
Bridging the sim2real
gap. Investigating deviations
between experimental motion
measurements and
musculoskeletal simulation
results—a systematic review

Iris Wechsler1*, Alexander Wolf1, Julian Shanbhag1,
Sigrid Leyendecker2, Bjoern M. Eskofier3, Anne D. Koelewijn3,4,
Sandro Wartzack1 and Jörg Miehling1

1Engineering Design, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-
Nürnberg, Erlangen, Germany, 2Institute of Applied Dynamics, Department of Mechanical Engineering,
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 3Machine Learning and Data
Analytics Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-
Universität Erlangen-Nürnberg, Erlangen, Germany, 4Chair of Autonomous Systems and Mechatronics,
Department of Electrical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Erlangen, Germany

Musculoskeletal simulations can be used to estimate biomechanical variables like
muscle forces and joint torques from non-invasive experimental data using
inverse and forward methods. Inverse kinematics followed by inverse
dynamics (ID) uses body motion and external force measurements to
compute joint movements and the corresponding joint loads, respectively. ID
leads to residual forces and torques (residuals) that are not physically realistic,
because of measurement noise and modeling assumptions. Forward dynamic
simulations (FD) are found by tracking experimental data. They do not generate
residuals but will move away from experimental data to achieve this. Therefore,
there is a gap between reality (the experimental measurements) and simulations
in both approaches, the sim2real gap. To answer (patho-) physiological research
questions, simulation results have to be accurate and reliable; the sim2real gap
needs to be handled. Therefore, we reviewedmethods to handle the sim2real gap
in such musculoskeletal simulations. The review identifies, classifies and analyses
existing methods that bridge the sim2real gap, including their strengths and
limitations. Using a systematic approach, we conducted an electronic search in
the databases Scopus, PubMed and Web of Science. We selected and included
85 relevant papers that were sorted into eight different solution clusters based on
three aspects: how the sim2real gap is handled, the mathematical method used,
and the parameters/variables of the simulations which were adjusted. Each
cluster has a distinctive way of handling the sim2real gap with accompanying
strengths and limitations. Ultimately, the method choice largely depends on
various factors: available model, input parameters/variables, investigated
movement and of course the underlying research aim. Researchers should be
aware that the sim2real gap remains for both ID and FD approaches. However, we
conclude that multimodal approaches tracking kinematic and dynamic
measurements may be one possible solution to handle the sim2real gap as
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methods tracking multimodal measurements (some combination of sensor
position/orientation or EMG measurements), consistently lead to better tracking
performances. Initial analyses show that motion analysis performance can be
enhanced by using multimodal measurements as different sensor technologies
can compensate each other’s weaknesses.

KEYWORDS

systematic review, biomechanical modeling and simulation, sim2real gap, data tracking
methods, residual minimisation, inverse dynamics, forward dynamic simulations

1 Introduction

In the virtual world, individuals are depicted by digital human
models. The models can be used to simulate human properties and
skills (Bullinger-Hoffmann and Mühlstedt, 2016). Musculoskeletal
models are digital human models used to determine a person’s
internal dynamic state. They depict the human body as a multi-body
system and consist of rigid bodies, joints and muscles. The models
can be used to compute biomechanical parameters like muscle
forces, joint torques and joint reaction forces non-invasively.
Musculoskeletal simulations can address research questions that
are difficult to address (well) with direct measurements, either due to
the definition of the variable of interest (such as center of mass) or
ethical reasons. Musculoskeletal simulations have been used in the
medical context to simulate the effect of muscle or tendon surgeries
(Herrmann and Delp, 1999) or to investigate abnormal gait (Arnold
et al., 2005; Higginson et al., 2006; John et al., 2013). The simulations
have become more prevalent in various fields, including product
development and human factors engineering. For example, they
have been used to aid in the development of exoskeletons (Ferrati
et al., 2013; Uchida et al., 2016; Molz et al., 2022), optimize worker
movement at workstations (Maurice et al., 2019), and enhance the
ergonomic design of products (Rasmussen et al., 2012; Jeang
et al., 2018).

The general differential equation of motion is the basis for
dynamics simulations of human motion

M q( )€q + C q, _q( ) _q + G q( ) − Aτ − JT q( )Fext � 0

where q, _q and €q describe the generalized coordinates, velocities and
accelerations, respectively. For the most part, generalized
coordinates describe joint angles which depict the pose of the
human. Additional generalized coordinates define the position
and orientation of the model’s root segment (usually the trunk or
pelvis) in space. M is the mass/inertia matrix dependent on the joint
angles. C denotes the centrifugal/coriolis matrix, dependent on joint
angles and velocities. G is the gravity matrix, dependent on the joint
angles. JT(q)Fext describes external forces using the Jacobian. τ
describes joint moments andA is the coefficient matrix that converts
joint torques to segment torques.

The general differential equation of motion can be formulated in
two ways. It can either solve the equations of motion for the joint
moments, called inverse dynamics (ID). For this, the generalized
coordinates and external forces are needed as input. Or it can solve
the equations of motion for the generalized accelerations using joint
torques or muscle activations and external forces as input, called
forward dynamics (FD). ID is part of the conventional

musculoskeletal simulation workflow consisting of inverse
kinematics (IK), ID and static optimization. IK computes the
motion of the model, expressed in generalized coordinates, based
on experimental measurements of body motion. ID uses the output
of IK and measured external forces (e.g., ground reaction forces,
GRFs) to compute corresponding joint loads. Static optimization
computes muscle activations and muscle forces based on the output
of ID. FD uses joint torque trajectories as input to generate body
motions. Alternatively, muscle activation patterns, which in turn
result in joint torques by using muscle models, can be used as input.
An FD simulation problem can be solved using an open-loop
optimal control problem also known as trajectory optimization
(Chao and Rim, 1973; Anderson and Pandy, 2001).

However, since simulations are always simplifications of reality,
errors are present in the outputs of ID and FD, which display in
different ways. In ID, these errors show up as residual forces and
torques (residuals). These residuals show up in the equations of
motion for the generalized coordinates for which no input is
available, specifically the degrees of freedom that define the
position and orientation of the reference segment, typically the
trunk, in space. Residuals occur because the model is expected to
perform motions and produce forces that it did not perform and
cannot produce by definition. This is because the dynamic model of
the model is fundamentally different from the dynamics of the real
system (the human). Hatze (2002) called this the fundamental
problem of musculoskeletal simulations. External and inertial
forces and torques are not in balance. Residuals are needed to
dynamically balance the simulation (Reinbolt et al., 2011; Hicks
et al., 2015) to ensure that the kinematic trajectory of the system’s
center of mass is physically consistent with experimentally measured
GRFs (Werling et al., 2023). In contrast, such residuals are not
present in FD, since the dynamics of the musculoskeletal model are
followed by definition. Instead, the joint angles will be different to
those calculated with IK, and have a larger deviation from the
measured data. IKmostly uses optimizations to calculate joint angles
by finding the best match between experimental marker positions
and virtual markers placed on the model for every time step. This is
then called kinematic tracking, as the model tracks the
experimental data.

