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Body sizes and head anatomical characteristics play the major role in the head
injuries sustained by vulnerable road users (VRU) in traffic accidents. In this study,
in order to study the influence mechanism of body sizes and head anatomical
characteristics on head injury, we used age, gender, height, and Body Mass Index
(BMI) as characteristic parameters to develop the personalized human body
multi-rigid body (MB) models and head finite element (FE) models. Next, using
simulation calculations, we developed the VRU head injury dataset based on the
personalized models. In the dataset, the dependent variables were the degree of
head injury and the brain tissue von Mises value, while the independent variables
were height, BMI, age, gender, traffic participation status, and vehicle speed. The
statistical results of the dataset show that the von Mises value of VRU brain tissue
during collision ranges from 4.4 kPa to 46.9 kPa at speeds between 20 and
60 km/h. The effects of anatomical characteristics on head injury include: the risk
of amore serious head injury of VRU rises with age; VRUwith higher BMIs has less
head injury in collision accidents; height has very erratic and nonlinear impacts on
the vonMises values of the VRU’s brain tissue; and the severity of head injury is not
significantly influenced by VRU’s gender. Furthermore, we developed the
classification prediction models of head injury degree and the regression
prediction models of head injury response parameter by applying eight
different data mining algorithms to this dataset. The classification prediction
models have the best accuracy of 0.89 and the best R2 value of 0.85 for the
regression prediction models.
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1 Introduction

Among road users (e.g., pedestrians, cyclists, occupants, etc.),
pedestrians and cyclists are vulnerable road users (VRU) (Ahmed
et al., 2019; Mahmoud et al., 2021; Reyes-Muñoz and Guerrero-
Ibáñez, 2022). According to the statistics report (WHO, 2018), the
primary cause of the VRU injury in the traffic accident is the frontal
collision with the vehicles. The fatality rate of severe head injury in
human is very high, with 64% of VRU death due to blows to the
head. Therefore, for head protection and the reduction of mortality,
precise prediction of VRU head injuries in traffic accidents is crucial.

The influencing factors of head injury in traffic accidents are
very complicated (Xiao et al., 2020; Wang F. et al., 2021; Han et al.,
2024). In addition to objective factors (e.g., vehicle speed, collision
position, collision angle, vehicle type, etc.), the diversity of body sizes
will also lead to significant differences in head dynamics (e.g.,
acceleration, angular velocity, displacement, etc.) (Gao et al.,
2021). Moreover, variations in the intricate anatomical structure
of the head will inevitably result in variations in the injury response
parameters (e.g., von Mises, pressure, strain, etc.) (Shi et al., 2020).
The multi-rigid body (MB) model, which can replicate head
dynamics responses, and the human finite element (FE) model,
which can replicate head injury parameters, have emerged as the
primary tools for investigating head injury mechanisms with the
advancement of simulation technology (Hu et al., 2021; Larsson
et al., 2023; Li et al., 2023; Delteil et al., 2024). However, the current
research focuses on the application of the MB models to study the
influence of objective factors on the head dynamic response, and
there is a lack of detailed research on the mechanism of head injury
caused by body size and head anatomical structure. This is partially
because the MB models can’t accurately represent the types and
severity of brain injury because they only include rigid bodies,
hinges, and simplified ellipsoids. Concurrently, despite the fact
that the human body FE model includes the detailed human
anatomical structure, a single kind of human FE model is unable
to explain the impact of geometric anatomy on the response
parameters of head injury because there are insufficient samples
of detailed head anatomy. Consequently, it is critical to develop
personalized VRU models in order to study the impact of body sizes
and head anatomical characteristics on the mechanism of VRU
head injury.

Additionally, the mechanism of VRU head injury in traffic
accidents becomes a high-dimensional problem with various
influencing aspects after taking into account objective factors,
body sizes, and head anatomy characteristics. The traditional
univariate analysis method has some shortcomings in studying
the mechanism of head injury, such as low efficiency and being
unable to identify the interaction between multiple factors. Artificial
intelligence technology has been used to solve the high-dimension
problem in data prediction research since the development of data
mining technology (Janstrup et al., 2023; Niu et al., 2024). Classical
machine learning (ML) algorithms (e.g., logistic regression,
k-nearest-neighbors, support vector machines, decision tree,
random forests, etc.) have been used to develop a prediction
model of human injury degree (Al-Moqri et al., 2020; Mansoor
et al., 2020; Liu et al., 2022). At the same time, in order to further
explore the interaction relationship between objective factors in
traffic accidents and human injury response to improve the accuracy

