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Periodontal disease is the most common type of oral disease. Periodontal bone
defect is the clinical outcome of advanced periodontal disease, which seriously
affects the quality of life of patients. Promoting periodontal tissue regeneration
and repairing periodontal bone defects is the ultimate treatment goal for
periodontal disease, but the means and methods are very limited. Hydrogels
are a class of highly hydrophilic polymer networks, and their good
biocompatibility has made them a popular research material in the field of
oral medicine in recent years. This paper reviews the current mainstream
types and characteristics of hydrogels, and summarizes the relevant basic
research on hydrogels in promoting periodontal tissue regeneration and bone
defect repair in recent years. The possible mechanisms of action and efficacy
evaluation are discussed in depth, and the application prospects are
also discussed.
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1 Introduction

Periodontal disease is a prevalent condition that significantly impacts both dental
health and overall wellbeing. Periodontal bone defects, known as a serious consequence
of periodontal disease, are challenging to repair, leading to significant impacts on
patients’ chewing function, aesthetics, and quality of life (Sedghi et al., 2021).
Conventional periodontal bone grafting or bone substitute implantation surgery
comprises the transplantation of bone or substitute materials to address alveolar
bone defects resulting from periodontitis. These surgeries aim to stimulate new
bone formation, repair bone defects, restore the anatomical shape of the alveolar
bone, and achieve optimal periodontal tissue regeneration (Gao et al., 2024a).
Nevertheless, this method is subject to numerous influencing factors and may not
consistently yield satisfactory outcomes in periodontal tissue regeneration and bone
defect repair. Some bone defects cannot be perfectly repaired. Hydrogels are a new type
of functional polymer material that has emerged in recent years. They are cross-linked
three-dimensional hydrophilic polymer networks with properties superior to
traditional materials, including softness, non-deformability, strong water absorption
capacity, intelligence, high drug utilization rate, safety, and convenience (Li et al.,
2022a; Li et al., 2024). However, single-component hydrogels have relatively simple
structures, generally low mechanical strength, and only basic hydrogel properties,
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which cannot fully meet the needs of complex applications and
have certain limitations. In recent years, the basic research and
clinical applications of hydrogels have become increasingly rich,
with great potential and unique therapeutic plasticity in
promoting periodontal tissue regeneration and repairing bone
defects. Firstly, hydrogels can provide a microenvironment
similar to the extracellular matrix, allowing periodontal tissues
and bone cells to adhere, proliferate, and differentiate. Secondly,
hydrogels can serve as drug release carriers, exerting anti-
inflammatory and antibacterial effects, and promoting
periodontal tissue regeneration. Additionally, hydrogels can
also carry specific bioactive factors such as stromal cell-
derived factor-1 (SDF-1) and bone morphogenetic proteins
(BMPs), inducing them to differentiate into osteoblasts,
thereby accelerating periodontal bone tissue regeneration.
Hydrogels are currently one of the hottest research materials,
and are expected to provide a new perspective for promoting
periodontal tissue regeneration and repairing periodontal bone
defects. Therefore, based on the latest literature on hydrogels,
this article provides a review of the molecular mechanisms and
efficacy evaluation of promoting periodontal tissue regeneration
and repairing periodontal bone defects, and looks forward to
their clinical application prospects.

2 Periodontal disease and bone defect

Periodontitis is a chronic inflammatory disease affecting the
supporting tissues of the teeth, leading some patients to suffer from
varying degrees of periodontal bone defects, significantly
impacting their physical and mental wellbeing (Dannewitz
et al., 2021). The treatment for periodontitis aims not only to
remove causative factors and halt disease progression but also to
restore damaged periodontal tissues to their original structure and
function, achieving the ideal goal of periodontal tissue
regeneration. The surgical treatment to promote periodontal
tissue regeneration is called regenerative surgery, which mainly
includes bone grafting and guided tissue regeneration, or the
combination of the two can be used (Bee and Hamid, 2022).
Bone grafting is among the most effective methods to repair
bone defects caused by periodontitis, traditionally using
materials such as autogenous bone, allograft bone, and
xenogeneic bone, among others (Smeets et al., 2022). While the
efficacy of the mentioned bone graft materials in bone defect repair
cannot be entirely dismissed, there are also drawbacks. For
instance, autogenous bone necessitates the use of the patients’
own bone, resulting in a secondary wound at the donor site,
increasing the risk of postoperative complications such as
infection, wound dehiscence, and increased bleeding.
Additionally, postoperative unpredictable bone resorption may
hinder the repair effect and prevent reaching the optimal state.
Allogeneic bone carries the risk of immune rejection and requires
strict donor screening and immunosuppressive therapy.
Xenogeneic bone, due to species differences, has weaker
biological activity and mechanical support capabilities (Ajlan
et al., 2024). Thus, the clinical demand for bone repair
materials with superior biological properties has grown
increasingly urgent.