This review focuses on musculoskeletal simulations which
analyze/track experimental data. Pure FD simulations not
considering experimental data, or using experimental data only
for generating an initial guess, are excluded. This article focuses
on the analysis of measured motion rather than producing
predictions of motion, which is the focus of these simulations.

To achieve reliable simulation results, a model that is as well
adapted as possible to the individual person is a prerequisite. Model
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individualization methods are used to adjust a generic
musculoskeletal model to best fit measurements (e.g., marker
positions in static pose or segment lengths) taken from the
person. Despite this individualization process, deviations between
reality and the simulation will remain. We call this deviation the
sim2real gap.

The sim2real gap has two error components: the kinematic and
the dynamic error. The kinematic error is the difference between
joint angles of the real human and the model. As the true joint angles
are usually not measurable, the kinematic error can be expressed by
the sum of squared differences between measured and simulated
marker trajectories or sensor positions/orientations. Kinematic
errors stem from experimental errors like noisy position,
orientation or acceleration measurements and soft tissue artifacts
(STAs). Those experimental errors are especially crucial, since the
computation of joint velocity and joint acceleration through
numerical differentiation leads to an amplification of those errors
(Kuo, 1998). Furthermore, despite the model individualization
process, there are kinematic differences between the human and
the models, such as deviations of joint axes or joint rotation centers
and deviating body segment dimensions. These differences also
contribute to the kinematic error. The dynamic error is the
difference between joint moments, muscle activity patterns and
external loads of the real human and the model. As the true joint
moments are not measurable, the dynamic error can be expressed by
the residuals, differences in muscle activity patterns or external
loads. For FD approaches, residuals cannot be observed as they are
not generated. The dynamic error arises due to discrepancies
between the musculoskeletal model and the human body, such as
body segment inertial parameters (BSIPs) and muscle parameters,
inaccurate external load measurements, and the propagation of the
kinematic error. BSIPs include the mass, position of center of mass
and inertia. Despite previous model individualization, deviations
between BSIPs and muscle parameters still occur due to modeling
assumptions or inaccurate model parameters. BSIPs and muscle
parameters are not precisely known and without the use of medical
imaging methods (e.g., MRI), they can only be computed using
regression equations based on cadaveric measurements (Leva, 1996)
or geometric approaches (Hatze, 1980).

In this review, the sim2real gap is investigated separately from
model-person consistency, which describes the consistency between
musculoskeletal models and their real-life counterparts. While
model person consistency does influence the sim2real
gap–especially because of the influence of BSIPs–integrating
model individualization methods goes beyond the scope of
this review.

As musculoskeletal simulation results are used to answer (patho-)
physiological research questions, simulation results should be
accurate and reliable. In general, four comparative values are
analyzed to evaluate simulation results. For the kinematic
assessment, the level of deviations between measured and
estimated marker trajectories or sensor positions/orientations
are analyzed. For the dynamic assessment, the size of residuals,
or the deviation between measured and estimated muscle activity
patterns or external load measurements can be analyzed. These
comparative values can be analyzed for both ID and FD
approaches. For ID approaches, Hicks et al. (2015) presented
recommendations for verification and validation measures. For

marker trajectories, the overall root mean square error (RMSE)
should be within the measurement error. Maximum residual forces
and torques are considered valid, if the residual forces are less than
5% of the magnitude of the net external force and the residual
torques are less than 1% the magnitude of net external forces
multiplied by the center of mass height. Relatedly, Gupta et al.
(2022) presented a physics informed approach for calculating
maximum residual force/torque values. They reported
maximum residual value ranges that are mostly more restrictive
than the recommendations given by Hicks et al. (2015). For FD
approaches, no specific recommendations exist. However, if the
simulation results deviate significantly from the measurement data
or IK results, it is questionable whether they should then still be
used to answer research questions based on measured motion data,
because of the large sim2real gap.

Consequently, for accurate and reliable simulation results,
solution strategies are needed to handle the sim2real gap. Begon
et al. (2018) carried out a systematic review and presented
existing IK methods to compensate the effect of STAs. These
methods minimize the kinematic error. Publications that were
included in their work are not further analyzed in our review. To
handle the dynamic error in musculoskeletal simulations,
different methods have been proposed. Vaughan et al. (1982)
optimized BSIPs based on kinematic data and optimization
theory by minimizing the difference between measured and
calculated GRFs. Riemer and Hsiao-Wecksler (2009) extended
this approach by optimizing both segment-angle trajectories and
BSIPs to minimize the difference between measured and
calculated GRFs. Thelen and Anderson (2006) implemented a
proportional-differential (PD) controller to minimize residuals
for walking simulations by adjusting pelvic translations and
lower back angular trajectories and van den Bogert et al.
(2011) used trajectory optimization to track experimentally
measured motion data without generating residuals. However,
no comprehensive overview of available methods exists
describing how to handle the sim2real gap in musculoskeletal
simulation by minimizing both kinematic and dynamic errors to
achieve reliable and accurate simulation results. Therefore, we
conducted a systematic literature search to identify, classify and
analyze existing methods that handle the sim2real gap in
musculoskeletal simulations. Our research questions are:

RQ1:Which solution approaches exist to handle the sim2real gap
in the field of musculoskeletal simulations?

We give readers an overview of available methods using both the
ID and FD simulation approach that can be used to handle the
sim2real gap in musculoskeletal simulations.

RQ2: What is the primary goal of the identified methods and
which strengths and limitations do they have?

We describe strengths and limitations of the methods to help
researchers decide which approach is most appropriate for their
particular research question. In addition, we analyze if methods exist
that are able to handle the sim2real gap for any arbitrary model,
input parameters and investigated movements without deviation
from experimental data.
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This review is intended for both beginner and more experienced
researchers in the field of biomechanical simulations. Beginners who
are just starting out with biomechanical modeling and simulations
are given a comprehensive explanation of the sim2real gap as well as
an overview of possible simulation methods that are generally used
in this field. More experienced researchers who are concerned about
the sim2real gap of their simulation results can use the overview of
identified methods to decide which method would be best for
answering their individual research question.