of prediction models, deep learning (DL) method with higher
computational complexity (e.g., deep neural network,
convolutional neural network, long short-term memory, recurrent
neural network, etc.) have been applied to the construction of head
injury prediction models (Wang Q. F. et al., 2021). Currently,
accident investigation datasets or customized datasets created
through simulation are used in the development of head injury
prediction models. Nonetheless, accident investigation datasets
typically overlook specific head anatomy in favor of
concentrating on how external factors affect the severity of head
injury. Furthermore, the simulation-based customized datasets only
take into account the head’s dynamic reaction factors, which makes
them unable to accurately represent the circumstances surrounding
actual head injury.

The objective of the present study is to investigate the influences
of anatomical characteristics on the VRU head injury in collision
incidents and develop a prediction model that can accurately predict
it. We built a head injury dataset based on the personalized models
that can reflect VRU body sizes and head anatomical characteristics.
Subsequently, eight different types of data mining methods were
applied to this dataset in order to create prediction models for VRU
head injury degree classification and response (von Mises value)
regression. Lastly, the capacity of prediction models based on
various algorithms for predicting injury was assessed, and related
explanations were presented.

2 Methods

The technical framework of this study is shown in Figure 1.
Initially, the personalized human body MB models and the head FE
models were developed. The correctness of the models was then
confirmed through comparison with a cadaver experiment. These
models were then used to develop the VRU—vehicle frontal
collision numerical simulation dataset. The regression prediction
models of head injury response parameter and the classification
prediction models of head injury degree were developed using ML
and DL algorithms based on this dataset. The inputs for these
prediction models were vehicle speed, traffic participation states,
and VRU characteristic factors; the outputs were the head injury
degree and vonMises value of the brain tissue. At last, the prediction
models undergo verification and evaluation.

2.1 Modeling method

2.1.1 Acquisition of head sample data
Personalized head FE models are necessary in large quantities

for studying the response mechanisms of various head anatomical
characteristics to head injury. To that purpose, we acquired from
Shanghai Ninth People’s Hospital 124 head CT scan data samples
from various human bodies. The Shanghai Ninth People’s Hospital
authorized this retrospective investigation, and all samples were kept
anonymous. There were 61 female and 63 male samples. The
samples’ characteristics include age, height, gender, and body
mass index (BMI), as shown in Figure 2A. For females, age,
height, and BMI ranged from 47.5 ± 35.3 years, 1.61 ± 0.094 m,
and 25.4 ± 7.5 kg/m2, respectively. For males, age, height, and BMI
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ranged from 49.1 ± 37.3 years, 1.73 ± 0.174 m, and 24.4 ± 8.5 kg/m2,
respectively. The parameters of height, age, gender, and BMI are
comparatively simple to obtain and can serve as straightforward
indicators of the target body’s characteristics. Therefore, these four
parameters were universal for personalized human body models.
These four parameters had been used in previous research (Hwang
et al., 2020; Tang et al., 2020) to create personalized models of
various body parts. Figure 2B shows that, other than the significant
interaction between height and gender, there is no significant
association between the other parameters. This indicates that the
four parameters chosen for this study are appropriate for

characterizing the head anatomical characteristics. Thus, in this
study, the head anatomical characteristics were characterized using
age, height, BMI, and gender.

2.1.2 Development and verification of personalized
head FE models

Based on the acquired head CT scan data samples, we developed
the personalized head FE models, as shown in Figure 3. First,
threshold segmentation and manual area modification were used
to get the skull’s geometric surface. 69 landmarks were manually
placed on the geometric surface of the skull as target landmarks,

FIGURE 1
Technical framework for predicting head injury in traffic accidents among VRU with varying body sizes and head anatomical characteristics.

FIGURE 2
Statistical schematic of head CT scan data samples from different human bodies. (A) Distribution of characteristic information corresponding to
head CT data samples; (B) Heat maps of correlations between age, gender, height and BMI.
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while the same number of landmarks were placed at the same
locations on the head FE model isolated from the Total Human
Model for Safety (THUMS) model as baseline landmarks. Following
the dimensional reduction of the three-dimensional coordinate
information of the landmarks using Principal Component
Analysis (PCA), the regression model of the skull landmarks was
created using the characteristic parameters (gender, age, height, and
BMI), as indicated by Eq. 1.