3 Overview of hydrogel

3.1 Basic composition of hydrogel

Hydrogels are three-dimensional hydrophilic polymer networks
formed by the crosslinking of hydrophilic polymer chains through
various interactions, such as chemical bonds, hydrogen bonds, and
van der Waals forces (Hameed et al., 2024). Furthermore, the
presence of hydrophilic groups in hydrogels enables rapid water
absorption, high water retention capacity, and swelling without
dissolution. This unique structure provides hydrogels with
flexibility, enabling them to mimic the body’s tissue environment.
They offer structural support to the defect site, facilitating repair of
bone defects through intrinsic healing mechanisms (Li et al., 2022b;
Ho et al., 2022; Zhang et al., 2023). The high water content of
hydrogels, similar to the permeability of the extracellular matrix,
facilitates the transport of oxygen and nutrients (Siddiqui et al.,
2021). Owing to their excellent biocompatibility, biodegradability,
high water content, adjustable properties, and similarities to the
natural extracellular matrix, hydrogels are increasingly recognized as
exceptional biomimetic tissue engineering scaffold materials. They
are considered the optimal carriers for cells, bioactive factors, and
controlled release drugs. It’s important to note that injectable
hydrogel materials, with their in situ cross-linking nature, can
fully adapt to and restore the irregular geometric shape of the
original bone defect, achieving minimally invasive repair of bone
defects (Chen et al., 2022). The relatively low adhesion of hydrogels
to proteins and cells ensures that hydrogels in contact with tissues do
not interfere with the metabolic processes of living organisms.
Additionally, tissue metabolites can easily penetrate the hydrogel
(Luo et al., 2022). The scheme illustrating the general composition of
hydrogel is displayed in Figure 1.

3.2 Basic physical and chemical properties
of hydrogel

3.2.1 Biocompatibility
After the material interacts with the organism, biocompatibility

is primarily reflected in two aspects. The material must withstand
organismic systems without rejection or damage, and the reactions
generated during this process should be non-inflammatory and non-
carcinogenic (Crawford et al., 2021). Biocompatibility is crucial for
the successful use of hydrogel scaffolds in tissue engineering and
regenerative medicine in clinical practice (Zor et al., 2019).
Researchers often utilize methods such as synthetic conjugated
polymers and the addition of ions to enhance tissue
reconstruction and repair and address the poor biocompatibility
of hydrogels (Zhang et al., 2022a).

3.2.2 Biodegradability
The biodegradability of hydrogel materials is a significant

advantage. The biodegradability of hydrogel involves the
gradual decomposition of the material in the body through
processes such as dissolution, enzymatic digestion, and cell
engulfment. Upon tissue repair, the implanted material is
completely replaced by the repaired tissue, without leaving any
residual material during the tissue healing process (Xia et al.,
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2021). Ideally, hydrogel materials should exhibit controllable
biodegradability, matching the growth of cells and tissue repair
rate. Excessive degradation can result in a loss of mechanical
integrity before complete tissue regeneration, whereas slow
degradation can lead to delayed tissue healing (Fatahian et al.,
2022). Therefore, determining the appropriate degradation rate is a
crucial consideration in hydrogel design. Fortunately, there has
been significant recent progress by researchers, including the
utilization of surface modification, polymer blending, and
incorporation of alkaline particles to enhance biodegradability
(Gupta et al., 2024).

3.2.3 Mechanical performance
The hydrogel exhibits mechanical properties at both

macroscopic and microscopic levels. On the macroscopic scale,
the hydrogel scaffold offers stability and volume maintenance
(Belgodere et al., 2023). On the microscopic level, cells adhered
to the hydrogel matrix can sense mechanical stimuli, converting
them into biochemical signals to regulate crucial physiological
processes (Li et al., 2022c). Hydrogels offer extensive application
potential in bone tissue engineering. Enhancing the mechanical
performance of hydrogels is crucial for improving the
effectiveness of bone defect repair (Zhao et al., 2022). Inadequate
mechanical properties of the hydrogel material can cause the
repaired defect to deform easily and fail to offer early-stage
support. In order to improve the mechanical performance of
hydrogels, researchers have employed diverse methods to

enhance the mechanical performance of hydrogels, such as
constructing double network structures (Guo et al., 2021),
utilizing composite nano-technology (Cui et al., 2019),
introducing conductive materials (Arambula-Maldonado et al.,
2023), and reinforcing fiber networks (Brusentsev et al., 2023).
Studies have demonstrated that biomaterials with mechanical
properties matching those of bone can stimulate bone cell
proliferation and mineralization, and effectively facilitate
bone growth.