2 Survey methodology

This review was planned following the PRISMA-P
2015 checklist (Moher et al., 2015). We followed a systematic
approach to identify relevant literature. An electronic search was
performed in the databases Scopus, PubMed and Web of Science
(cut-off date: 24 January 2024), followed by a manual screening and
selection process. Results were first screened by title and abstract.
After that a full-text screening was performed to determine
eligibility. Documents of the types article and review in English
language were considered. Further limitations were chosen for every
database based on available limitation criteria. For Scopus, the
search string was applied to title, abstract and keywords. The
results were limited to the following search categories:
Engineering, Medicine, Computer Science, Mathematics, Physics
and Astronomy, Multidisciplinary. For Web of Science, the search
was performed on all fields for the Web of Science Core Collection.
No further limitations were chosen. For PubMed, the search was
performed only on title and abstract as there was no option to search
keywords. As our goal was to identify methods that handle the
sim2real gap, we applied a comprehensive search string:

(("musculoskel*") OR ("musculo-skel*") OR ("biomechan*") OR
("anthropo*") OR ("digital human")) AND (("model*")) AND
(("kinemat*") OR ("dynam*") OR (" kinet*")) AND (("method*")
OR ("approach*") OR ("framework*") OR (" algorithm*")) AND
(("motion*") OR ("gait*") OR ("movement*")) AND (("error*") OR
("inconsisten*") OR ("miscalcu*") OR ("minim*") OR ("consisten*")
OR ("incorrect*")) AND (("transfer*") OR ("track*") OR
("reconstruct*") OR ("optim*") OR ("simulation*") OR ("residual*"))

Search items included relevant terms like kinematic, dynamic,
residuals, consistency and errors. We used a generic search string
since the term sim2real gap is not an established term in the field of
biomechanical simulations. Additionally, a backward search
identifying further works was performed on identified relevant
publications.

Results retrieved by the search string were appraised for
significance according to specific inclusion and exclusion criteria,
which were applied first to the title, then to the abstract, and then to
the full-text. Papers describing methods handling the sim2real gap
of musculoskeletal simulations using a physiological biomechanical
model were included. These methods should compensate (or
minimize) either the kinematic error, the dynamic error or both
errors simultaneously. Papers describing model individualization
methods as well as pure FD simulations that do not track
experimental data are out of scope for this research and therefore
excluded as this review focuses on handling the sim2real gap in
musculoskeletal simulations to achieve accurate and reliable

simulation results based on experimentally measured motion
data. One author screened all records and decided whether a
publication met the inclusion criteria. If the author was unsure
whether or not to include the work, he consulted his co-authors. In
the end, one other author checked all identified publications for
eligibility.

To answer the aforementioned research questions the papers
were analyzed according to the following aspects: problem
formulation, input/output, model specifics, method evaluation,
simulation software, states/controls, experimentally measured
quantities and the primary goal of each method. No automation
tools were used for this process. For every study, each aspect was
analyzed and written in a spreadsheet. One author extracted the
data. A second author checked the accuracy of the extracted data and
the completeness of the spreadsheet.

To synthesise the data, the analyzed aspects were used to cluster
the identified studies according to the way how the sim2real gap is
handled, the mathematical method used, and the parameters/
variables of the simulations which were adjusted which
corresponds to RQ1.

3 Results

3.1 Search yield

Applying the search string to the three databases yielded
3,579 results. Figure 1 illustrates the identification and selection
process. We used the aforementioned inclusion and exclusion
criteria to exclude non-relevant publications. 1,550 duplicates
were removed. After screening the results by title, 335 results
remained. The abstract screening excluded a further 180 papers.
In the end, 86 papers were excluded through full-text screening. In
turn, 16 publications were added by performing backward search.
Ultimately, 85 results fulfilled the criteria and thus were included in
this review.

3.2 Identified solution approaches (RQ1)

We clustered relevant publications into eight general solution
approaches (clusters), see Figure 2. These approaches differ in the
way the sim2real gap is handled, which mathematical method is
used and which parameters/variables of the musculoskeletal
model or the simulation are adjusted to handle the sim2real
gap. Table A1 in the Supplementary Material shows the cluster to
which each publication is assigned. Each cluster is briefly
described in terms of how the sim2real gap is handled.
Furthermore, Table A2–Table A9 summarize, separately for
each cluster, the proposed method. These tables include
additional information for each cluster, including if and how
the method was validated. If a marker-based motion tracking
approach was used as reference, we stated that the method was
validated using the standard approach. If the method was verified
on synthetic data, we also indicated that. If it was not validated,
we added information regarding the performance (e.g., kinematic
RMSE) of the proposed method or information regarding the
evaluation (e.g., residual size, comparison between measured and
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FIGURE 1
PRISMA flow diagram describing the literature search, identification, screening and selection process. The search string was applied to the three
databases Scopus, Web of Science and Pubmed. It yielded 3579 results. The results were first screened by title, then by abstract and then the full-text was
screened for eligibility using defined inclusion criteria. Backward search was performed on eligible results. In the end 85 papers were included in
the review.

FIGURE 2
Relevant identified publications were sorted into eight different solution approaches (clusters). The approaches differ in three aspects: how the
sim2real gap is handled, the mathematical method used and the parameters/ variables of the simulations which were adjusted. The grey boxes represent
publications that were already analyzed by Begon et al. (2018) in their literature review regarding inverse kinematics methods. As these methods aim to
minimize the kinematic error they also handle the sim2real gap.
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computed GRFs) in the corresponding column. Table A10 in the
Supplementary Material lists experimental measurements that
were used in every publication.

Methods in the minimization of kinematic error cluster describe
kinematic tracking methods that handle the sim2real gap by
optimizing kinematic tracking performance. Based on the
kinematic input being tracked, the methods either compensate
noise and sensor drift (inertial measurement unit (IMU) -based
methods), STAs (marker-based methods) or enhance the tracking
performance by including joint constraints (depth camera-based
methods). Method descriptions and information about kinematic
inputs are listed in Table A2.

Methods included in the BM parameter adjustment cluster
principally use the fact that the ID problem is overdetermined
when both external forces and kinematics are measured. In this
case, the sim2real gap is handled through optimization, where either
BSIPs or marker positions are adjusted to reduce residuals. Method
descriptions and information about optimized variables are listed
in Table A3.

Methods included in the computed quantities adjustment
cluster, generally use a similar approach like those of the BM
parameter adjustment cluster. These methods also take advantage
of the overdetermined nature of the ID approach to handle the
sim2real gap. The difference between the two clusters are the input
variables of the cost functions which are modified. Instead of
optimizing BSIPs or marker positions, computed variables like
joint angles, joint accelerations or muscle forces are adjusted.
Method descriptions and information about optimized variables
are listed in Table A4.