P1,1 / P1,k

..

.
1 ..

.

Pn,1 / Pn,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

npk

� Akp4 gender, age, height, BMI[ ]4pn + εn (1)

Where, k is the number of principal components after
dimensionality reduction of the three-dimensional coordinate
information of the landmarks, and k � 40 in this study. n is the
number of samples, and n � 124 in this study. P is the principal
component of the three-dimensional coordinate information of the
landmarks after dimensionality reduction. A is the regression
coefficient matrix. ε is the residual vector.

A total of 200 sets of landmarks were created by entering
characteristic parameters using Eq. 1 in order to homogenize the
distribution of characteristic parameters in the sample data. Next,
using the head FE model that was separated from the THUMS
model as the baseline model, we applied the mesh morphing
approach based on thin plate spline radial basis function (RBF-
TPS) in reference to the research of Hwang et al. (2020) to develop
the personalized head FE models. The brain tissue FE model
associated with the skull varied with the geometry of the skull
based on landmarks on its surface. RBF-TPS details have been
thoroughly explained by Tang et al. (2020), and they have been
effectively applied to the development of personalized FE models for
different human body parts. Finally, distance error statistics between
the mesh nodes of the personalized models and the sample
geometries were used to verify their geometric accuracy. Statistics
on the rate at which the personalized models’mesh quality changed

in comparison to the baseline model were used to verify their
mesh quality.

2.1.3 Development and verification of personalized
human body MB models

Due to the lack of scanning data from other parts of the body
and to improve computing efficiency, we used MB models to
develop personalized human body models of different traffic
participation states (pedestrian, cyclist). The baseline model, the
50th pedestrian MB model in the MADYMO7.5 (TNO MADYMO
BV., Netherlands), has been effectively used in human injury studies
across a variety of collision scenarios (Xiao et al., 2020). The model
was made up of fifty-two hard parts that depict the human body’s
head, neck, chest, abdomen, buttocks, and upper and lower limbs.
All the parts were connected together by different types of joints to
form a tree-like structure. The personalized human bodyMBmodels
were obtained by scaling the 50th pedestrianMBmodel based on the
height and BMI characteristics that corresponded to the
personalized head FE models. By modifying the arm and leg
joint motion, we were able to tie the cyclists MB model to the
electric vehicle model.

In this study, the biofidelity of personalized human body MB
models was confirmed using data from three cadaver-vehicle crash
studies that were taken from published literature (Wu et al., 2017).
The scaling approach was used to generate theMBmodel, which had
the same characteristics as the cadaver samples. The vehicle’s design
parameters and speed settings match those used in the experiment.
In parallel, the correlation between experiment and simulation data
was assessed using the correlation and analysis (CORA) approach,
which has been applied in related study (Yu et al., 2020), in order to
quantitatively assess the differences in the reaction of various head
centroid motions in experiment and simulation.

2.1.4 Development of collision scene models
The vehicle MB model, the two-wheeled electric vehicle MB

model, and the reduced hood-windshield coupling FE model were

FIGURE 3
Modeling process of personalized head FE models.
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all included in the collision scene model used in this study, as shown
in Figure 1. The vehicle MB model was Sedan, and the geometric
parameters and mass parameters of it come from the National Crash
Analysis Center (NCAC). The hood, windscreen, roof, and other
parts of the vehicle were modeled using simple ellipsoids. At the
same time, the contact characteristics and stiffness between vehicle
components were defined based on the published literature (Huang
et al., 2019). For the two-wheeled electric vehicle MB model, we
referred to the mass and size of two-wheeled electric vehicles
established by Gao et al. (2021), which have been verified by real
accidents. Handlebars, front fork, front wheel, rear wheel, frame,
battery, and seat were the seven rigid bodies that made up the two-
wheeled electric vehicle MB model. The contact characteristics and
stiffness of the two-wheeled electric vehicle MB model were defined
based on the published literature (Huang et al., 2019). The simplified
hood-windshield coupled FE model had the same size, mass, and
angle parameters as the vehicle MB model. Among these, the hood
FE model has an outer layer structure with a thickness of 1.2 mm
and an inner layer structure with a thickness of 0.95 mm. The
material parameters of the model were derived from the published
literature (Shojaeefard et al., 2014; Yu et al., 2017). The windshield
FE model was made up of three layers: a 0.76 mm-thick PVB film
layer made up the center layer, while the upper and lower glass layers
had thicknesses of 2.55 mm and 2.1 mm, respectively.