4 Classification of polymer-
based hydrogels

Polymer-based hydrogels can be classified into two main
categories based on their source of materials (Ur Rehman et al.,
2020). Naturally derived polymer-based hydrogels are primarily
sourced from animals, plants, and microorganisms, exhibiting
excellent biocompatibility and biodegradability. Examples
include chitosan, sodium alginate, and hyaluronic acid (Sun
et al., 2021). Synthetic polymer-based hydrogels are
predominantly derived from common chemical raw materials,
offering not only good biocompatibility but also enhanced
mechanical properties. Common materials used in the
preparation of synthetic polymer-based hydrogels include
polyethylene glycol (PEG), polyvinyl alcohol (PVA) and
polyacrylic acid (PAA). Based on their response to external

FIGURE 1
The general composition of hydrogel.
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stimuli, hydrogels can also be classified as traditional hydrogels
and responsive hydrogels, the latter also known as intelligent
responsive hydrogels. Intelligent responsive hydrogels exhibit
reversible responses to environmental stimuli, with their shape,
mechanical, optical, permeation rate, and recognition properties
showing acute responses to changes in the surrounding
microenvironment (such as temperature, pH, light, and
magnetic fields), and reversible changes with the stimulating
factors. It is worth mentioning that composite hydrogels,
represented by clay hydrogels, have emerged as a new type of
hydrogel in recent years. This composite system enhances overall
mechanical properties, biocompatibility, and processability
through the complementary advantages of different materials.
We briefly introduce some representative hydrogel systems and
their applications as followed. The main classification of hydolgel
is summarized in Figure 2.

4.1 Natural polymer-based hydrogels

4.1.1 Chitosan-based hydrogel
Chitin is usually extracted from natural shells of shrimp, crabs

and insects, and part of the acetyl group is removed to obtain
chitosan. Chitosan is the sole naturally occurring alkaline
polysaccharide that contains free amino groups (Atia et al.,
2022). Chitosan-based materials have the capacity to form
chemical and physical cross-linked hydrogels through processes
like exposure to ultraviolet light, pH alteration, and temperature
adjustment (Yu et al., 2016). Its primary characteristic is the capacity
to introduce specific functional groups with reactive properties,
yielding a range of chitosan derivatives via chemical
modification. Chitosan-based hydrogel systems exhibit
outstanding biocompatibility, degradability, anti-inflammatory
effects, broad-spectrum antibacterial properties, as well as the

FIGURE 2
The main classification of hydolgel.
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ability to facilitate cell adhesion, proliferation, and differentiation
(Ma et al., 2022). Gu et al. (2024) used forty-eight maleWistar rats to
establish a periodontitis model to detect the effects of chitosan/β-
sodium glyceropylate (β-GP)/glycolic acid (GA) hydrogel carrying
erythropoietin and FK506 (EPO-FK506-CS/β-GP/GA). The results
showed that the hydrogel had drug stability and slow release, could
significantly enhance new bone formation in the bone defect area,
and had obvious bone induction properties. EPO-FK506-CS/β-GP/
GA hydrogel could promote periodontal tissue regeneration. Eshwar
et al. (2023) investigated an alginate-chitosan hydrogel, and clinical
randomized trials indicated that the hydrogel enhanced the clinical
attachment levels and fostered human bone regeneration, thus
augmenting its potential in the field of tissue engineering.

4.1.2 Sodium alginate-based hydrogel
Derived from marine algae cell walls and intercellular spaces,

sodium alginate is a linear natural anionic polysaccharide (Liu et al.,
2023). It is a natural high molecular weight polymer created by
linking β-1, 4-D-mannuronic acid (M segment) and α-1, 4-L-
guluronic acid (G segment) via (α-1, 4) glycosidic bonds. Due to
its non-toxicity, low cost, good biocompatibility, low
immunogenicity, and its capability to form gels through
crosslinking with divalent or multivalent cations, it has extensive
potential applications in oral tissue engineering (Sanchez-Ballester
et al., 2021). The three-dimensional network structure of sodium
alginate hydrogel offers a novel environment for cell adhesion and
proliferation, mimicking the microenvironment of human bone
tissue. Furthermore, sodium alginate hydrogel holds significant
promise as a scaffold material for bone tissue engineering. It not
only offers suitable physical support and biocompatibility but also
guides cell proliferation to form specific tissues (Suo et al., 2023).
Presently, researchers have started blending sodium alginate with
other high molecular weight materials to facilitate cell growth
(Ouyang et al., 2024). This blending technique offers a novel
approach to develop biomedical materials with outstanding
performance and is anticipated to be pivotal in the realm of
tissue engineering.