Another solution approach (cluster) is the implementation of a
Kalman Filter to handle the sim2real gap for musculoskeletal
simulations. In general, the Kalman Filter is a two-step
prediction correction approach generating optimal state
estimations based on erroneous measurements (Serra, 2018). It
produces optimal estimates of a system state by averaging
predicted and measured states using a weighted average. The
covariance of both the system and the measurement noise is used
to calculate the weight. Through this, random noise of measurement
systems can be reduced. In case of biomechanical simulations, the
state vector of the Kalman filter may include only kinematic
parameters (e.g., joint angles). These approaches then minimize
the kinematic error. The state vector can also include both kinematic
and body segment parameters (Bonnet et al., 2017) or both
kinematic and kinetic parameters (e.g., joint angles and muscle
forces or joint torques) (Mohammadi et al., 2020). Or it can include
uncertainty models of IMU-sensors to estimate the size of undesired
errors (orientation errors, gyroscope bias and magnetic
disturbances) to compensate these (Yuan et al., 2019). The choice
of the state vector variables mainly depends on the underlying study
aim–minimization of the kinematic error or dynamic error. Method
descriptions and state vector variables for every publication
classified into this cluster are listed in Table A5.

Methods in the trajectory optimization cluster use both the FD
and ID approach to generate biomechanical simulations. FD
approaches generate simulations without residual forces and
torques. For approaches using ID the dynamical constraints are
loosened and residuals are set to some level of tolerance. In contrast
to static optimization, trajectory optimization mostly considers

muscle activation and deactivation dynamics and optimizes the
movement over the whole time series. This way non-
physiological jumps in position and acceleration data are
prevented. This aspect applies for all papers included in this
cluster. A subcategory of this cluster is called inverse dynamic
optimal control. Inverse dynamic optimal control uses trajectory
optimization to solve the muscle redundancy problem dynamically
over time. It computes neural excitations that result in given joint
torques, which were computed using ID. Thus, the methods produce
motion simulations that are consistent with muscle dynamics but
not necessarily consistent for the external forces. Table A6 lists
method descriptions as well as information about the optimization
variables as these differ.

Methods in the electromyography (EMG)-informed tracking
cluster are multimodal motion tracking methods. They use cost
functions which are extended by including EMG-measurements, as
an expression of neural excitations, in addition to marker or joint
angle trajectory tracking. All methods use trajectory optimization to
solve a forward dynamic simulation problem to dynamically track
both measurements. It is assumed that tracking both marker
trajectories and EMG-measurements enhances accuracy and
reliability of biomechanical simulation results (Bailly et al., 2021).
Table A7 lists method descriptions as well as information about the
optimization variables.

Methods in the controller-based tracking cluster use the FD
approach. They handle the sim2real gap by applying a dynamic
tracking approach. Next to kinematic parameters also dynamic
parameters (e.g., muscle activations) are being tracked. However,
a unique feature here is the implementation of feedback into
musculoskeletal simulations. Additionally, some kind of
controller is used to track specific input variables. The methods
use the FD approach. This way no undesired residuals are generated.
Most methods included in this cluster focus on enhancing accuracy
of simulations in the field of gait analysis. Some methods focus on
enhancing accuracy of simulations for wrist or arm movement.
Table A8 lists method descriptions and information about the
controller that was used.

The last cluster includes methods using statistical approaches for
musculoskeletal simulations and to handle the sim2real gap. Instead
of minimizing specific cost functions, as was the goal in all other
clusters, statistical approaches try to estimate the most likely variable
values (e.g., joint angles or joint loads) given a specific set of
measured kinematic parameters (e.g., marker trajectories).
Method descriptions and information regarding the statistical
approach are listed in Table A9.

3.3 Primary goal in relation to handling the
sim2real gap, strengths, and limitations of
methods (RQ2)

The primary goal varies for all listed publications and methods.
Some methods aim at tracking kinematic parameters as closely as
possible and thus minimizing the kinematic error (Cesic et al., 2016;
Begon et al., 2017; Bonnet et al., 2017; Joukov et al., 2017; Laidig
et al., 2017; Schellenberg et al., 2017; Joukov et al., 2018; Niu et al.,
2018; Tagliapietra et al., 2018; Pataky et al., 2019; Inai et al., 2020;
Joukov et al., 2020; Price et al., 2020; Sy et al., 2020; Halilaj et al.,
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2021; Sy et al., 2021; Al Borno et al., 2022; Lefebvre et al., 2023).
Alternatively, the kinematic error can be minimized by
compensating sensor noise and bias (e.g., sensor drift or
magnetic disturbances) which affects methods using IMU-sensors
for motion analysis (Cockcroft et al., 2014; Allen et al., 2017; Laidig
et al., 2017). Some methods investigate if a multimodal motion
analysis approach (combination of IMU-sensors with either RGB-
video- or depth-camera) enhances tracking performance thus
minimizing the kinematic error (Atrsaei et al., 2016; Halilaj et al.,
2021; Pearl et al., 2023). Other methods explicitly aim to generate
simulation results without undesired residuals (Vaughan et al., 1982;
Koopman et al., 1995; Kuo, 1998; Cahouët et al., 2002; Mazzà and
Cappozzo, 2004; Riemer et al., 2008; Remy and Thelen, 2009; Riemer
and Hsiao-Wecksler, 2009; Jackson et al., 2015; Samaan et al., 2016;
Faber et al., 2018; Muller et al., 2018; Noamani et al., 2018; Fritz et al.,
2019; Pallarès-López et al., 2019; Sturdy et al., 2022; Werling et al.,
2023). Certain methods primarily target a different goal than
generating simulation results without residuals. The goal can be
the estimation of most accurate muscle forces or torques (Chao and
Rim, 1973; Koh and Jennings, 2003; Seth and Pandy, 2007; Morrow
et al., 2014; Lv et al., 2016; Bélaise et al., 2018a; Bélaise et al., 2018b;
Stanev and Moustakas, 2018; Moissenet et al., 2019; Bailly et al.,
2021; Ceglia et al., 2023), the determination of joint torques or
muscle excitations needed to generate desired movement (Kaplan
andHeegaard, 2001; Thelen et al., 2003; Thelen and Anderson, 2006;
Da Silva et al., 2008; Ghafari et al., 2009; Demircan et al., 2010;
Watanabe and Sugi, 2010; Lin et al., 2018; Mouzo et al., 2018;
Dorschky et al., 2019; Haralabidis et al., 2021; Wang et al., 2021;
Wang et al., 2022) or the development of controllers to determine
muscle activity that track desired movement (Yamaguchi and Zajac,
1990; Blana et al., 2009; Arash Haghpanah et al., 2022). Handling the
sim2real gap is then a secondary achievement. Some publications
investigate the effect of different computational choices on
computation time (Falisse et al., 2019) or robustness of
convergence (Neptune, 1999; Febrer-Nafría et al., 2020). Others
aim at predicting human motion (van den Bogert et al., 2011; van
den Bogert et al., 2012; Meyer et al., 2016; Nitschke et al., 2020;
Febrer-Nafría et al., 2022). Neptune and Hull (1998) developed a
musculoskeletal model and optimization framework to best
reproduce some specific movement and Nitschke et al. (2023)
developed an approach for analyzing arbitrary three-dimensional
motions using optimal control simulations by directly tracking
marker trajectories and GRFs. Since the solution strategies
(clusters) all differ quite extensively in how the authors (attempt
to) handle the sim2real gap, all strategies have various limitations
and potentials which are described below.

