
Myoelectric control and virtual
reality to enhance motor
rehabilitation after stroke

Denise Jennifer Berger1,2* and Andrea d’Avella1,3

1Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy, 2Department of
Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy,
3Department of Biology, University of Rome Tor Vergata, Rome, Italy

Effective upper-limb rehabilitation for severely impaired stroke survivors is still
missing. Recent studies endorse novel motor rehabilitation approaches such as
robotic exoskeletons and virtual reality systems to restore the function of the
paretic limb of stroke survivors. However, the optimal way to promote the
functional reorganization of the central nervous system after a stroke has yet
to be uncovered. Electromyographic (EMG) signals have been employed for
prosthetic control, but their application to rehabilitation has been limited. Here
we propose a novel approach to promote the reorganization of pathological
muscle activation patterns and enhance upper-limb motor recovery in stroke
survivors by using an EMG-controlled interface to provide personalized
assistance while performing movements in virtual reality (VR). We suggest that
altering the visual feedback to improve motor performance in VR, thereby
reducing the effect of deviations of the actual, dysfunctional muscle patterns
from the functional ones, will actively engage patients in motor learning and
facilitate the restoration of functional muscle patterns. An EMG-controlled VR
interfacemay facilitate effective rehabilitation by targeting specific changes in the
structure of muscle synergies and in their activations that emerged after a
stroke—offering the possibility to provide rehabilitation therapies addressing
specific individual impairments.
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1 Introduction

Over 85% of stroke patients suffer from functional deficits in motor control (Langhorne
et al., 2011). As upper-limb recovery is essential for regaining functional independence,
there is growing interest in developing technologies that enhance rehabilitation outcomes
for stroke survivors. While Ward et al. (2019) found that intensive rehabilitation has high
recovery potential in stroke survivors, other traditional rehabilitation treatments failed to
demonstrate long-term efficacy for functional recovery (Bell et al., 2015; Wu et al., 2016).
The former study did not include a control group -- that did not receive additional intensive
therapy -- to evaluate intensive therapy against spontaneous recovery. Taken together,
innovative methodologies are needed. Recent studies endorse the use of therapies that use
exoskeletons (Hohl et al., 2022), brain-machine interfaces (Ramos-Murguialday et al., 2013;
2019), and VR devices (Vourvopoulos et al., 2019; Qiu et al., 2020; Fluet et al., 2021) to
restore the function of the paretic limb after stroke (Stinear et al., 2020; Vidaurre et al., 2023;
Amin et al., 2024). These technologies provide new opportunities in rehabilitation as they
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stimulate intense practice or engage patients in immersive exercises.
Although these approaches offer an environment in which the many
variables that influence motor behavior can be controlled and show
great potential for motor rehabilitation, we know little about what
aspects of training are more effective in promoting functional
reorganization of the central nervous system (CNS) (Vidaurre
et al., 2023; Amin et al., 2024).

Although it is widely accepted that a large number of active
movement repetitions are required to induce neuronal changes, a
specific number of active movements has not been defined
(Grosmaire et al., 2022) and unlike conventional therapy, robotic
devices can provide hyper-repetitive therapy at a reasonable cost
(Blank et al., 2014) and without excessive fatigue. Nevertheless,
many robot-assisted rehabilitation programs may not encourage
(enough) active participation at the level necessary to promote
neural reorganization in stroke patients (Marchal-Crespo and
Reinkensmeyer, 2009), as in many cases voluntary motor
intention is not necessary for movement assistance (Song et al.,
2013). In contrast, myoelectric-controlled approaches, such as
EMG-triggered (Dipietro et al., 2005) and EMG-controlled robot
assistance (Loconsole et al., 2014) are specifically designed to
enhance active participation. However, EMG signals have been
used mostly for controlling prosthetic devices (Farina et al.,
2014)—their applications to robot-aided and VR rehabilitation
are often ineffective for severely impaired patients. Consequently,
severely affected stroke survivors have minimal treatment options
and often remain severely disabled (Byblow et al., 2015; Winters
et al., 2015).