4.1.3 Hyaluronic acid-based hydrogel
One of the main components of the extracellular matrix is

hyaluronic acid (HA), which is synthesized into HA hydrogels
through physical or chemical crosslinking methods. It has good
biocompatibility, does not easily cause immune reactions, and the
HA hydrogel has good degradability, gradually degrading into
metabolites that exist in the body without burdening the human
body (Marinho et al., 2021). HA hydrogels exhibit good
biocompatibility and biological activity, which have made them
widely used in various fields. In bone tissue repair, HA hydrogels can
provide a scaffold structure similar to the bonemicroenvironment to
promote the differentiation of stem cells into bone cells, and
promote bone regeneration through the release of growth factors
and other bioactive substances (Wang et al., 2021). In tissue
engineering, HA hydrogels can serve as cell carriers, providing a
suitable environment to support cell adhesion, proliferation, and
differentiation, thus achieving tissue regeneration and repair
(Fujioka-Kobayashi et al., 2016). Despite the advantages of
hyaluronic acid hydrogels including non-toxicity,
biodegradability, and biocompatibility, their extremely high water

absorption and enzyme degradation make them prone to corrosion
and degradation in the body. Thus, combining hyaluronic acid with
other smart hydrogels can yield new, environmentally friendly
materials with enhanced performance (Liu et al., 2022a). The
classification of natural polymer-based hydrogels is summarized
in Table 1.

4.2 Synthetic polymer-based hydrogels

4.2.1 Polyethylene glycol-based hydrogels
Polyethylene glycol (PEG) is a linear, neutral polyether polymer

that possesses excellent biocompatibility, biodegradability, low
immunogenicity, and affordability, making it an important
biomaterial in the field of biomedicine. Merrill et al. (1982) first
investigated PEG and polyethylene oxide (PEO) as hydrophilic
biomaterials, and the results showed that the adsorption of
proteins on glass surfaces could be effectively inhibited by the
presence of PEO. Since then, various types of PEG have been
utilized for different purposes, such as protein surface
modification to confer resistance and enhance surface
biocompatibility. Fraser and Benoit (2022) found that the
presentation of RGD and GFOGER peptides in PEG hydrogels
enhanced the functionality of periodontal ligament cells (PDLCs),
and this hydrogel system effectively controlled the function and
activity of PDLCs, promoting periodontal tissue regeneration. Liu
et al. (2021a) studied an intelligent gingival protease-responsive
hydrogel loaded with SDF-1 (PEGPD@SDF-1) and observed that
the PEGPD@SDF-1 hydrogel exhibited good biocompatibility,
promoting the proliferation, migration, and differentiation of
periodontal ligament stem cells. Moreover, this hydrogel
inhibited the proliferation of porphyromonas gingivalis, creating
a low-inflammatory environment and inducing osteogenesis, thus
possessing the ability to promote in situ regeneration of
periodontal tissues.

4.2.2 Polyvinyl alcohol-based hydrogel
Polyvinyl alcohol-based hydrogels, after crosslinking and

swelling, form three-dimensional network-like colloidal
dispersion. They possess high water absorption, degradability,
good biocompatibility, and mechanical properties, making them
widely applied in various medical fields (Rivera-Hernández et al.,
2021). Due to the relatively simple structure and limited
functionality of PVA, reinforcing components and functional
materials are often incorporated into PVA hydrogel networks to
improve and modify the overall performance of the hydrogel.
Xiang et al. (2022) prepared a polyvinyl alcohol/hydroxyapatite/
tannic acid (PVA/HA/TA) composite hydrogel, which exhibited
high water content, porous structure, and good mechanical
properties. In vitro cell experiments demonstrated excellent
cell compatibility of the PVA/HA/TA composite hydrogel,
promoting cell growth and adhesion, making it a promising
material for bone tissue engineering. Zhou et al. (2020)
developed a novel guided tissue regeneration (GTR)
membrane using a composite hydrogel of polyvinyl alcohol
(PVA) and fish collagen (Col). By adjusting the ratio of PVA/
Col, they achieved control over the adhesion and proliferation of
human periodontal ligament fibroblasts (HPDLFs) and human
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gingival fibroblasts (HGFs). The PVA/Col composite hydrogel
exhibited unlimited potential as a GTR membrane for guiding
periodontal tissue regeneration.

4.2.3 Polyacrylic acid-based hydrogel
PAA is a type of synthetic polymer with high hydrophilicity

and a large number of carboxyl groups. It can form hydrogels
through physical or chemical crosslinking. Wen et al. (2023)
prepared a novel composite mineral matrix PAA-CMC-TDM
hydrogel using amorphous calcium phosphate (ACPs), PAA,
carboxymethyl chitosan (CMC), and dentin matrix (TDM) as
the matrix. The hydrogel exhibited good biocompatibility and
degradability, and its mechanical properties could be adjusted

without affecting the functional activity of TDM. The
experimental results showed that the hydrogel significantly
improved the differentiation ability of mesenchymal stem cells
into tooth or bone, and could repair irregular hard tissue defects
in situ. Fan et al. (2023) combined PAA and sodium alginate (SA)
to obtain a double polymer network hydrogel, in which ion
crosslinking and SiO2 nanoparticles were introduced as dual
reinforcement materials. Compared with standard PAA
hydrogel, the hydrogel exhibited enhanced adhesion and shape
memory properties, and further improved biocompatibility and
osteogenic potential. SA-PAA-SiO2 has great potential in bone
tissue engineering. The classification of synthetic polymer-based
hydrogels is summarized in Table 2.