2.2 Development of head injury dataset

According to statistics data from the China In-Depth Accident
Study (CIDAS) databases, passenger automobiles most frequently
crash with VRU on urban roadways (Chen and Dai, 2018). Among
them, vehicles driving at a speed of less than 60 km/h were involved
in almost 90% of collisions. Additionally, the VRU injury from the
ground was usually greater when the vehicle collides with it at a slow
speed (less than 20 km/h). Since the primary focus of this study is the
vehicle-VRU collision stage, the vehicle speed during the collision
was set between 20 and 60 km/h. Only the impact of speed, the most
important influencing factor, on head injury was taken into
consideration in this study in order to reduce the overall time
cost of the computer CPU. The whole factor experimental design
approach for vehicle speed, VRU traffic participation states, and
characteristic parameters was used to generate the simulation
matrix. Firstly, the location and relative speed of the VRU head
in contact with the vehicle were determined in the
MADYMO7.5 using the personalized pedestrian MB models, the
personalized cyclist MBmodels, the vehicle MBmodel, and the two-
wheeled electric vehicle MB model. Then, taking the head impact
position and relative speed as boundary conditions, we applied the
personalized head FE models and simplified hood-windshield
coupled FE model to perform simulation calculations in LS-
DYNA R8.0 (Livermore Software Technology Corporation, US).
Thus, the maximum von Mises value of brain tissue was obtained.
Through the above calculation, we obtained the results of
1812 simulation cases. In addition, according to the published
literature (Baumgartner et al., 2001; Ho et al., 2006; Yao et al.,
2008), the von Mises values obtained were classified into five kinds
of head injury degrees: 0–6 kPa was the minor injury; 6–11 kPa was
the cerebral contusion; 11–15 kPa was the moderate injury;

15–27 kPa was the cerebral concussion; above 27 kPa was the
severe injury.

2.3 Development of head injury
prediction model

In traffic accidents, the relationship between the VRU injury
responses and the feature parameters is extremely nonlinear. Data
mining can effectively deal with nonlinear regression and
classification problems. Consequently, the prediction of VRU
injury responses has made extensive use of ML and DL
algorithms. Among these, ML algorithms are capable of
predicting results by extracting nonlinear connections from
injury datasets. Through the use of a nonlinear multi-layer neural
network, the deep learning method is able to predict injury
parameters by extracting complex data from the feature
parameters. Nonetheless, there are significant differences in the
predictive impact of various algorithms across various datasets.
We expect to achieve high prediction accuracy by comparing the
classification and regression effects of different classical algorithms
widely used in injury prediction in the injury dataset established in
this study.

Based on the head injury dataset, we applied the ML algorithm,
including logistic regression (LR), support vector machines (SVM),
decision tree (DT), and random forests (RF), and the DL algorithm,
including deep neural network (DNN), convolutional neural
network (CNN), long short-term memory (LSTM), and recurrent
neural network (RNN), to develop two kinds of injury prediction
models: the regression prediction models of head injury response
parameter and the classification prediction models of head injury
degree. Among these, when creating the regression model, the SVM
used for the classification model was converted into the support
vector regression (SVR). As for DT, the classification prediction
model and regression prediction model were constructed using the
classification DT based on the C4.5 algorithm and the regression DT
based on the classification and regression trees (CART) algorithm,
respectively.