Recently, some research groups have started to use myoelectric
signals as inputs to rehabilitation interfaces intended to restore
function. Sarasola-Sanz et al. (2018) hypothesized that using
myoelectric control of the pathological EMG signals from the
paretic limb of a stroke survivor would likely lead to pathological
motion. Hence, they aimed at using EMG signals from the healthy
limb and mirroring the signal to assist movements of the paretic
limb. Despite its potential, the authors could apply this approach
successfully only to healthy subjects, but not to stroke survivors, as
they typically showed poor task performances.

In another recent study, Roh and others developed a myoelectric
computer-interface training program that reduces abnormal co-
activation of upper-limb muscle pairs (Seo et al., 2022). Participants
were trained on muscle pairs whose activations were mapped onto
the motion of a cursor along the cardinal axes only if one of the two
muscles were activated. The authors showed that myoelectric
training effectively reduced abnormal co-activation between
muscle pairs in stroke survivors. A limitation of this approach is
that the use of EMG-control is limited to muscle pairs and the
mapping between muscle activations and cursor directions does not
reflect the physiological mapping between muscle activation and
force directions.

Despite the potential of these personalized EMG-control
strategies, the degraded performances motivate the need for more
accurate prediction of motion from EMG signals in individuals in a
post-stroke rehabilitation setting. To this end, we believe that it is
possible to go one step further in the use of EMG-control for
rehabilitation by both including a large number of muscles and
relying on the physiological mapping between muscles and forces.
We aim to facilitate the restoration of functional muscle patterns,

not just individual muscles. To this end, we propose to use an EMG-
controlled isometric VR interface. EMG-control offers the
possibility of delivering intuitive visual feedback about the
effectiveness of muscle activity and assisting the patients by
altering the visual feedback (virtual assistance), thus reducing the
effect of the deviations of the actual, dysfunctional muscle patterns
from the functional ones. We hypothesize that operating on the
visual feedback will promote the re-learning of functional muscle
patterns, thus helping patients improve their movement
performance. To achieve this, we further propose to exploit the
theoretical knowledge that we and other groups have gained about
the coordinated activations of muscle groups, i.e., muscle synergies
(Bizzi et al., 2008; Bizzi and Cheung, 2013). Several studies have
quantified upper-limb synergies after stroke (Cheung et al., 2009;
2012; Berger et al., 2017; Funato et al., 2022). Muscle synergies were
shown to be preserved after a mild stroke in the affected arm,
although abnormal muscle activations could be observed. In more
severely impaired individuals, the synergy similarity between the
affected and unaffected arms was much weaker. Synergies in the
affected arm, however, could be derived by merging some of the
synergies of the unaffected arm, and the amount of merging was
related to the severity of the motor impairment (Cheung et al., 2009;
2012). Moreover, in some individuals, synergies in the affected arm
appeared to be fractionations of the synergies in the unaffected arm,
and the amount of fractionation increased with stroke duration.
These studies demonstrated that motor impairments in stroke
survivors can be understood as impairments in synergies (for
severely affected individuals) and impairments in synergy
activations (for mildly affected individuals). In this view, a mild
stroke may impair movements due to dysfunctional synergy
activations, and a more severe stroke might be attributed to an
altered structure of the synergies (abnormal or
dysfunctional synergies).

2 Virtual surgeries

We have developed a VR interface that allows participants to
control a virtual cursor under the effect of isometric forces
recorded or estimated in real-time from EMG recordings, either
generated by each muscle (EMG-control, EC) (Berger et al., 2013)
or by each muscle synergy (Synergy-control) (Berger and d’Avella,
2014). Myoelectric control in an EC-VR interface allows the
simulation of motor dysfunction in healthy human subjects by
manipulating the mapping between muscles and end-effector
forces (EMG-to-force mapping). By modifying the EMG-to-
force mapping we simulated complex surgical modifications of
the upper-limb musculoskeletal system, or virtual surgeries (see
Figure 1 for a schematic example of virtual surgery and an example
of their effects on muscle and synergy forces). When these
simulated modifications were incompatible with subject-specific
muscle synergies, they provoked failures in learning new muscle
patterns required to overcome the perturbation. This approach
was novel in two respects: it was the first attempt to characterize
and quantify motor adaptation to different types of virtual
surgeries (compatible or incompatible with the subject-specific
synergies). In addition, it was the first attempt to relate failure in
learning to muscle synergies. We showed that failure of adaptation
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is related to the nature of the virtual surgery and demonstrated
that synergies determined the feasibility of motor learning.
However, just like learning a novel motor skill, it is possible to
learn how to perform a reaching task after an incompatible
perturbation with enough practice. Indeed, increasing the time
allowed for task-space exploration, participants improved their
task performance also after incompatible surgeries—synergies are
not hard-wired but may be learned with sufficient practice (Berger
et al., 2022a). Moreover, we found persistent changes in the muscle
patterns following the exposure to an incompatible perturbation,
after the re-adaptation to the baseline mapping, and after a
subsequent virtual surgery that is compatible with the subjects’

