Skip to main content

ORIGINAL RESEARCH article

Front. Bioeng. Biotechnol.
Sec. Biomechanics
Volume 12 - 2024 | doi: 10.3389/fbioe.2024.1518091
This article is part of the Research Topic Assessment of Biomechanical Mechanism in the Context of Sports Injury Prevention or Rehabilitation View all 4 articles

Kinematic and muscle co-activation patterns in the dominant arm across forehand stroke phases in wheelchair tennis

Provisionally accepted
  • 1 Department of Physical Education and Kinesiology,, College of Education, Qassim University, buraydah, Saudi Arabia
  • 2 Alexandria University, Alexandria, Egypt

The final, formatted version of the article will be published soon.

    Objective: This study investigated upper limb kinematics and muscle co-activation in wheelchair tennis players during the forehand stroke. By analyzing linear and angular kinematic variables alongside muscle co-activation patterns, the study aimed to provide insights into the biomechanical mechanisms supporting forehand stroke performance.Method: Fifteen professional male wheelchair tennis players (height: 163.9 ± 2.05 cm; mass: 64.1 ± 3.07 kg; age: 32.2 ± 7.97 years) participated in this study. Electromyographic (EMG) data from six muscles around the dominant arm joints were recorded using the Myon system. Four fixed GoPro Hero 8 cameras (120 Hz) captured 3D video, and kinematic analyses were performed using the APAS system. The forehand stroke was analyzed across three phases: (1) backswing, (2) forwardswing, and (3) follow-through.The results showed significant phase-specific changes in muscle co-activation for the shoulder (p < 0.001), elbow (p < 0.005), and wrist (p < 0.01). Muscle co-activation was highest during the backswing phase, decreased during the forwardswing, and increased again during the followthrough phase. This pattern reflects the need for joint stability and control, particularly when changing stroke direction and slowing the arm after impact.These findings provide novel insights into the kinematic and neuromuscular mechanisms underlying the forehand stroke in wheelchair tennis. The data provide hypotheses about potential training and rehabilitation strategies that should be tested by prospective studies. The results also highlight the unique demands of wheelchair tennis, contributing to inclusive, evidence-based approaches to enhancing performance and safety in disability sports.

    Keywords: Biomechanics, Disability, EMG, wearable sensors, physical activity

    Received: 27 Oct 2024; Accepted: 26 Dec 2024.

    Copyright: © 2024 Abuwarda and Akl. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Abdel-Rahman Akl, Alexandria University, Alexandria, Egypt

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.