The highest vonMises value of brain tissue was the output of the
regression prediction models of head injury response parameter,
which also took into account VRU characteristic parameters, traffic
participation status, and vehicle speed as inputs. The inputs of the
classification prediction models of head injury degree were the same
as that of the regression prediction models, and the head injury
degree was the output. Simultaneously, the data in the head injury
dataset were standardized to increase the models’ accuracy. In this
work, 10-fold cross-validation was used to evaluate the prediction
model in an effort to increase its accuracy and dependability. The
head injury dataset was split up into ten equal-sized sections. One
section at a time was randomly chosen as the test set during training,
and the remaining nine sections were designated as the training set.
The prediction models’ performance index was determined by
averaging the value of the loss function after ten iterations. In
this work, the regression prediction models’ loss function was the
mean square error (MSE) between the predicted von Mises value
and the target von Mises value, and the classification prediction
models’ loss function was the cross entropy loss between the
predicted injury degree and the target injury degree. In addition,
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we optimized the prediction models’ hyperparameters using a grid
search and cross-validation combination. Cross-validation results of
prediction model under various hyperparameter combinations were
obtained. After that, to construct the final prediction model, the best
set of hyperparameters based on the cross-validation results was
chosen. The following hyperparameters were chosen for the ML
algorithm (regression/classification): 1) LR algorithm’s penalty
function was L2, which influences its computational efficiency; 2)
SVM algorithm’s kernel function was a Gaussian kernel function
with a kernel coefficient of 30/20, which influences its hyperplane
definition; 3) DT algorithm’s core algorithm was the C4.5/CART
algorithm, which influences its information entropy calculation; and
4) RF algorithm’s number of trees was 10/15, which influences its
computational complexity. The DL algorithm in this study were
affected by the following hyperparameters: 1) Batch_size, which
indicates the quantity of samples used in the training process; 2)
Epoch, which indicates the sample’s training times; and 3) Hidden_
Size, which indicates the middle layer’s size. Furthermore, the DL-
based classification prediction models’ activation function was
softmax, whereas the regression prediction models’ activation
function was linear. Adaptive moment estimation (Adam) was
utilized as the optimizer throughout the training process. The
grid search technique results of DL-based prediction models’
hyperparameters were shown in Table 1. Python 3.10 was used
to create a model training environment. And the models were
trained with an Intel Core i9-10900HQ 2.80 GHz processor.

3 Results

3.1 Performance of personalized models

3.1.1 Performance of personalized head FE models
We developed 200 personalized head FE models applying mesh

morphing. The geometric error was calculated as the difference
between the skull geometric surface retrieved from the matching CT
data and the skull model in the established head FE models, as
shown in Figure 4A. The personalized head FE models across
various age groups have an average geometric error of less than
4 mm and a maximum geometric error of less than 5 mm.

Additionally, the mesh quality of the FE models was assessed
using Skew and Jacobian as indicators. The models following
mesh morphing modify the mesh quality because of the changes
in mesh nodes, as seen in Figure 4B. Among them, the highest
change rate is less than 10%, and the average change rate for both
2D and 3D meshes is less than 5%. The generated head FE
models have a minimum Jacobian greater than 0.2, while the
minimum Jacobian of the 2D and 3D meshes is 0.29 and 0.25,
respectively. This demonstrates that the mesh quality of the
personalized head FE models may satisfy FE analysis
requirements while still maintaining a high degree of
consistency with the baseline model.

3.1.2 Performance of personalized human body
MB models

The CORA value pairs of body sample information and head
centroid relative velocity with the personalized MB models during a
vehicle collision are shown in Table 2. Figure 5 shows a comparisonT
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between the head centroid velocity of the personalized MB models
and the equivalent cadaveric experiment results. This comparison
indicates that the personalized MB models are able to more
accurately replicate the cadaveric head motion response during
the experiment.

3.2 Results of head injury dataset

Based on personalized MB and head FE models, 1812 cases were
obtained through simulation. Figure 6 displays the highest von
Mises value of brain tissue under various working conditions

FIGURE 4
Evaluation of the personalized head FE models. (A) Distance error statistics between the mesh nodes of the personalized models and the sample
geometries; (B) Statistics on the rate at which the personalized models’ mesh quality changed in comparison to the baseline model.

TABLE 2 CORA evaluation results of the personalized MB models and the head dynamic response of cadaveric subjects.

Number Age (year) Gender Height(m) Mass (kg) Relative velocity CORA (Experiment&Simulation)

V2370 73 Male 1.795 72.6 0.912

V2371 54 Male 1.87 81.6 0.936

V2374 64 Male 1.78 78.0 0.902

FIGURE 5
Comparison of head centroid velocity between personalizedMBmodels and cadaver experiment. (A)Comparison results between the personalized
MB model and V2370; (B) Comparison results of personalized MB model and V2371; (C) Comparison results of personalized MB model and V2374.
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following head-vehicle impacts. As vehicle speed increased, so did
the brain tissue’s maximal von Mises value. The von Mises values of
VRU brain tissue are between 4.4 and 46.9 kPa at speeds ranging
from 20 to 60 km/h. Furthermore, the average maximum von Mises
values of brain tissues are higher for pedestrians than for cyclists.