muscle synergies (Berger and d’Avella, 2023a; Berger and
d’Avella, 2023b).

Synergy control proved to be a valid control mechanism
potentially employed by the brain, as human subjects are
immediately able to perform a task after switching from force-
control to EMG-control and Synergy control, without significant
differences in performances between the control modes (Berger and
d’Avella, 2014). Importantly, the switch from one control mode to
another was always performed without the subject’s awareness.
Synergy control mimics the natural control patterns and
demonstrates that muscle synergies can be used as effectively as
individual muscles to control cursor movements, showing moreover

FIGURE 1
Illustration of virtual surgery concept (modified from Berger et al., 2013). (A) Conceptual arm with two muscle pairs, each generating a force in a
specific direction at the end point (f1 to f4). (B) A tendon transfer surgery affecting the force generated by two muscles. (C), After the surgery, both
muscles generate forces in another direction. (D–J): Examples of muscle synergy (W), an EMG-to-force matrix (H matrix), synergy forces (HW), virtual
surgeries (HT) and their corresponding projection in the synergy space (HTW) extracted for one healthy subject. (D) Spatial muscle synergies (matrix
W) are identified by nonnegativematrix factorization from the EMGdata. (E) Each columnof H, represents a pulling force of onemuscle. (F) Synergy forces
span the entire force space. (G) Forces generated by muscles after a compatible virtual surgery obtained by recombination of the original forces as after a
complex rearrangement of the tendons (Tc). (H) Synergy forces after the compatible surgery still span the force space. (I)Muscle forces after an incompatible
surgery. (J) Such rotation aligns the forces associated with the synergies in the same dimension; such that they do not span the entire force space.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Berger and d’Avella 10.3389/fbioe.2024.1376000

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1376000


that muscle synergies provide an effective strategy for motor
coordination.

3 Assistive control in VR may enhance
motor recovery after stroke

Motor impairment in stroke survivors is characterized by
abnormal muscle activation patterns. By identifying muscle
pattern changes following a stroke, it may be possible to develop
personalized rehabilitation methods, specifically addressing the
individual impairments. We hypothesize that providing
information on the impaired motor control strategies and the
underlying dysfunctional neural processes might be critical to
drive adaptive plasticity. As visual feedback during movements
plays an important role in motor learning (Krakauer et al., 2019),
we suggest that by providing salient information about the activation
of specific abnormal muscle patterns via visual feedback, patients
may learn to regain control of their muscular activity and to recover
functional muscle activation patterns. Research on motor learning
has emphasized that errors are needed in order to drive motor
adaptation in healthy subjects (Emken and Reinkensmeyer, 2005)
and in stroke survivors (Patton et al., 2006; Reisman et al., 2013).
However, augmenting errors did not always cause more effective
motor learning when errors were large (Sharp et al., 2011; Marchal-
Crespo et al., 2017). We therefore suggest assisting the patients’
voluntary attempt to performmovements in the EC-VR, reinforcing
thereby the components of functional muscle patterns by correcting
in VR the effect of pathological muscle patterns of the affected
upper-limb. We hypothesize that the combination of voluntary
movement attempts and feedback from successful movements in
VR will increase neural plasticity and enhance functional recovery.
The key ingredient is the ability to alter visual feedback according to
the recorded muscle activity in real-time, for which a virtual
environment is required. Manipulation of the virtual hand’s
motion using the recorded muscle patterns enables the
experimenter to correct the effect of deviations of the actual
(dysfunctional) from a reference (functional) muscle pattern.
Specifically, by manipulating the cursor motion associated with
the recorded muscle patterns, i.e., using the patient-specific
impairments, allows for patient-tailored virtual assistance. It
moreover allows the patients to regain control of their muscle
activity by receiving feedback derived from their EMG signals,
recorded from many muscles, that are informative and provide
functional significance, despite their motor impairments.