Methods in the BM parameter adjustment cluster complement
the standard workflow consisting of model scaling, IK and ID as an
extension but there is a risk that calculated parameters could be
overfitted or unrealistic. Measures should be taken to prevent this
(constraining the solution space). The methods are not limited to
certain motions even though initially measurements of specific
movements are required to adjust the BSIPs. The following
limitations are associated with these methods. Although modeling
errors are corrected, model assumptions (e.g., missing model
segments) cannot be compensated. Furthermore, several
assumptions are made which reduce the validity of computed
results: bilateral symmetry, error-free measured kinematics and

use of a correct objective function. The methods imply that all
residuals stem only from inaccurate BSIPs. This assumption leads to
the estimation of values that minimize a specific cost function but do
not have to be equal to the real value. Muller et al. (2017) even state
that an optimization of BSIPs based on the difference between
calculated and measured GRFs is not necessary as the risk of
overfitting cannot be avoided.

The work of Werling et al. (2023) is an exception to the points
previously discussed. The paper presents AddBiomechanics, an
online tool that enables the computation of motion dynamics
analysis in an automated and standardized way. Marker
trajectories are tracked as close as possible by optimizing joint
angles, body segment parameters as well as model marker
positions simultaneously. Additionally, the model’s center of
mass and rotational generalized coordinates of the model’s root
segment are adjusted to be consistent with experimentally measured
GRFs. Therefore, the residuals are not assumed to be solely
generated by either erroneous kinematics or BSIPs. Variables of
both entities are adjusted to handle the sim2real gap without
deviating too much from the kinematic input data. Nevertheless,
there are still limitations. A statistical prior model is used to optimize
the body segments. This prior model is based on population data of
active-duty military personnel (men and women) and is therefore
not reflective of the broad population. The authors state that the
method may then choose body segment parameters for fitting to the
marker data that are more in line to the parameters in the prior
model, even though the “true” parameters are different.
Additionally, the optimizer prioritizes solutions that move
anatomical markers as little as possible. If the experimental
markers have not been labelled correctly, this could lead to the
estimation of incorrect joint angles and the model marker positions
on the input model would have to be adjusted accordingly to
compensate this.

Strengths and limitations of methods in the computed quantities
adjustment cluster are similar to aspects described in the previous
paragraph. The methods significantly minimize residuals but a risk
of overfitting or computing unrealistic parameter values remains.
One strength is that it is possible to constrain optimization
parameters into physiologically reasonable ranges, as done by
Riemer and Hsiao-Wecksler (2009), to prevent the estimation of
unrealistic parameter values. Computed parameters are assumed to
be inaccurate due to measurement noise and STAs. Different kind of
errors can be compensated depending on the described method.
Cahouët et al. (2002) compensate derivation errors in joint
accelerations. Koopman et al. (1995) compensate errors
stemming from both measurement and model segment
estimation errors, whereas Kuo (1998) compensates the effect of
noise on position data. While this does reduce the size of residuals in
the simulation, the compensation is done by deviating from the
experimental data. The assumptions made in these methods,
however, limit the validity of the computed results. In most
publications BSIPs and GRFs are assumed to be error-free and it
is assumed that residuals stem only from inaccurate kinematic
parameters. Accordingly, risk of overfitting towards the model
cannot be avoided. Bonnet et al. (2017) explicitly state that
unrealistic accelerations may be generated since an optimization
algorithm compensates for various error types and not only for
differentiation errors as intended in the work of Cahouët et al.
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(2002) and Kuo (1998). In addition, some methods were developed
for analyzing only one specific movement and thus are not
universally applicable.

Using trajectory optimization to determine biomechanical
parameters can lead to simulation results without residuals.
However, to achieve this, simulation results will move away from
marker trajectories, IMU sensor measurements or IK results. In
general, the cluster has a couple of strengths. The variables are
optimized dynamically over time. This way, non-physiological joint
angle, velocity and acceleration trajectories are avoided because
muscle activation/deactivation dynamics are generally
implemented. Methods in this cluster may generate simulation
results without residuals as trajectory optimization is one possible
way to solve FD and the simulations adhere to the laws of physics.
Moreover, the methods are flexible. States, controls, constraints as
well as the objective function can be chosen to reach a specific goal.
Cost functions can be extended to not only track kinematic but also
kinetic parameters (e.g., GRFs) to enhance convergence
performance. If a foot-ground contact model is added, GRFs can
be computed and compared to measurements. Thus, force plate
measuring errors and modeling assumptions can be compensated
through the adjustment of GRFs. The limitations for this solution
approach include that measured motion data may be smoothed
significantly in order to adhere to system dynamics. A further
limitation is the high computation time and the amount of
computational power that is required for solving forward
dynamic formulations. The simulations may have problems to
converge. This may be especially true for non-cyclic movements,
as periodicity constraints can then not be applied. Furthermore,
choosing optimal weights for the different terms of the objective
function (tracking term, regularization term, smoothing term) is
challenging. Additionally, trajectory optimization methods assume
that the model BSIPs are accurate and do not get adjusted, only the
system kinematics and forces are optimized. Applying trajectory
optimization on three-dimensional models with many degrees of
freedom and muscles significantly increases the complexity and
therefore computation time increases and convergence becomes
even more challenging. Error propagation occurs when joint
angle trajectories are directly tracked, because the reference joint
angle trajectories result from an IK which is error-prone. These
erroneous joint angle trajectories are then used as reference for the
simulation.