The impact of various human characteristics parameters on
the head injury degree of VRU in traffic accidents was statistically
represented in Figure 7, where J1, J2, J3, J4, and J5 represent,
respectively, minor injury, cerebral contusion, moderate injury,
cerebral concussion, and severe injury. The impact location
causes a high degree of nonlinearity and uncertainty in the
relationship between height and head injury. For VRU with a
height of under 1.7 m, the probability of a higher level of head
injury increases by an average of 4% at every level for J1–J4 levels,
whereas the probability of suffering a serious injury is the same
for VRU over 1.7 m and those below 1.7 m, as seen in Figure 7A.
Head injury is not significantly impacted by the VRU’s gender
when only the geometric anatomical structure of the head is taken
into account, as Figure 7B illustrates. As shown in Figure 7C, the
risk of higher levels of head injury gradually increased with age,
and the risk of severe injury in a traffic accident is 10% higher in
VRU over 80 than in VRU between the ages of 10 and 20. VRU
with a higher BMI have a decreased risk of higher head injury, as
Figure 7D illustrates, and an 8% increased risk of severe injury in
a traffic accident is associated with VRU with a BMI of 15–20 kg/
m2 compared to 30–35 kg/m2.

3.3 Results of head injury prediction model

Applying four ML algorithms (SVM, LR, DT, RF) and four
DL algorithms (RNN, LSTM, DNN, CNN), eight different types
of regression prediction models of the head injury response
parameter and the classification prediction models of the head

injury degree were developed based on the head injury dataset.
As shown in Table 3, the R2 value, mean square error (MSE), and
mean absolute error (MAE) of the DL-based models are higher
than those of the ML-based models. Among them, the DNN
algorithm has the best performance, compared with the RF
algorithm, which has the best performance in ML. In the
R2 value, MSE and MAE were 0.85 vs. 0.77, 0.006 vs. 0.014,
and 0.055 vs. 0.073, respectively. In the ML-based models, LR is
difficult to deal with due to the high degree of uncertainty and
nonlinearity in traffic accidents, so the regression prediction
ability is poor, and the R2 value is only 0.54. Additionally, as the
normalized von Mises value prediction example in Figure 8
illustrates, there is a significant deviation between the
predicted and actual values of the prediction model using the
LR algorithm.

In terms of head injury degree prediction, as shown in
Table 4, the DL-based models and the ML-based models
perform comparably. All the DL-based models and ML-based
models anticipate AUC values above 0.8, with the exception of
the LR algorithm, which is not appropriate for handling
nonlinearized data. The SVM algorithm outperforms all other
algorithms in terms of accuracy and AUC, with values of
0.902 and 0.87, respectively.

4 Discussion

4.1 The influence of anatomical
characteristics on VRU head injury

The von Mises value of brain tissue covers a wide range at
various speeds, as seen in Figure 6. This is due to the fact that head
injury is likewise significantly influenced by body sizes and head
anatomical characteristics. In terms of the height factor, head
acceleration during collisions was found to gradually decrease
with increasing height, as reported by Sankarasubramanian et al.
(2016) and Huang et al. (2019). However, only the head’s dynamic
response during the accident was taken into account in the above-
mentioned study. Compared to the windshield, a high von Mises
value was frequently produced when the head FE model collided
with the hood, according to the study of Huang et al. (2018).
Therefore, as shown in Figure 7A, the height factor exhibits a
high degree of nonlinearity and uncertainty in head injuries.
Regarding the gender factor, as shown in Figure 7B, this study
finds that it has no discernible effect on head injuries. This finding is
in line with Huang et al. (2018)’s investigation results of actual
accidents. Regarding the age factor, as shown in Figure 7C, the head
injury of VRU in traffic accidents progressively worsens with age,
which is in line with the findings of the research on actual accidents
carried out by Feng et al. (2020). But in this study, the degree of
injury rises a little with age. This is because, while developing the
personalized head FE models, the study only took geometric
anatomy into account, neglecting material concerns. Regarding
the BMI factor, as seen in Figure 7D, this study finds that those
with higher BMIs experience fewer head injuries in accidents. This is
because the body with a higher BMI has a bigger moment of inertia
under the same collision torque, which causes the head to accelerate
comparatively little.