During passive control when the impaired limb moves along the
pre-defined trajectory, active participation is not encouraged, and
thus it does not stimulate motor function recovery (Hogan et al.,
2006). In order to stimulate the voluntary, active participation of
patients, which is necessary for inducing cortical reorganization, we
propose to gradually reduce the virtual assistance as performance
improves. This will ensure that the task remains feasible but
challenging enough to maintain motivation. The visual feedback
of the salient errors in the task space will drive adaptation of the
dysfunctional muscle patterns and enhance motor recovery. As most
of motor recovery occurs in the first 3 months after stroke (e.g.,
Zeiler and Krakauer, 2013), we expect motor recovery to be
enhanced at the early subacute stage (Stinear et al., 2020).

4 Assistive, adaptive control algorithm
as a novel rehabilitation approach for
stroke rehabilitation

We aim at facilitating motor recovery by providing patient-
tailored virtual assistance. Here, we present an assistive-adaptive
control algorithm that allows patients to control a virtual cursor as if
they were generating better-coordinated muscle patterns. Such
improvement is achieved by projecting the recorded muscle
patterns onto functional muscle space manifolds, which helps
maintain high motivation for intensive training. Moreover, by
providing salient feedback on the direction in which muscle
patterns must be adapted to improve motor function, the control
algorithm will amplify residual functional muscle activation
capability and guide re-learning of functional muscle patterns.

4.1 Assistance during EMG-control

During EMG-control, virtual assistance is provided by
correcting in real-time the effect of a deviation of the actual
(dysfunctional) recorded muscle activity m from a reference
(functional) muscle pattern mref for a specific force target (f *).
The target-specific muscle activity of the unaffected limb or the
average of the activity of a set of healthy subjects serves as the
reference muscle activity. More specifically, the forces generated by
the patient ( freal) can be expressed as freal = Hm and the recorded
muscle activity of the paretic limb is projected in real-time onto the
task-specific reference functional muscle pattern:

mproj � mref mref
T m

such that the projected muscle pattern directs the cursor in the
correct target direction. However, the force f acting on the cursor in
VR is determined as a weighted combination of the force generated
by the actual muscle pattern (m) and the muscle pattern projected
on the reference pattern:

f � H 1 − α( )m + α mproj[ ]

with α being the amount of assistance and H is the EMG-to-
force mapping that relates the muscle activations to cursor forces in
the virtual environment. Figure 2 (A-B) shows how a muscle
template for a specific goal is constructed (mref ), and how the
actual, potentially dysfunctional muscle activation pattern m may
be corrected by projecting it onto the reference muscle pattern. The
assistive force allows the patient to move the virtual hand in the
correct direction. By reinforcing the components of the patient’s
muscle activations closer to the physiological ones we expect to
minimize abnormal co-contraction patterns and to favor
physiological and more functional movements. For each patient,
the appropriate feedback is designed according to their muscle
effort, with a reinforcement of the more efficient motor strategies
that the patient is free to explore. The EMG-to-force mapping will be
estimated from upper-limb muscle activity of the unaffected arm or
of a set of healthy subjects. Since the task will be performed in
isometric conditions, the generated forces are approximately a linear
function of muscle activations, and the EMG-to-force mapping is
estimated using multiple linear regressions of each applied force
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component with EMG signals and recorded forces. In such a way we
create a model for the EMG-to-force mapping that can then be used
for the paretic arm.

