functions
of a truncated normal distribution and a continuous uniform
distribution, as follows:

π(1) =
1
tZ

∫ tZ

0
H(m(yi, t); 10,

√
10, 0, ∞)

−H(m(yi−1, t); 10,
√
10, 0, ∞)dt, (34)

where H(·; hmean, hsd, hl, hu) is the cumulative distribution func-
tion of the truncated normal distribution withmean hmean, SD hsd,
and support [hl, hu]. In addition, π(1, 1, 1) can be formulated as
follows:

π(1, 1, 1) =
1
tZ

∫ tZ

0
H(m(y, t); 10,

√
10, 0, ∞)

−H(m(y, t); 10,
√
10, 0, ∞)dt, (35)

and, therefore
π11(1) =

π(1, 1, 1)
π(1)

. (36)

TABLE 2 | Definition of condition states.

Phase Condition
state

Description Indicator Criteria

1 1 New/partial new Amount of chlorides
in the concrete at
reinforcing bar level
y1

0< y1 ≤0.24
2 Concrete

contaminated
0.24< y1 ≤0.48

2 3 Corrosion has
initiated, no visible
cracking has
occurred

Width of crack (y2)

0.48< y1,y2 ≤0.25

4 Visible cracking
has occurred

0.25< y2 ≤0.5

5 Visible cracking has
occurred and cover
has spalled off

0.5< y2

Asπ(1, 1, 1)= 0.0754 andπ(1)= 0.0858 by computation using
Monte Carlo simulation to solve integration in Eqs 35 and 36,
π11(1) is 0.879. Estimation of the transition probabilities with the
proposed Bayesian approach can be regarded as solving the inte-
grations by generating sample deterioration paths and statistically
estimating the transition probabilities instead of using numerical
integration. As estimated result can be evaluated using poste-
rior distributions and Bayesian credible intervals, the proposed
Bayesian approach is superior to the numerical integration when
the integration cannot be solved analytically.

Generate Sample Deterioration Paths
To estimate the other transition probabilities, a set of sample paths
(N= 10,000) was generated for 1-year time intervals over a period
of 100 years, i.e., a= 1, Z= 100.

Estimate Transition Probabilities
The estimated transition probabilities are shown inTable 3. Com-
paring π11(1) between the Bayesian approach and the approach
based on relationship between mechanistic-empirical models
and transition probabilities, it can be found that π11(1)= 0.879
derived in 7.2 fits well to the result with the proposed Bayesian
approach.

Evaluate Results
To calculate Bayesian credible intervals of the expected length of
the transition between condition states, the transition probabili-
ties obtained in every step of the MCMC simulation were used.
C and c̄ were set to 11,000 and 1,000, respectively. In sampling
c (c = c̄, . . . ,C), the expected duration l(c)i,s was calculated from
the transition probability matrix Π(c) and Eq. 28.

The suitability of the number of generated paths N were evalu-
ated using

o a distribution of the length of time to transition from condition
state 1–5 with s= 50 (%), T(c),

TABLE 3 | Estimated Markov transition probabilities

Posterior condition state

1 2 3 4 5

Prior condition state 1 Expected value 0.890 0.110 0.000 0.000 0.000
[Min 5%, Max 5%] [0.888, 0.892] [0.108, 0.112] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]
Geweke test statistic −0.016 −0.057 0.584 0.613 0.518

2 Expected value 0 0.819 0.094 0.052 0.035
[Min 5%, Max 5%] – [0.816, 0.821] [0.092, 0.096] [0.050, 0.053] [0.034, 0.037]
Geweke test statistic – −0.057 0.080 0.037 −0.035

3 Expected value 0 0 0.917 0.083 0.000
[Min 5%, Max 5%] – – [0.915, 0.919] [0.081, 0.085] [0.000, 0.000]
Geweke test statistic – – 0.001 0.003 −0.303

4 Expected value 0 0 0 0.882 0.118
[Min 5%, Max 5%] – – – [0.880, 0.884] [0.116, 0.120]
Geweke test statistic – – – −0.002 −0.002

5 Expected value 0 0 0 0 1
[Min 5%, Max 5%] – – – – –
Geweke test statistic – – – – –
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FIGURE 3 | Transition of state vector over time: (A) calculated using the
transition probabilities estimated by the proposed methodology; (B)
calculated using the transition probabilities estimated by the state-of-the-art
methodology; and (C) calculated using the mechanistic-empirical models.

o a 90% Bayesian credible interval, [T5,T5] (with [T5,T5] =
[23.704 (years), 24.229 (years)], r = T5−T5 = 0.525 (years)),
and

o R= 1 (year).