TABLE 1 Classification of natural polymer-based hydrogels.

Classification Hydrogel matrix Research and application Reference

Chitosan (CS) Chitosan/quaternized CS/nano-hydroxyapatite This hydrogel demonstrates excellent biocompatibility and
antibacterial properties, and can be utilized for the treatment
of bone defects

Tian et al. (2024)

Alginate (Alg) Alginate/gelatin/freeze-dried bone allograft
nanoparticles

The hydrogel enhances cell adhesion, proliferation, and
osteogenic differentiation, exhibiting significant potential to
augment bone regeneration

Bastami et al. (2024)

Hyaluronic acid (HA) Fluorenylmethyloxycarbonyl-diphenylalanine
(FmocFF)/HA

The fmoff/HA hydrogel is used for acellular, biomimetic, and
immunomodulatory bone tissue engineering scaffolds

Halperin-Sternfeld et al.
(2023)

Cellulose Carboxymethyl cellulose-methacrylate/hydroxyapatite This hydrogel effectively promotes cell proliferation, supports
adhesion, upregulates the expression of osteogenesis-related
genes, and enhances bone regeneration, thereby increasing
the strength of newly formed bone

Qiu et al. (2024)

Gelatin Zeolitic imidazolate framework-8 (ZIF-8)/gelatin
methacryloyl (GelMA)

The hydrogel promotes osteogenic differentiation of bone
marrow mesenchymal stem cells and facilitates the
regeneration of alveolar bone

Liu et al. (2022b)

Lignin Lignin-copper sulfide/polyvinyl alcohol The hydrogel exhibits high-efficiency antimicrobial and anti-
biofilm activities, making it suitable for application in wound
healing

Xie et al. (2022)

Silk fibroin MXene nanosheets/regenerated silk fibroin
(MXene/RSF)

The MXene/RSF hydrogel can modulate the immune
microenvironment and generate new blood vessels, providing
a novel strategy for bone regeneration and repair

Hu et al. (2022)

TABLE 2 Classification of synthetic polymer-based hydrogels.

Classification Hydrogel matrix Research and application Reference

Polyethylene glycol (PEG) Mineral-coated microparticle/bone morphogenetic
protein-2/chitosan/polyethylene glycol

This hydrogel can sustainably release growth factors and
accelerate bone formation by promoting the activity of
bone marrow mesenchymal stem cells

Xu et al. (2023)

Polyvinyl alcohol (PVA) Polyvinyl alcohol/sodium alginate PVA/SA hydrogel effectively promotes osteogenic
differentiation of cells and is applied in bone tissue
engineering

Zhang et al.
(2024)

Polyacrylic acid (PAA) Polyethyleneimine (PEI)/PAA-hydroxyapatite (HA)-
Vancomycin (VAN)

The PEI/PAA-HA-VAN hydrogel exhibits effective
antibacterial properties and promotes the expression of
osteogenic genes

Wang et al. (2022)

Polyacrylamide (PAAM) Polyurethane (PU)/Polyacrylamide/gelatin (Gel) The PU/PAAM/Gel hydrogel can stimulate the
reconstruction and growth of new bone tissue, exhibiting
good osteogenic performance

He et al. (2021)

Polymethyl methacrylate
(PMMA)

Gelatin-methacryloyl/polymethyl methacrylate/
polydopamine (GelMA/PMMA/PDA)

The GelMA/PMMA/PDA hydrogel possesses excellent
osteogenic capabilities, offering a new perspective for the
treatment of bone defects

Wu et al. (2022)
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4.3 Smart hydrogels

4.3.1 Temperature-responsive hydrogels
Temperature-responsive hydrogels, also known as

thermoresponsive hydrogels or temperature-sensitive hydrogels,
are hydrogel materials with both hydrophilic and hydrophobic
groups on their polymer chains. They exhibit temperature-
responsive phase transition properties. When the temperature
reaches a certain critical point, the affinity of the
thermoresponsive hydrogel towards the solvent changes, leading
to a swelling-shrinking transition. This temperature transition point
is referred to as the lowest critical solution temperature (LCST) or
utmost critical solution temperature (UCST). Injecting
thermoresponsive hydrogels into periodontal pockets, they
undergo an in situ sol-gel transition response under the
stimulation of oral temperature. Xu et al. (2019) developed a
thermosensitive hydrogel composed of chitosan (CS), sodium
glycerophosphate (β-GP), and gelatin, which can sustainably
release aspirin and erythropoietin (EPO) when injected. The
study demonstrated that CS/β-GP/gelatin hydrogel is a novel
drug carrier with easy preparation and excellent biocompatibility.
The loaded aspirin/EPO in CS/β-GP/gelatin hydrogel exhibited
significant anti-inflammatory and periodontal tissue regeneration-
promoting effects. This hydrogel holds promise as a potential
candidate for the clinical treatment of periodontitis.