The level of assistance can be adjusted during training. With full
assistance (α � 1) the cursor moves along the target direction as if
the muscles were activated correctly. To stimulate the voluntary,
active participation of the patients, the level of assistance will be
gradually reduced according to the patient’s performance, ensuring
an optimal balance between task feasibility and difficulty, in such a
way that the task difficulty is maintained invariant throughout the
rehabilitation procedure. As the level of assistance decreases, the
cursor motion deviates from the intended direction but provides
salient feedback on the changes required in the muscle patterns to
regain correct performance. Thus, our VR environment provides the
patients with salient, visual feedback about their muscle activations,
which they have to actively integrate to move the cursor toward the
target position, thereby stimulating the recruitment of the
appropriate muscle patterns.

4.2 Assistance during synergy-control

Muscle synergies have been proposed as a way used by the CNS to
simplify the generation of motor commands by decreasing the
redundancy of the muscular system. The interpretation of abnormal
muscle activations in patients in terms of muscle synergies would allow
to choose corrective actions within the functional muscle patterns that
maximize movement efficiency. In such a way, only the dysfunctional
part of the muscle pattern is corrected, while the functional part is
rewarded as it allows to successfully complete the movement.

We therefore suggest as a next step to use synergy-based
adaptive control for upper-limb virtual assistance. This approach
exploits the fact that the modular architecture of the CNS may
provide a framework that opens the possibility of enhancing EC/VR-
steered motor recovery which has the potential to selectively
facilitate the restoration of specific components of the CNS that
have been lost.

During Synergy-control the recorded muscle pattern is
projected onto the task-specific synergy space (Figure 2C). This
approach assists by filtering out those components of the muscle
activation, such as abnormal muscle co-activation, that are not
captured by physiological (functional) synergies. The projection
onto a functional, reference synergies will allow the patients to
improve motor performance, but it will require their active
participation. Virtual assistance during Synergy-control is
provided by correcting in real-time the effect of a deviation of
the dysfunctional (actual) synergy coefficients c (online-decoded)
from the functional (reference) coefficients cref for a specific target
(f *). A detailed description of online-decoded muscle synergies and
synergy coefficients is given in (Berger and d’Avella, 2014). The
projection of the actual synergy coefficients onto the reference
coefficients:

cproj � cref cref
T c

where the reference coefficients will be computed as:

cref � W+mref

whereW+ denotes the pseudoinverse of the matrix of the functional,
reference muscle synergies.

The force f is then determined by:

FIGURE 2
Assistive myoelectric control (A,B) and assistive synergy-control (C,D). To assist the movement toward a specific goal, a target-specific reference
muscle vector (mref) (A) is computed and used to project the instantaneous muscle activity vector (m(t)) onto its direction in muscle space mproj �
mref mref

T m (B). The level of assistance can be regulated by adjusting the parameter α, ranging from 1 (full assistance) to 0 (no assistance). Additional
scaling in amplitude along the reference vector may be added to enhance the visual feedback. (C) During Synergy-control the recorded muscle
activity (m(t)) is projected onto themuscle synergy spaceW (Berger and d’Avella, 2014). (D) Assistance is provided by projecting the instantaneousmuscle
activations onto synergy manifolds that capture the physiological muscle patterns. The instantaneous synergy coefficients (C) are projected onto the
reference coefficients (cref) cproj � crefcrefT c, where cref is given by cref � W+mref. As during EMG-control assistance, the level of assistance (α) will be
continuously adjusted during training to maintain the participants motivation high and task difficulty constant. To enhance the visual feedback, additional
amplitude scaling along the reference vector may be added.
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f � HW 1 − α( )c + α cproj[ ]

Functional, referencemuscle synergies, the EMG-to-forcemapping,
and target-specific coefficients are estimated from the unaffected limb
or healthy subjects (Figure 2D). The amount of assistance (α) will be
continuously adjusted during training to maintain a high level of
engagement and a constant task difficulty. We suggest that learning
of novel, functional synergies could be enhanced with such a procedure
that promotes the development of new functional synergy recruiting by
virtual assistive control.

5 Discussion

We propose that an EMG-controlled VR interface that actively
engages patients in motor learning has a high potential to enhance
upper-limb rehabilitation after stroke. This novel rehabilitation
approach provides subject-specific and performance-dependent
virtual assistance, implemented by modifying the EMG-to-force
map that in turn alters the visual feedback the patients receive.
By correcting the components of the dysfunctional muscle patterns
and providing salient and informative feedback on the functional
components of the motor output, performance is improved, and
neural plasticity increases, enhancing motor recovery.