The Bayesian credible intervals and Geweke test statistics are
shown in Table 3. As r≤R and all of the Geweke test statis-
tics are less than 1.96 (significance level 5%), it is concluded
that 10,000 deterioration paths were sufficient to estimate the
transition probabilities.

Discussion
By using the estimated values of the Markov transition proba-
bilities, deterioration processes can be expressed stochastically
as transition of the condition state vector over time. Figure 3A
shows the transition of values of the condition vector calculated
based on the transition probabilities estimated with the proposed
methodology. The results shown in Figure 3A enable the eval-
uation of the condition at arbitrary time points, as well as the
deterioration paths. Considering the state vectors estimated using
the Markov model, probability s that the reinforced concrete
element in each condition state can be used as a risk control
level. Figure 4 shows deterioration paths with different risk con-
trol levels. These can be used to determine the points in time

FIGURE 4 | Deterioration paths.

TABLE 4 | Estimated transition probabilities using state-of-the-art methodology.

Posterior condition state

1 2 3 4 5

Prior condition state 1 0.921 0.074 0.002 0.002 0.001
2 0 0.890 0.090 0.020 0.000
3 0 0 0.873 0.127 0.000
4 0 0 0 0.838 0.162
5 0 0 0 0 1

TABLE 5 | Sum of the differences between the condition values predicted using the
Markov models and those predicted using the mechanistic-empirical models.

Year Proposed methodology State-of-the-art methodology

1–10 1.14E+00 7.67E−01
11–20 4.20E−01 9.89E−01
21–30 1.76E−01 1.02E+00
31–40 1.01E−01 5.14E−01
41–50 1.60E−02 1.36E−01
51–60 1.00E−03 1.90E−02
61–70 4.90E−03 1.44E−03
71–80 7.72E−03 3.49E−03
81–90 8.16E−03 5.72E−03
91–100 6.40E−03 5.34E−03
Total 1.88E+00 3.46E+00

when inspections should be performed or interventions should be
executed.

COMPARISON WITH THE
STATE-OF-THE-ART

The comparison between the proposed methodology and the
state-of-the-art methodology (Lethanh et al., 2017) was done
by estimating the transition probabilities using both methodolo-
gies from the mechanistic-empirical models shown in Eqs 32
and 33 and Table 1, and measuring the differences (or resid-
uals) between the average condition values predicted by using
the Markov models and the condition values predicted using the
mechanistic-empirical models. Figure 3B shows the state vectors
calculated using transition probabilities estimated by the state-
of-the-art methodology shown in Table 4. The condition state
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distributions for each time interval calculated by the mechanistic-
empirical models are shown in Figure 3C, i.e., the condition
state distributions in Figure 3C are calculated as ratios of con-
dition states at each time point in the generated sample deteri-
oration paths in 7.3. The values of the log likelihood with the
transition probabilities estimated using the proposed method-
ology and the state-of-the-art methodology were −1.0924E+05
and −1.2697E+05, respectively. The proposed methodology can
maximize the likelihood function and fit transition probabili-
ties to generated sample paths better than the state-of-the-art
methodology. To discuss the results in detail, the differences
of sums of squared residuals between the Markov models and
the condition values predicted using the mechanistic-empirical
models are given in Table 5. This table shows, for example,
that the sum of squared residuals in the period between 11
and 20 years was 4.20E−01. It can be seen that the differences
between 11 and 60 years using the models developed with the
proposed methodology are smaller than the differences using the
models developed with the state-of-the-art methodology. This
tendency can be seen in the expected deterioration paths shown
in Figure 5 as the path of the proposed methodology is closer to

FIGURE 5 | Comparison among expected deterioration paths.

that of data than the state-of-the-art methodology after 10 years
elapsed.