FIGURE 6
The maximum von Mises values of brain tissue calculated by the
personalized head FE models at different collision speeds in the head
injury dataset. A 90% confidence interval was shown in the figure as a
rectangular region. PED indicates that the VRU state was
pedestrian, while ETM indicates that the VRU status was cyclist.
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4.2 The performance of the head injury
prediction model

Due to the linear structure of the algorithm’s inability to handle
the uncertainty and nonlinear relationship between the factors, as
can be shown in Tables 3, 4, the LR algorithm performs the worst in
both regression and classification prediction. The DL algorithm
performs the best regression prediction ability (R2: 0.85, MSE: 0.006,
MAE: 0.055). This is due to the fact that the DL algorithm has the
ability to build intricate hidden layer networks that handle nonlinear
relationships between factors. Yet due to the application of time-step
based series input for feature input, LSTM and RNN algorithms are

better suited for processing continuous data, albeit they have a little
inferior capacity to predict regression. For instance, Wang Q. F. et al.
(2021) observed that the algorithm used in conjunction with RNN-
CNN allowed for an accurate prediction of the head acceleration
curve, with a R2 value of 0.76. Nonetheless, there is no clear
continuity association between the von Mises values and the
factors in this study, which includes human characteristics
parameters, vehicle speed, and traffic participation status.
Considering the classification prediction models of head injury
degree, Table 4 shows that the majority of the DL-based models
outperform the ML-based models in prediction. The highest result
is, however, obtained by the SVM algorithm prediction ability

FIGURE 7
Statistical results of the influence of different human characteristics parameters on the degree of VRU head injury in traffic accidents. The symbols J1,
J2, J3, J4, and J5 represent different levels of injury: minor injury, cerebral contusion, moderate injury, cerebral concussion, and severe injury. (A) The
effect of height on the degree of head injury; (B) The effect of gender on the degree of head injury; (C) The effect of age on the degree of head injury; (D)
The effect of BMI on the degree of head injury.

TABLE 3 Performance comparison of four ML-based models and four DL-based models in the regression prediction of von Mises value.

Indicator ML DL

SVR KNN DT RF DNN CNN LSTM RNN

R2 0.54 0.69 0.65 0.71 0.85 0.81 0.69 0.67

MSE 0.026 0.018 0.021 0.014 0.006 0.011 0.018 0.021

MAE 0.092 0.062 0.078 0.073 0.055 0.061 0.058 0.061
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(Accuracy: 0.89, Recall: 0.76, F-score: 0.76, AUC: 0.902). This is so
that discrete factors in small sample dataset may be processed
effectively using the hyperplane technique, which is the
foundation of the SVM algorithm. Given that the study’s discrete
data include both human gender and traffic participation states,
which were represented by the algorithm construction as 0/1, the
SVM hyperplane can produce a better classification result. Wang Q.
F. et al. (2021) constructed the dataset using a 0/1 representation for
both human gender and seat belt use, and they also achieved the best
classification prediction effect using the SVM algorithm. In addition,
the binary classification problem has a comparatively low prediction
complexity in terms of classification prediction. For example, Delen
et al. (2017) and Lamba et al. (2019) built the human injury
prediction models with high/low injury degree classification
based on the SVM algorithm, and the accuracies were 0.904 and
0.966, respectively. The prediction category in this study is five,
which makes it more difficult to predict than a binary classification
problem. Despite this, the SVM algorithm’s prediction accuracy can
still reach 0.89, demonstrating its superiority in handling head injury
classification prediction.

4.3 Real-world relevance of the study

Future vehicle safety technology development will mostly
follow the path of active and passive safety integration. In this
study, the head injury state and von Mises value of VRU with
different anatomical characteristics were obtained, and the
corresponding prediction model was developed. In terms of
passive safety, this research can serve as a guide for
optimizing the design of vehicles’ structures, strategically
placing bumpers, and utilizing other safety measures to
effectively protect VRU with particular anatomical
characteristics in potential collisions. For active safety, the
prediction model developed in this study can be used to
predict the VRU injury caused by an impending collision in
advance and provide a basis for specific vehicle active decision
control for VRU with different anatomical characteristics.
Furthermore, the study’s findings can serve as a guide for
pertinent regulatory organizations and institutions as they
create guidelines and standards for VRU collision protection
with various anatomy characteristics.