4.3.2 pH-responsive hydrogels
pH-responsive hydrogels are a type of hydrogel material that

undergoes swelling or shrinking in response to changes in pH. These
hydrogels contain specific acidic groups (such as carboxyl groups) or
basic groups (such as amino groups). The physicochemical
properties of pH-responsive hydrogels largely depend on the
charge changes within the material at different pH values and the
interactions between charges. Yu et al. (2022) developed a dual-
crosslinked gel system with a polyhedral oligomeric silsesquioxane
(POSS) matrix, surrounded by a shell of six dithiol-linked PEG and
two 2-ureido-4[1H]-pyrimidinone (UPy) groups. The thiol-
disulfide exchange reaction exhibited pH-responsive “on/off”
functionality, allowing for controlled structure of the hydrogel.
The results showed that the hydrogel improved mechanical
strength and had a positive effect on the proliferation, adhesion,
and osteogenic ability of periodontal ligament stem cells (PDLSCs).
In summary, pH-responsive hydrogels hold great potential for
various applications, including drug delivery, tissue engineering,
and biomedical devices, due to their ability to respond to changes in
pH and provide controlled release and targeted therapy.

4.3.3 Light-responsive hydrogels
Light-responsive hydrogels are a type of hydrogel that undergo

changes in their morphology, crosslinking density, and other
properties under different light conditions, such as ultraviolet
light, near-infrared light, or visible light. There are two different
response mechanisms for light-responsive hydrogels: firstly, due to
the presence of photosensitive functional groups (such as
spiropyran, azobenzene, and other groups) within the hydrogel
itself, the properties of the hydrogel change when it absorbs a
certain amount of photon energy; secondly, by introducing
nanomaterials with photothermal effects (such as gold

nanoparticles, graphene oxide, etc.) into thermosensitive
hydrogels, the light energy of the nanomaterials is converted into
heat energy under light conditions using the photothermal effect,
raising the temperature of the hydrogel and thus regulating its
properties (Liu et al., 2021b). Zhai et al. (2021) studied a clay-
based nanocomposite hydrogel using 4-acryloylmorpholine as a
monomer. After exposure to ultraviolet light, the hydrogel
exhibited good biocompatibility and mechanical properties.
Additionally, animal experimental results demonstrated that the
hydrogel had the ability to promote osteoblast differentiation,
providing a new clinical approach for bone defect repair.
Magalhães et al. (2022) prepared a nanocomposite hydrogel using
laponite and polyethylene glycol diacrylate (PEGDA) and utilized
ultraviolet radiation to enhance its bone regeneration ability,
showcasing its potential application value in the field of bone
regeneration. The classification of smart hydrogels is summarized
in Table 3.

4.4 Composite hydrogels

Composite hydrogels refer to the incorporation of one or
several polymers into a composition consisting of two or more
different types or components of polymers, forming a composite
system with specific structure and functionality through hydrogen
bonding and electrostatic interactions. Clay hydrogels have been
representative examples of composite hydrogels in recent years.
Dong et al. (2021) uniformly mixed laponite nanoclay with
methacrylic acid gelatin to obtain a composite hydrogel. The
addition of nanoclay improved the rheological properties,
degradation stability, and mechanical strength of the hydrogel.
This composite hydrogel scaffold exhibited high proliferation and
osteogenic differentiation capacity, making it a promising
candidate for bone tissue regeneration biomaterials. Hakimi
et al. (2023) developed a novel organic-mineral nanofiber
hydrogel composed of chitosan-polyethylene oxide (CS-PEO)/
nanoclay-alginate (NC-ALG). The inclusion of NC particles in
the hydrogel improved its biocompatibility and promoted bone
tissue regeneration. Zhang et al. (2022b) designed a chitosan/
polyaniline/lithium polysaccharide (COL) hydrogel, in which
aluminum silicate clay material laponite (LAP) was
incorporated. This composite hydrogel exhibited good
biocompatibility and degradability. Furthermore, the LAP-
loaded composite hydrogel demonstrated excellent osteogenic
differentiation capacity and could be used for bone defect repair.

