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Cancer is a leading cause of death worldwide, and the development of new
diagnostic and treatment methods is crucial. Manganese-based nanomaterials
(MnNMs) have emerged as a focal point in the field of cancer diagnosis and
treatment due to theirmultifunctional properties. These nanomaterials have been
extensively explored as contrast agents for various imaging technologies such as
magnetic resonance imaging (MRI), photoacoustic imaging (PAI), and near-
infrared fluorescence imaging (NIR-FL). The use of these nanomaterials has
significantly enhanced the contrast for precise tumor detection and
localization. Moreover, MnNMs have shown responsiveness to the tumor
microenvironment (TME), enabling innovative approaches to cancer treatment.
This review provides an overview of the latest developments of MnNMs and their
potential applications in tumor diagnosis and therapy. Finally, potential challenges
and prospects of MnNMs in clinical applications are discussed. We believe that
this review would serve as a valuable resource for guiding further research on the
application of manganese nanomaterials in cancer diagnosis and treatment,
addressing the current limitations, and proposing future research directions.
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1 Introduction

Cancer, a major life-threatening disease, imposes a significant burden on global human
health. Its incidence and mortality rates are rapidly rising, with an estimated 28.4 million
new cancer cases projected by 2040 (Sung et al., 2021). A significant proportion of cancer
cases are diagnosed at advanced stages, resulting in limited treatment options and poor
prognoses. Therefore, early detection of cancer is crucial for improving treatment outcomes
and reducing mortality rates (Crosby et al., 2022; Fitzgerald et al., 2022). Current imaging
techniques, such as computed tomography (CT), magnetic resonance imaging (MRI),
ultrasound imaging and positron emission tomography-computed tomography (PET/CT),
utilize contrast agents to improve image contrast and tumor detectability. Nonetheless,
these agents may occasionally fail to provide optimal contrast to detect early-stage tumors.
Moreover, PET/CT is not considered a routine screening procedure for patients due to
radiation exposure and high cost (Bos et al., 2023). Therefore, it is necessary to design more
accurate contrast agents and develop new imaging techniques.
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Manganese-based contrast agents initially garnered attention
due to their bright MRI signal and excellent biocompatibility.
Manganese -based contrast agents are considered as ideal
alternatives to gadolinium (Gd3+) MRI contrast agents. There are
two main categories of manganese-based contrast agents: Mn2+

complexes and manganese-based nanomaterials (MnNMs).
However, Mn2+ complexes have a short blood circulation time,
leading to their accumulation in the brain and resulting in
central nervous system abnormalities (Takeda, 2003; Fitsanakis
et al., 2006; Guilarte, 2013; Hu et al., 2014). Therefore, Mn2+

complexes are not suitable as MRI contrast agents. In recent
years, MnNMs have been discovered to exhibit good T1-weighted
contrast effects and negligible toxicity (Pan et al., 2008; Pan et al.,
2011). Consequently, MnNMs have been extensively researched as
MRI contrast agents. Through clever synthetic design, researchers
have also discovered additional imaging capabilities of MnNMs,
such as photoacoustic imaging (PAI) (Yan et al., 2023), near infrared
fluorescence imaging (NIR-FL) (Li et al., 2022a), and multimodal
imaging (Rosenkrans et al., 2021).

Furthermore, MnNMs exhibit an intriguing capability of
undergoing degradation within the tumor microenvironment
(TME), thereby enabling TME-responsive cargo delivery. This
unique property opens up new avenues for utilizing MnNMs in
various emerging cancer treatment modalities, including
photodynamic therapy (PDT) (Xie et al., 2021), chemodynamic
therapy (CDT) (Xin et al., 2021), and sonodynamic therapy (SDT)
(Liang et al., 2023). Specifically, MnNMs can be stimulated to
decompose endogenous hydrogen peroxide (H2O2) within the
acidic pH conditions prevalent in tumors, leading to the
generation of oxygen and Mn2+ as reaction byproducts.
Moreover, MnNMs exhibit the ability to deplete intracellular
glutathione (GSH), thereby augmenting the therapeutic efficacy
of PDT, CDT, and SDT. Within the TME, after undergoing a
series of chemical reactions, MnNMs can ultimately yield Mn2+.