FIGURE 8
Examples of using different regression prediction models of the head injury response parameter to predict normalized von Mises values in the test
dataset. (A) SVR-based model; (B) KNN-based model; (C) DT-based model; (D) RF-based model; (E) RNN-based model; (F) LSTM-based model; (G)
DNN-based model; (H) CNN-based model. In head injury regression prediction, SVR, DT, and RF all show similar results, with R2 values of 0.74, 0.75, and
077, respectively. RNN and LSTM frequently produce outstanding outcomes when a sequence of input feature parameters exists. Nevertheless,
since the characteristic parameters were discretized in this study, RNN and LSTM are ineffective for predicting head injury regression.

TABLE 4 Performance comparison of four ML-based models and four DL-based models in the classification prediction of head injury degree.

Indicator ML DL

SVM LR DT RF CNN CNN LSTM RNN

Accuracy 0.89 0.59 0.71 0.72 0.86 0.854 0.815 0.792

Recall 0.76 0.59 0.75 0.76 0.75 0.718 0.695 0.688

F-score 0.76 0.58 0.74 0.76 0.75 0.71 0.695 0.612

AUC 0.902 0.645 0.744 0.753 0.872 0.856 0.843 0.829
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4.4 Limitations and future work

There are several limitations to the study. First, only the
geometric anatomical characteristics were taken into account
when the personalized head FE models were developed, and the
changes in the head material parameters with respect to
characteristic parameters were not taken into account. The
impact of material factors on injury results in personalized head
FE models will be examined in further study. Second, due to time
constraints, when developing the VRU head injury dataset, in
addition to considering the geometric and anatomical
characteristics of VRU itself, we only considered the vehicle
speed and the traffic participation status of VRU. It is
demonstrated that the dynamic reaction characteristics of the
head during a collision are directly influenced by the type of
vehicle and collision angle. Thus, it will be appropriate to
develop a VRU head injury dataset in the future that takes into
account more factors. In addition, the processing capacity of various
algorithms for head injury data varies, thus future study will
concentrate on how to use algorithm coupling techniques (e.g.,
RNN-CNN, DNN-LSTM, etc.) to increase the precision and
effectiveness of injury prediction.

5 Conclusion

This study proposed a data-mining-based methodology for
predicting VRU head injuries, taking into account body sizes and
head anatomical characteristics. The objective of the present study is
to investigate the influences of anatomical characteristics on the
VRU head injury in collision incidents and develop a prediction
model that can accurately predict it. The framework consists of three
parts: 1) Based on mesh morphing and scaling, respectively,
personalized head FE models and human body MB models were
developed; 2) A head injury dataset was created, where the
dependent variables were the degree of head injury and the von
Mises value of brain tissue, and the independent variables were
VRU’s height, BMI, age, gender, traffic participation states, and
vehicle speed. 3) Eight kinds of data mining algorithms (SVM, LR,
DT, RS, RNN, LSTM, DNN, and CNN) were applied to develop the
regression prediction models of the head injury response parameter
and the classification prediction models of the head injury degree.
After testing, the best R2 value of the regression prediction model is
0.85, and the best accuracy rate of the classification prediction model
is 0.89. Through the head injury prediction framework, the
following conclusions can be drawn.

(1) The von Mises value of VRU brain tissue during collision
ranges from 4.4 kPa to 46.9 kPa at speeds between 20 and
60 km/h, with cyclists having an average von Mises value that
is marginally lower than pedestrians.

(2) The risk of head injury increases with the VRU’s age, and the
risk of severe injury in a traffic accident is 10% higher in VRU
over 80 than in VRU between the ages of 10 and 20; VRUwith
a higher BMI have fewer head injuries in collision accidents,
and an 8% increased risk of severe injury in a traffic accident is
associated with VRU with a BMI of 15–20 kg/m2 compared to
30–35 kg/m2; VRU’s height had a highly erratic and nonlinear

impact on head injury; and head injury is not significantly
impacted by the VRU’s gender.

(3) The DL algorithm performs better in the regression
prediction models of the head injury response parameter
because it can handle the nonlinear and ambiguous
relationship between factors. In addition, the SVM
algorithm performs better in classification and prediction
when the head injury dataset contains discrete data (e.g.,
gender, traffic participation status, etc.).
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