5 Application value of hydrogel in
promoting periodontal tissue
regeneration

The application research of hydrogels in periodontal tissue
regeneration has continuously achieved breakthroughs. Early
studies mainly focused on the antibacterial activity of hydrogels
themselves, aiming to inhibit the development of infection and
inflammation by adding antibacterial agents (Chen et al., 2016).
However, with further research, it has been found that the effect of
a single antibacterial agent is limited. To overcome these problems,
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researchers have begun to explore the use of hydrogels as carriers
for loading different antibacterial drugs. This loading system can
provide a more long-lasting antibacterial effect while reducing the
amount of drugs used (Wang et al., 2020). In recent years,
hydrogels can be used as carriers for carrying and releasing
bioactive molecules, such as growth factors and anti-
inflammatory factors. These bioactive molecules can promote
tissue regeneration and repair, accelerating the healing process
of periodontal tissues (Kuroda et al., 2019). Some studies have also
focused on loading growth factors and antibacterial drugs together
in hydrogels. This dual-functional hydrogel can not only control
infection and inflammation, but also promote the regeneration and
repair of periodontal tissues. The potential mechanisms employed
by hydrolgel in promoting periodontal tissue regeneration are
demonstrated in Figure 3. Tan et al. (2023) prepared a
chitosan-based thermosensitive hydrogel loaded with β-
tricalcium phosphate, which confirmed the three-dimensional
network structure of the hydrogel and demonstrated significant
biocompatibility with pre-osteoblastic cells MC3T3-E1 and human
gingival fibroblasts, showing great potential in periodontal tissue
regeneration. Ammar et al. (2018) incorporated freeze-dried
platelet concentrate (FDPC) into chitosan/β-glycerophosphate
lipid hydrogel, both showing sustained release of transforming
growth factor and platelet-derived growth factors, significantly
improving the viability of periodontal ligament stem cells,
conducive to periodontal tissue regeneration, and providing
essential growth factors and progenitor cells for periodontal
tissue regeneration. Fawzy El-Sayed et al. (2015) used gingival-
margin-derived stem/progenitor cells (G-MSCs) and hyaluronic
acid-synthesized extracellular matrix (HA-sECM) hydrogel loaded
with IL-1ra to explore its potential for periodontal regeneration.

The results showed that this hydrogel significantly improved
periodontal attachment levels, connective tissue adhesion, and
alveolar bone regeneration, demonstrating significant
periodontal tissue regeneration capability when used in
combination with G-MSCs and IL-1-loaded HA-sECM
hydrogel. Momose et al. (2016) evaluated the use of collagen
hydrogel combined with fibroblast growth factor-2 (FGF2) for
healing periodontal defects in beagle dogs. The results showed that
periodontal tissues, periodontal ligament-like tissues, and
Sharpey’s fibers in beagle dogs were repaired, and FGF2-loaded
collagen hydrogel guided periodontal regeneration, restoring the
function of periodontal tissues.

Currently, hydrogels have enormous potential in the treatment
of periodontal tissue regeneration. However, most related research is
still at the stage of animal experiments, requiring further exploration
of its clinical efficacy and translational applications. With in-depth
research on hydrogels and continuous technological improvement,
it is believed that their application in the field of periodontal tissue
regeneration will be further expanded. We can look forward to
hydrogels providing new solutions for the treatment of periodontal
tissue diseases, bringing more benefits to periodontal health.

6 Bone defect repair strategy based
on hydrogel

Part of periodontitis patients have bone defects, promoting bone
regeneration in the area to restore normal chewing function is
particularly important for patients with periodontitis combined
with bone defects (Li et al., 2023). The repair and regeneration of
bone defects is a challenging and highly demanding research.

TABLE 3 Classification of smart hydrogels.

Classification Stimulus
condition

Control mechanism Research and application Reference

Thermo-responsive Temperature By regulating the temperature to control hydrogen
bonding within the hydrogel, a sol-gel phase
transition is achieved

The smart thermosensitive hydrogel possesses
gelation properties and the ability to induce
angiogenesis, offering a therapeutic approach for
the treatment of bone defects

Lv et al. (2023)

pH-responsive pH Changes in pH lead to the ionization of acidic and
basic groups, thereby altering the charge density of
the hydrogel

The hydrogel demonstrates potent therapeutic
efficacy in the treatment of periodontitis,
restoration of local immune function, and
eradication of pathogens

Yan et al. (2022)

Light-responsive Light Light-responsive hydrogels contain photosensitive
molecules or groups capable of absorbing light of
specific wavelengths

The hydrogel exhibits significant antibacterial
properties and can promote cell adhesion and
proliferation

Chang et al.
(2022)

ROS-responsive Reactive oxygen
species (ROS)

After the reaction of reactive oxygen species with
sensitive functional groups in the hydrogel, it will
cause the fracture or crosslinking of the hydrogel
network structure

ROS-respontive hydrogels can effectively alleviate
inflammatory responses in periodontal tissues and
reduce bone loss

Gan et al.
(2023)

Enzyme-responsive Matrix
metalloproteinase 8
(MMP-8)

Based on the specific functional groups in the
hydrogel reacting with specific enzymes, this leads
to changes in the hydrogel structure

The MMP-8 hydrogel can inhibit the growth of
Porphyromonas gingivalis and maintain its
biological activity

Guo et al.
(2019)

Glucose-responsive Glucose When glucose interacts with these specific
functional groups or enzymes, it triggers a
chemical or enzymatic reaction, leading to changes
in the hydrogel’s structure

The hydrogels inhibit the growth of
Porphyromonas gingivalis and exhibit strong
antibacterial and anti-inflammatory activity