Notably, Mn2+ serves not only as an MRI contrast agent for
enhanced contrast imaging (Gale et al., 2015), but also as a
potent stimulator of the cyclic GMP-AMP synthase (cGAS)/
stimulator of interferon genes (STING) pathway (Zheng et al.,
2023a; Gu et al., 2023; Lei et al., 2024). The cGAS/STING
pathway represents an endogenous mechanism within the innate
immune system (Zhang et al., 2021), which effectively facilitates
immunotherapeutic interventions. In summary, MnNMs represent
excellent diagnostic and therapeutic agents for tumor-related
applications.

In this article, we provide a comprehensive overview of recent
advancements in cancer research involving MnNMs. We first focus
on their applications in tumor diagnosis, with a particular emphasis
on their role as contrast agents in MRI due to their inherent
paramagnetic properties. Subsequently, we delve into their pivotal
role in reshaping the TME for therapeutic purposes, including PDT,
CDT, SDT, and immunotherapy (Figure 1).

2 The assistance of manganese-based
nanomaterials in cancer
imaging diagnosis

Medical imaging plays a critical role in the early detection and
staging of cancers, as well as in formulating subsequent treatment
plans. In recent years, MnNMs have been widely utilized in tumor
imaging applications. Initially, owing to their inherent paramagnetic
properties, MnNMs were first employed as MRI contrast agents.
Subsequently, their utility was expanded to additional modalities
including PAI, andNIR-FL. However, individual imagingmodalities
possess inherent limitations; for example, while MRI provides
excellent spatial resolution, it suffers from poor sensitivity.
Multimodal imaging integrates multiple complementary imaging
techniques into a single platform to overcome the constraints of any
single modality (Li et al., 2022b; Sivasubramanian et al., 2022).
Through ingenious design, researchers have conferred multimodal
imaging capabilities onto MnNMs.

2.1 The assistance of manganese-based
nanomaterials in MRI

MRI is a radiation-free imaging technique that offers greater
penetration depth and high-resolution anatomical images. It has
become a crucial clinical tool for early cancer diagnosis (Petralia
et al., 2019). To achieve higher imaging contrast, the use of
contrast agents is inevitable. Gd3+ complexes are commonly
employed as contrast agents in MRI (Wahsner et al., 2019; Lu
et al., 2022b). However, Gd3+ agents may accumulate in the
kidneys and brain tissues post-metabolism, posing significant
risks to the body (Kanda et al., 2015; Rudnick et al., 2021).
This has prompted the search for safer contrast agents.
Manganese-based agents were among the earliest reported
enhancers for T1-weighted MRI (Niesman et al., 1990). With
advancements in nanotechnology, TME responsive manganese
nanomaterials have regained attention (Cai et al., 2019; Chen
et al., 2022a; Deng et al., 2023). Progress in nanodelivery
techniques has led to the emergence of various manganese-

FIGURE 1
Diagnosis and treatment of cancer mediated by MnNMs.
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based nano-platforms with passive or active targeting capabilities
(Patra et al., 2018; Mo et al., 2022). These platforms can respond
to the acidic TME, release paramagnetic Mn2+, and achieve
precise tumor imaging.

In 2020, Shi and co-workers synthesized MnCO3 nanoparticles
using a precipitation method. Further modification with polyethylene
glycol (PEG) yielded MnCO3 nanorhombuses (MnNRs) (Zhu et al.,
2021). MnNRs served as ultra-sensitive T1-weighted MRI contrast
agents, exhibiting significant T1 relaxation enhancement in weakly
acidic TME conditions. In vivo mouse MRI experiments, these
MnCO3 nanoparticles selectively highlighted subcutaneous tumors
from their periphery to their core. Compared to traditional
gadolinium agents Primovist and MnO@PEG, this MnCO3

nano-agent enabled high-contrast detection of millimeter-sized
liver metastases (Figure 2) (Zhu et al., 2021) and efficient liver
excretion through the gallbladder. In subsequent hematoxylin and
eosin (H&E) staining and biochemical marker analyses, no evident
microscopic lesions were observed. The key biochemical indicators
exhibited similarity to the control group, indicating the favorable
biocompatibility and low toxicity of MnNRs.