Using a Kalman Filter minimizes the kinematic error of
simulation results as error models are used to compute optimized
state estimations (e.g., marker positions, sensor positions or
orientations). However, the quality of the optimized state vector
estimations is restricted by the accuracy of the implemented error
models. The Kalman Filter offers unique advantages when applied
for musculoskeletal modeling and simulation since the method was
specifically developed to enhance state estimations (originally
position location) based on erroneous observations (Serra, 2018).
Mohammadi et al. (2020) produced estimates that are both
consistent with the system and the measurement model. They
assumed that joint angle measurements are affected by white
Gaussian noise; e.g., modelled as a normal probability
distribution. This noise can then be compensated by the
extended Kalman Filter because the explicit noise model is
known. Analogous to the computed quantities adjustment cluster,

state variables can be constrained to ensure feasible parameter values
(Bonnet et al., 2017). Nevertheless, a Kalman Filter has many
parameters that need to be set correctly, requiring expert
knowledge. Covariances have to be known to compensate
measuring noise and STAs cannot yet be compensated in
contrast to white gaussian measurement noise since no coherent
error model exists. Further, the Kalman Filter is currently mostly
applied for simulating two-dimensional models (Bonnet et al., 2017;
Mohammadi et al., 2020). Bonnet et al. (2017) state that, although
possible, expanding their method to include three-dimensional
model estimation would require significantly more parameters
and could lead to redundancy problems. Moreover, for many
publications, specific assumptions are taken to enhance or enable
convergence: bilateral symmetry, constant acceleration or jerk, a
fixed yaw angle or periodicity in gait. This significantly reduces the
validity of presented methods.

Since all reviewed EMG-informed tracking methods use
trajectory optimization as mathematical method, strengths and
limitations are analogous to previously described aspects. Besides
those aspects, it is advisable to track both EMG-measurements and
marker trajectories because the measurements complement each
other (Bélaise et al., 2018b) and minimize both the kinematic and
dynamic error simultaneously. However, EMG-measurements are
error prone and thus may restrict the significance for handling the
sim2real gap. The methods enable the implementation of muscle co-
contraction in musculoskeletal simulations in contrast to using cost
functions minimizing the sum of squared muscle activity.
Furthermore, overall muscle force estimation can be enhanced
(Bailly et al., 2021; Ceglia et al., 2023). Main limitations for
methods of this approach are challenges related to EMG
measurements, which are often noisy, while physiological cross-
talk cannot be avoided. Also, surface electrodes cannot be used to
measure activity in deep muscles (Sartori et al., 2014). In addition,
external disturbances may interfere with the measurements and lead
to inaccurate values.

Controller-based tracking methods can generate simulation
results without residuals but may move away from measured
parameters to achieve this (Thelen and Anderson, 2006). The
methods tend to not only model the human body, but also the
control of the human nervous system by incorporating feedback in
the simulation. Moreover, analogous to the trajectory optimization
cluster, kinematic parameter trajectories (e.g., joint angles) remain
physiologically feasible because muscle activation and deactivation
mechanics are implemented. Controller-based tracking approaches
may have problems to accurately track movements that are
characterized by rapid acceleration changes (e.g., jumps or
running) if the feedback gains are not implemented correctly
(van der Kooij et al., 2001; Koelewijn and Ijspeert, 2020). Using
sensory input, the healthy human body is able to react incredibly fast
to disturbances like sudden imbalance in form of tripping while
walking. In this case, the postural controller reacts immediately and
tries to prevent the person from falling. While some controllers are
somewhat/partly able to imitate measurements of human behavior
after perturbations, it is not known if the model that is used (e.g.,
reflex controller or a PD controller) is analogous to the control as it
happens in the human body. In addition, typical limitations which
are associated with controllers can also occur, including instability
and loss of control.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Wechsler et al. 10.3389/fbioe.2024.1386874

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1386874


Statistical approaches minimize the kinematic error by
maximizing a specific probability (e.g., maximum likelihood of a
parameter’s posterior distribution) instead of minimizing specific
objective functions which leads to more accurate joint angle
estimates in contrast to standard approaches (Pataky et al., 2019).
However, the methods are restricted by convergence problems and
the required high computational effort. Lv et al. (2016) generated a
data-driven prior-model which uses known information from a
motion database to constrain the solution space of the inverse
dynamic problem. This way, ambiguity of human motion (e.g.,
during double stance phase of gait) gets reduced, which occurs when
there is no information available regarding the distribution of the
ground reaction forces between both legs. Generally, limitations for
these approaches include that analogous to the Kalman Filter cluster,
convergence problems may occur when implementing three-
dimensional models. Pataky et al. (2019) introduced the Bayesian
IK method and state that it is impracticable for more complex
models with many degrees of freedom. Furthermore, significant
computational power is needed and computation time is already
high for two-dimensional analyses (Pataky et al., 2019). Moreover,
since the method of Lv et al. (2016) is based on a database including
specific motions, only the included motion types (walking, jumping,
running, turning and hopping) can be accurately analyzed. Results
for other movements (e.g., stair climbing) were not accurate. A
generalization to related but nevertheless different movements is
therefore not possible.

4 Discussion

The literature study revealed answers to the raised research
questions which are summarised next.

RQ1: For the first research question, we investigated which methods
exist to handle the sim2real gap in musculoskeletal simulations
and found that the results could be classified into eight clusters:
minimization of kinematic error, BM-parameter adjustment,
computed quantity adjustment, Kalman Filter, EMG-informed
tracking, controller-based tracking, trajectory optimization and
statistical approaches.The clusters differ in theway the sim2real
gap is handled.

RQ2: For the second research question, we investigated the
primary goal of the methods regarding the way the
sim2real gap is handled as well as strengths and
limitations of each cluster. In short, every method has a
distinctive primary goal. Every cluster has a distinctive way
how to deal with the sim2real gap with accompanying
potentials and limitations. We could not identify a specific
solution approach that is able to generate consistent
simulations without introducing residuals for any
arbitrary model, input variables and investigated
movement without deviating from the corresponding
experimental data. At this point, the automated tool
AddBiomechanics presented by Werling et al. (2023)
seems to be the best solution for analyzing experimental
kinematic and kinetic data using ID, as it optimizes both
kinematic and kinetic input and estimated parameters to
handle the sim2real gap. But the method is only able to

analyze marker-based motion data. For FD, methods in
the EMG-informed tracking cluster are very promising, as
these methods handle the sim2real gap by minimizing
both the kinematic and dynamic error simultaneously.