From Table 5, it can be also seen that the sums of differences
over 100 years were 1.88 condition states and 3.46 condition states
using the Markov models developed using the proposed and the
state-of-the-art methodologies, respectively. From these results,
it can be inferred that the Markov model developed using the
state-of-the-art methodology overestimates life expectancy and
underestimates the speed of deterioration because the result of the
state-of-the-art methodology was influenced excessively by the
data between 61 and 100 years to estimate transition probabilities
π3j, π4j, and π5j.

THE NUMBER OF DETERIORATION PATHS
FROM THE MECHANISTIC-EMPIRICAL
MODELS

In the proposed methodology, the accuracy of the Markov mod-
els depends on the number of deterioration paths N used in
the estimation of the transition probabilities. This relationship
is shown in Figure 6 and Table 6 for all transition probabilities
for values of N ranging between 1,000 and 10,000 at 1,000 step
intervals. In all cases, as above, the following values were used
a= 1 (year), c̄ = 1, 000, and Z= 100. The posterior distributions
calculated using sampled parameter π11(1) are shown in Figure 7
forN= 1,000 andN= 10,000 as an example. FromFigures 6 and 7
andTable 6, it can be seen that the parameter dispersion decreases
from 1.16E−02 to 3.39E−03 as N increases from 1,000 to 10,000.
As shown in Table 6, all of the other parameters πij have the same
magnitude correlation to the case ofπ11 asN increases from 1,000
to 10,000. The credible interval ofπ15 withN= 4,000 is not shown
in Table 6 because all sampled π15 were 0.

It can be seen in the previous table and in Figure 8, which
shows the 90%Bayesian credible intervals of life expectancies with
N from 1,000 to 10,000 at 1,000 step intervals that the Bayesian
credible intervals vary as a function of the number of deterioration
paths used. With a threshold of R= 1 (year), where r = T5 − T5,
it seen that N is to be at least 3,000 to obtain a satisfactory result.
Figure 9 indicates that the requiredN increases whenR decreases.
From Figure 9, it can be seen that N has to be greater than 5,000

FIGURE 6 | Sampling of parameter π11(1).
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FIGURE 7 | Posterior distributions of π11(1).

FIGURE 8 | Distributions of life expectancies.

FIGURE 9 | 90% Bayesian credible intervals of life expectancies.

or more when R= 0.8 (years), and 8,000 or more when R= 0.6
(years), respectively.

CONCLUSION

In this article, a methodology is presented to estimate the
transition probabilities to be used in Markov models from
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mechanistic-empirical models. The methodology can be used
when there is little to no available time-series inspection infor-
mation, but mechanistic-empirical models are available. The
proposed methodology includes the use of analytical solutions
where possible and the use of Bayesian statistics where ana-
lytical solutions are not possible. When the Bayesian approach
is used, the accuracy of the transition probabilities is to be
estimated as a function of the number of deterioration paths
calculated.

The methodology is demonstrated by using it to estimate
the transition probabilities to be used in a Markov model
for reinforced concrete bridge elements deteriorating due to
chloride-induced corrosion of the reinforcement. It was shown
in this example that the proposed methodology was an improve-
ment on the state-of-the-art methodology, as the sum of
residuals over 100 years with the proposed methodology was
100*1.88/3.46= 54% of that of the state-of-the-art methodology,
i.e., the proposed methodology gave a 46% point decrease. In
addition, the later would have over-estimated the speed of dete-
rioration.

In the work presented in this article, it was assumed that
stationary transition probabilities are to be used. When Markov

models with stationary transition probabilities are used, certain
limitations are imposed which restrict the modeling of the dete-
rioration processes. This is considered to be okay if the sum of
residuals is close to 0. If, however, it is found that they do not, the
use of non-stationary transition probabilities might provide better
results. The use of non-stationary transition probabilities could
improve the modeling of deterioration in these circumstances.
They could, for example, be used to capture sudden decreases in
the states elements. Future work should be focused on the use
of non-stationary transition probabilities in bridge management
systems. Some preliminary work is that done byWellalage (2015).

In addition, the proposed methodology has potential of use for
many other materials in addition to reinforced concrete, in sit-
uations where condition data are not available but mechanistic-
empirical models are available. Exactly how this should be done
is, for each type of material, a topic for future work.
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