While many approaches to motor rehabilitation after stroke
have been developed very few have targeted muscle activation
patterns. Electromyographic biofeedback of single muscles had
mixed results (Wolf, 1983; Schleenbaker and Mainous, 1993),
and largely sought to strengthen muscles or reduce spasticity.
Several studies have used EMG feedback to change the co-
activation of agonist and antagonist muscles during training in
stroke participants (Mugler et al., 2019; Jian et al., 2021; Marin-
Pardo et al., 2021). Seo et al. (2022) found a significant change in the
co-contraction of targeted muscle pairs. However, all these studies
have in common the use of muscle pairs only—they did not consider
the high dimensionality of muscle coordination.

Motor impairments in stroke survivors have been associated
with disruption of synergies (dysfunctional synergies for severely
affected stroke survivors) or synergy activations (for mildly affected
stroke survivors, Cheung et al., 2009; 2012). If motor recovery after
stroke is dependent on the re-organization of the dysfunctional
synergy structure and re-acquisition of appropriate synergy
recruitment, characterization of such modular organization and
identification in the synergy structure and/or synergy activations
may allow for an objective and reliable assessment of functional
impairment and efficient therapeutic in stroke survivors. However,
only very few, more recent studies, have looked into the effects of
stroke rehabilitation and its potential to change dysfunctional
muscle synergies (Hong et al., 2021; Seo et al., 2022).

To fully assess the effectiveness of personalized myoelectric
control and to better understand the adaptive processes and their
neural implementation, additional experiments with patients,
possibly combined with a stimulation protocol are required.
Related to this, muscle synergy changes related to specific lesions
would provide a novel validation of modularity in the motor system
(Berger et al., 2020; 2022b).

Our EMG-controlled interface is novel in that it considers a large
number of muscles and makes the mapping between muscle activity and

task space such that the virtual hand moves according to muscle activity
patterns thatmatch the actual isometric forces of healthy human subjects.
This leads to the reasonable expectation that the training with synergy-
based myoelectric control of a virtual hand, selectively stimulating the
restoration of functional synergy recruitments, would significantly
improve further recovery after stroke. Our approach fully exploits the
hypothesis of a synergistic organization of the neural control of
movement. This approach has the potential to provide a new
framework for neurorehabilitation interventions, as it opens the
possibility that motor recovery might be enhanced with innovative
VR tools and EMG-control that can selectively stimulate the
restoration of functional synergy organization and synergy
recruitment. Our assistive algorithm may stimulate intensive,
personalized training and promote active participation of the patient
with a tool that relates directly to the specific pathophysiology.

Many studies have shown that motor learning is an error-driven
process (Abdollahi et al., 2014; Liu et al., 2018). While the theories
that support error reduction and error augmentation paradigms are
distinct, it is still an open issue as to which of the two paradigms
provides superior treatment effects in upper extremity motor
recovery and performance among stroke survivors (Sharp et al.,
2011; Liu et al., 2018). As a next step we suggest using the error
augmentation paradigm instead of the error reduction paradigm as
done by, e.g., Patton et al. (2006) and Abdollahi et al. (2014).
Assistive therapy might be more effective in the initial stage of
motor learning in the first few months after a stroke, while error-
based learning is more effective in the chronic stage (Liu et al., 2018).
Indeed, it has been shown that in the initial stage of motor learning,
motivation, and positive reinforcement are believed to be more
important than error identifications (Sidarta et al., 2016).

Future work will address the potential neural mechanisms
underlying the hypothesized enhancement of upper-limb stroke
rehabilitation provided by virtual assistance. To better understand
how the reduction of visual error provided by virtual assistance
could be used by a patient to infer needed corrections in the muscle
patterns we need to model the generation of dysfunctional muscle
patterns in a synergy-based controller and the adaptive processes
underlying motor recovery post-stroke. Future work should
moreover address the substitution of simple visual feedback to
haptic feedback, e.g., actual arm motion of the paretic limb using a
myoelectric-controlled exoskeleton. We furthermore suggest that
precisely-timed TMS pulses over the motor cortex during movement
planning could further enhance the neuroplasticity.
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