The majority of the reviewed methods was designed for specific
movements like human gait (e.g., Koopman et al., 1995; Thelen and
Anderson, 2006; Remy and Thelen, 2009). Thus, most of the
methods are not suitable for handling the sim2real gap for
arbitrary movements. Although some papers offer promising
methods (e.g., Kalman Filter, Bayesian IK), the majority of these
are implemented for two-dimensional models. Application to
three-dimensional models would require considerably more
computational power. Convergence and redundancy problems
could also occur (Bonnet et al., 2017; Pataky et al., 2019). Some
methods focus solely on one of the reasons contributing to the
sim2real gap mentioned in the introduction (e.g., measurement
noise, STAs or modeling errors). This mainly includes publications
from the BM parameter adjustment and computed quantities
adjustment clusters. These solution approaches are problematic
since residuals describe how large the dynamic error of the sim2real
gap is. Often, in an optimization, it is assumed that all error is due to
either the measurements or the model. The assumed source is
adapted to reduce or eliminate the residuals. However, this
adaptation then includes the error from the other source.
Consequently, in case of musculoskeletal simulations, parameter
values (e.g., BSIP, joint angle, joint acceleration trajectories) which
are generated by such an approach do not have to correspond to the
real values. For methods included in these clusters, there is high risk
of overfitting optimization parameters. In addition, the dynamic
error of the simulation may be decreased after adjusting specific
values to minimize residuals, but this does not necessarily enhance
the validity of the simulation. In fact, the consistency between the
BM and the corresponding person can even decrease. As a result,
the sim2real gap increases and thus the reliability of the simulation
decreases. One way to see this, is by analyzing an independent
experimental measure, e.g., muscle activity, and compare this to the
corresponding model output. Furthermore, in order to gain valid
simulation results without residuals with these approaches, it
should be known which part of residuals stems from which
error (modeling or measurement error). As there is no way to
determine this distribution it seems advisable to generate a model
that represents a specific person as accurately as possible before
trying to reduce residuals with other solution approaches. Methods
using trajectory optimization generate simulation results without
residuals by definition but may significantly move away from
experimental data as model parameters do not get adjusted
during the optimizations. This may be less relevant if the overall
aim of the investigation is to predict either novel movements or to
analyze the change biomechanical variables due to changing
environment or product design (e.g., for the design of running
shoes as in van den Bogert et al. (2012)). However, when analyzing
experimental data, this approach may lead to solutions which are
not reliable or accurate for the person initially measured. This
aspect mainly depends on the chosen term weights of the
optimization problem. A higher tracking weight can be chosen
to force the simulation to track the input data more closely but then
convergence problems may arise as the solver is not able to find a
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solution. Analogous, controller-based tracking methods also
generate simulation results without residuals and may move
away from experimental measurement data so that the
simulation adhere to system dynamics. However, the methods
may be advantageous for tracking non-periodic data as no
periodic constraints are defined to enhance convergence. EMG-
informed tracking methods track both kinematic and dynamic
variables, decreasing the kinematic and dynamic error
simultaneously. Through this multimodal approach, the sim2real
gap is handled in a more holistic approach.

Currently, there is no universal strategy to handle the sim2real
gap for an arbitrary movement while using an arbitrary model and
arbitrary motion data because the problem is extensive and complex.
This is also emphasized by the diverse solution approaches (clusters)
which were identified in this review. There is no consensus on which
method is most appropriate for achieving reliable and accurate
simulation results. Hicks et al. (2015) provide recommendations
for reducing and minimizing residuals in case the ID approach is
used. This includes carefully executing pre-processing steps. Data
collection should be well prepared and the calibration procedure
should be performed diligently. Furthermore, the model should be
scaled properly. If residuals are still large, parameters like inertia
values or kinematics can be adjusted. These recommendations are in
accordance to clusters identified in this review (BM parameter
adjustment and computed quantities adjustment) and to
suggestions that Hatze proposed in his work in (2002) in which
he described the fundamental problem of myoskeletal inverse
dynamics. He implied that sufficiently complex musculoskeletal
models as well as error reduction in data measuring and
processing methods are necessary to improve the accuracy of
computed joint torques using ID. Analogous, Riemer et al.
(2008), Riemer and Hsiao-Wecksler (2009) and Gupta et al.
(2022) show that residuals have an effect on computed joint
torques. In case a full-body model is used for an analysis,
researchers have to take care that their residuals are not larger
than values that are recommended by Gupta et al. (2022). Otherwise,
the computed joint torques are neither accurate nor reliable (and
should not be taken as a basis for answering (patho-) physiological
questions). The online tool AddBiomechanics, presented by Werling
et al. (2023) seems to be the most sophisticated and also holistic
approach to handle the sim2real gap using the ID approach. As both
kinematic and kinetic input and estimated parameters are optimized
to achieve minimum residuals, this framework is consistent with the
solution strategies identified in this review.

However, the aforementioned proposed recommendations apply
only for ID approaches. For FD approaches used to analyze
experimentally measured motion data, no specific recommendations
are given in the literature on how to handle the sim2real gap. In this
review this includes the trajectory optimization, controller-based
tracking and EMG-informed tracking clusters. FD approaches
generate no residuals by definition but to achieve this, the
simulation may move far away from experimental measurements or
IK results and the larger the sim2real gap again becomes. Researchers
using FD to analyze experimentalmeasurement data should keep this in
mind if they plan to use the simulation results to answer (patho-)
physiological research questions.

At this point it should be mentioned that achieving simulation
results without generating residuals is not necessary or should not be

tried to achieve in any case. If there was a theoretically perfect model
of a person available the remaining inconsistency would stem solely
from the measurement errors and could then be eliminated using a
FD approach. Since perfect, fully comprehensive models are not
possible to achieve, eachmodel is only an abstraction depicting a real
person in more or less detail. Based on the idea that a simulation
conducted with a perfect model generates no modeling errors, one
can argue that the more accurate the model is, the fewer modeling
errors are expected. Greater modeling errors would be assumed
when using partial models in comparison to using full-body models.
For this reason, it is not appropriate to strive for handling or closing
the sim2real gap when a partial model of the human body is used.
Researchers have to take care how much they should strive for
minimizing the kinematic and dynamic error given the accuracy of
the model they use. The less complex a model is, the less clear it will
be which part of the residuals is generated by each error source
(modeling or measurement error). Minimization of residuals is then
not advisable. On the contrary, van den Bogert and Su (2008) state
that in this case, and on the condition that full ground reaction force
measurements are available, more reliable ID results can be
generated when the upper-body is not included because its
motion cannot be measured reliably and minimizing residuals
would thus introduce errors in the simulation results.

We described in the previous paragraph that removing residuals
is not recommended for any model. In these cases, the size of
residuals can also not be used to validate a musculoskeletal
simulation as proposed by Hicks et al. (2015) and Gupta et al.
(2022). Validating musculoskeletal simulation results remains a
challenge because the ground truth can never be known. As
optical marker tracking is the gold standard for motion capture,
new measurement and simulation methods are validated using this
approach. Nevertheless, the gold standard is also prone to both
modeling errors and measurement noise. When a new method
produces results that differ from the gold standard solution, it is
hard to determine whether the results are worse or better than the
gold standard approach. The problem that remains is that it is not
possible to perform measurements to separate model and
measurement errors. Both errors occur simultaneously and
cannot be eliminated beforehand so that only one error remains.
Using synthetic data (e.g., generated using optimal control) is
another way to validate novel approaches. A limitation of this
approach lies within the aspect that measurement noise
(especially STAs) cannot yet be simulated correctly. Up to now,
validation remains a key challenge of musculoskeletal simulations.