Liu et al.
(2022c)
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6.1 Hydrogels act as carrier to promote bone
defect repair

Researchers are constantly exploring new methods to improve
the effectiveness of bone defect repair. Hydrogels can encapsulate
cells and/or growth factors, effectively protecting them from external
environmental influences and maintaining their biological activity.
When the hydrogel comes into contact with the site of the bone
defect, it selectively transports the encapsulated cells and/or growth
factors, thus promoting the proliferation and differentiation of bone
cells, accelerating the regeneration and repair of bone tissue (Santos
et al., 2023). In addition, hydrogels can also regulate the release rate

of cells and growth factors, achieving sustained and controlled
release, further enhancing the repair effectiveness
(Arpornmaeklong et al., 2021). Tan et al. (2019) prepared a
supermolecular hydrogel assembly of NapFFY with SDF-1 and
BMP-2 for the treatment of periodontal bone defects in rats, with
a bone regeneration rate as high as 56.7%. Both in vitro and in vivo
results indicated that these two bioactive factors were released
synchronously and continuously from the hydrogel under ideal
conditions, effectively promoting the regeneration and
reconstruction of periodontal bone tissue. It is expected that the
SDF-1/BMP-2/NapFFY hydrogel may soon replace clinical bone
transplantation for the repair of periodontal bone defects. Parisi

FIGURE 3
(A,B) Antibacterial agents or drugs can be integrated with hydrogel to suppress inflammatory factor. (C)Growth factor-loaded hydrogel to promote
periodontal tissue regeneration.
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et al. (2020) introduced adaptors of fibronectin into hyaluronic acid/
polyethylene glycol-based hydrogel, evaluating its ability to promote
osteogenesis in rats. The hydrogel was found to support osteoblast
adhesion, accelerate platelet aggregation and activation, and
promote postoperative new bone formation. Chien et al. (2018)
applied an injectable thermosensitive chitosan/collagen/
glycerophosphate hydrogel to provide a suitable environment for
the transplantation of stem cells and enhance their delivery and
implantation. In an animal model of maxillary molar defects, the
iPSCs-BMP-6 hydrogel-treated group exhibited significant
mineralization, increased bone volume, number and thickness of
bone trabeculae, and promoted new periodontalligament
regeneration as well as the formation of bone and cementum.
These findings indicate that the combination of hydrogel-
encapsulated iPSCs with BMP-6 provides a new strategy for
enhancing periodontal bone regeneration.

6.2 Hydrogels act as scaffold to promote
bone defect repair

In recent years, bone tissue engineering (BTE) has played an
important role in the treatment of periodontal bone defects (Gao
et al., 2024b). The three important elements in BTE include scaffold
materials, seed cells, and growth factors. BTE requires the
integration of scaffold materials with different types of bioactive
substances, including cells, drugs, proteins, and other bioactive
molecules, to enhance bone formation effectiveness. Hydrogels, as
scaffold materials, provide a living environment for bone cells,
which is conducive to bone tissue regeneration (Peng et al.,
2023). Hydrogels can simulate the extracellular matrix
environment of the human body, providing structural support
for new bone formation and enabling bone tissue repair, thus
possessing unique advantages. Sowmya et al. (2017) achieved
complete regeneration of hard tissues (alveolar bone and tooth
bone) at the site of periodontal defect using a three-layered
nanocomposite hydrogel scaffold loaded with growth factors. The
results demonstrated complete healing of the periodontal bone
defect and the formation of new trabecular-like tissue.
Histological and immunohistochemical analysis further
confirmed the formation of new tooth bone and alveolar bone,
with distinct bone trabeculae. Wang et al. (2023) prepared a porous
hydrogel scaffold using chitosan and oxidized chondroitin sulfate
(OCS) as the matrix, which carried periodontal ligament stem cells
(PDLSCs) or gingival mesenchymal stem cells (GMSCs). In a rat
model of periodontal defect, the PDLSC and GMSC hydrogels
induced bone tissue repair, offering another possibility for
clinical application. Kato et al. (2015) investigated the application
of bone morphogenetic protein (BMP)/collagen hydrogel scaffold
implantation for periodontal bone defect in dogs. The results

showed that bone-like tissue was significantly formed after
receiving BMP/collagen hydrogel scaffold, and the hydrogel
enhanced the regeneration of tooth bone and alveolar bone.

7 Conclusion

The hydrogel is a three-dimensional polymer network
characterized by both rigidity and flexibility. Being a rapidly
advancing functional polymer material, it possesses distinct
advantages that traditional materials lack. It shows significant
potential for application in periodontal tissue regeneration and
repairing bone defects. Subsequent research should concentrate
on enhancing the performance of hydrogels, identifying types
with superior performance, and delving deeper into their
mechanisms of action. With advancements in medicine,
technology, and ongoing research, the utilization of hydrogels in
periodontal tissue regeneration and bone defect repair is anticipated
to expand new possibilities.
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