Bailly et al. (2021) hypothesise, that tracking multimodal motion
measurement can lead to smaller kinematic errors, thus handling the
sim2real gap. The papers we reviewed which tracked multimodal
motion measurement data supported this hypothesis. Each paper
sorted into the EMG-informed tracking cluster uses a multimodal
motion measurement and tracking approach. Kinematic errors were
reported to be decreased using this approach in every publication
but one. Mallat et al. (2021), categorised into the Kalman Filter
cluster, fused RGB camera data and IMU sensor data to track human
gait. They hypothesise that through this approach, individual
weaknesses (marker occlusion and sensor drift) of the two
measurement and sensor technologies compensate each other.
Analogous, Pearl et al. (2023) fused camera and IMU data to
track human gait. But instead of using a Kalman Filter, the

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Wechsler et al. 10.3389/fbioe.2024.1386874

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1386874


authors used dynamic optimization to analyze experimentally
measured motion. This multimodal approach outperformed
single-modality approaches (using either only IMU or video data
for human motion analysis). Halilaj et al. (2021) used both RGB
camera data and IMU data in combination with a statistical shape
model. Both the shape and the pose of the statistical shape model are
optimized so that model joint centers best match estimated joint
centers identified using the RGB camera. IMU and video data is then
fused by adding an error term in the optimization minimizing the
difference between video-based angular velocity and angular
velocity values measured by the IMU sensors. Analogous to the
results reported byMallat et al. (2021), motion analysis performance
was enhanced as the sensor technologies compensate each other’s
weaknesses. Atrsaei et al. (2016) fused depth-camera data and IMU
sensor data to track human armmotion. Again, the sensor fusion led
to a decrease of the kinematic error. This is in line with a proposal we
made in a prior publication that multimodal motion tracking could
compensate IMU-sensor inherent problems like sensor drift or
calibration problems in order to gain more reliable and accurate
motion measurements (Wechsler et al., 2023).

It is important to note that the classification scheme presented in
this review is not strictly selective, since the individual levels of the
proposed clusters are not equal. For instance, some clusters describe
the mathematical method that was used in simulations (trajectory
optimization andKalman Filter) whereas others directly describe the
way how the sim2real gap is handled (Minimization of kinematic
error, BM parameter adjustment, computed quantities adjustment).
Many methods could therefore be fitted to various clusters. For
example, every paper sorted into the EMG-informed tracking cluster
uses trajectory optimization. The EMG-informed tracking cluster
could therefore also be regarded as a subcategory of the trajectory
optimization cluster. However, we decided to list these papers
separately because tracking multimodal data (marker position/
joint angle trajectories and EMG-measurements) is a
distinguishing feature of these papers. The same applies for
publications sorted into the Kalman Filter cluster since these
could also be sorted into the computed quantities adjustment
cluster or the Minimization of kinematic error cluster.

Additionally, there are limitations regarding the applied search
strategy and the screening process. Both aspects are subjective to the
decision of the authors. Even though inclusion and exclusion criteria
were defined, objectivity cannot be guaranteed. Furthermore, the
lack of consistent and uniform nomenclature complicates the
identification of relevant papers using a search string. The term
sim2real gap is not an established term in the field of biomechanical
simulation but a description of the issue addressed in this review
article. Therefore, searching for and identifying articles that handle
the sim2real gap is laborious and error-prone. In addition,
simulations that are free of residuals, either by definition (FD) or
minimisation methods (ID), are sometimes called dynamically
consistent. We decided against using this term, as there appears
to be no clear definition andmutual understanding of the term in the
biomechanical community. This circumstance has further
complicated the search and selection of methods relevant for this
review article. Consequently, even though the literature search was
performed to the best of our knowledge, completeness of the review
cannot be ensured.

5 Conclusion

This review identified and analyzed methods for handling the
sim2real gap, the deviation between reality and musculoskeletal
simulations which occurs because of kinematic and dynamic errors.
The results showed that different solution approaches exist in literature,
but there is no consensus on which method is most appropriate.
Generally, FD approaches always generate simulations without
residuals. However, to achieve this, the simulation may move far
away from experimental measurements or IK results. This includes
methods included in the trajectory optimization, EMG-informed tracking
and controller-based tracking cluster. Therefore, the sim2real gap shows
up as this deviation between the recorded movement and the simulated
movement. An ID approach generates residual forces and torques while
usually tracking experimental measurements more closely than FD
approaches. Therefore, the sim2real gap shows up through the
residuals. However, there are ways to reduce the residuals by
adjusting either kinematic or dynamic simulation parameters. This
includes methods included in the BM parameter adjustment and
computed quantities adjustment cluster. Comparing the size of
residuals to given recommendations provides information on the size
of the sim2real gap. However, smaller residuals do not necessarily mean
that the sim2real gap is smaller. In both methods, there is a risk of
overfitting to the specific experimental data used, meaning that the
adjusted parameters or quantities are unrealistic. Prevention methods
should be taken to reduce this risk (e.g., constraining the solution space).
By using a Kalman Filter, the kinematic error of simulation results is
minimized as error models are used to compute optimal state
estimations (e.g., marker positions, sensor positions or orientations).
However, the quality of the optimized state vector estimation is restricted
by the accuracy of the implemented error models. Statistical approaches
minimize the kinematic error by maximizing a specific probability (e.g.,
maximum likelihood of a parameter’s posterior distribution) which leads
tomore accurate joint angle estimates in contrast to standard approaches
for a two-dimensional movement. However, the methods are largely
restricted by convergence problems and the required high computational
effort. Ultimately, the method choice largely depends on various factors:
available model, input parameters, investigatedmovement and of course
the underlying research aim. However, we conclude that multimodal
approaches tracking kinematic and dynamic measurements may be one
possible solution to handle the sim2real gap as methods tracking
multimodal measurements (some combination of sensor position/
orientation or EMG measurements), consistently lead to better
tracking performances. Initial analyses show that motion analysis
performance can be enhanced by using multimodal measurements as
different sensor technologies can compensate each other’s weaknesses
(e.g., marker occlusion and IMU drift). FD approaches (trajectory
optimization, controller-based tracking, EMG-informed tracking) or a
Kalman Filter are suitable for the simultaneous processing ofmultimodal
measurement data.
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