The pH-responsive manganese nanomaterials enable faster
and higher tumor imaging sensitivity than clinically used Gd
contrast agents. Furthermore, combining manganese
nanomaterials with other magnetic metal nanomaterials can
further enhance the contrast of MRI (Fan et al., 2021; Wang
et al., 2022b; Carregal-Romero et al., 2022). For instance, in a
study conducted in 2022, the Tian team developed manganese
silicon iron SPIO@SiO2@MnO2 nanomaterials (Lu et al., 2022a).
By comparing them with normal tissue, they observed that in the
acidic environment of cancer or inflamed tissue, the MnO2 layer
decomposed into magnetic-active Mn2+ (T1-weighted). They used
an imaging processing technique called “dual-contrast enhanced
subtraction” to further integrate T1 and T2 contrast differences to

enhance imaging sensitivity, enabling the detection of tiny liver
metastases.

In addition to responding to the acidic TME, MnNMs can also
enhance MRI by reacting with GSH. In 2019, the Hu research team
developed hollow manganese/cobalt oxide nanoparticles (MCO
NPs) (Ren et al., 2019). These MCO NPs, responsive to GSH,
can degrade into Mn2+ and Co2+, thereby augmenting T1 and
T2 weighted MRI contrast. Upon intravenous injection,
histological staining images with H&E revealed no significant
differences between phosphate buffer solution (PBS) and MCO
NPs. This finding substantiates their relative safety.

In summary, carefully designed MnNMs can respond to the
TME, decompose, and release Mn2+, effectively enhancing MRI
signals and improving the efficiency of cancer diagnosis.

2.2 The assistance of manganese-based
nanomaterials in PAI

PAI is an imaging technology that combines optics and acoustics. It
irradiates a target object with pulsed ormodulated laser light. The target
object absorbs light energy and converts it into heat energy. Target
object then undergoes thermal expansion and contraction and radiates
soundwaves outward. By receivingAcoustic signal, ultrasound detector
can achieve image reconstruction of the data (Attia et al., 2019).

PAI contrast agents are substances designed to enhance the
contrast of photoacoustic imaging by absorbing light energy and
inducing acoustic vibrations in tissues, thereby generating detectable
photoacoustic signals. Various contrast agents have been developed
for PAI with the aim of improving imaging contrast (Fu et al., 2019).
Nanoparticles, including both plasmonic and non-plasmonic types
ranging in size from nanometers to hundreds of nanometers, have
been employed for this purpose.

FIGURE 2
Comparative images at different time points after the injection of three drugs into mice. (A) Injection of MnNR@PEG. (B) Injection of MnO@PEG. (C)
Injection of Primovist. (Reprinted from Zhu et al. (2021). Copyright 2021 American Chemical Society).
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In recent years, MnNMs have been widely studied in the field of
PAI due to their responsiveness and excellent light absorption
properties (Hu et al., 2019; Huang et al., 2019; Lv et al., 2022). In
2021, the Jiang research team fabricated MnO2-coated porous Pt@
CeO2 core-shell nanostructures (Pt@CeO2@MnO2) (Xu et al., 2021a).
The introduction of MnO2 nanomaterials not only imparts
responsiveness to the TME to the nanostructure but also enhances
light absorption capability significantly. In comparison to Pt NPs and
Pt@CeO2 nanostructures, the Pt@CeO2@MnO2 nanostructure exhibits
a substantial improvement in light absorption across the ultraviolet to
NIR range. Importantly, 24 h post-injection of Pt@CeO2@MnO2, the
photoacoustic intensity in the tumor region remains at 70% of the peak
value (Figure 3) (Xu et al., 2021a). Prolonged tumor retention indicates
the accumulation of MnO2 nanomaterials in the tumor through the
enhanced permeability and retention (EPR) effect.

Manganese nanomaterials accumulate at tumor sites through
the response to the TME and the EPR effect. Due to their
outstanding light absorption properties, manganese nanomaterials
effectively enhance PAI signals. This positions manganese
nanomaterials as promising substances for PAI contrast agents.

2.3 The assistance of manganese-based
nanomaterials in NIR-FL

NIR-FL is an imaging technique that exploits light in the NIR
region for the excitation and detection of fluorescence signals. By

exciting fluorescence signals at the tumor site, effective NIR-FL of
tumors can be achieved. Currently, this technology finds extensive
applications in the field of tumor surgery (Li et al., 2021). The
indispensable component for achieving NIR-FL of tumors is the use
of fluorescent probes. Nanomaterials hold a crucial position in NIR-
FL due to their optical properties, tunability of surface
modifications, and biocompatibility (Jiang et al., 2023).

In NIR-FL, manganese fluorescent nanoprobes can respond to
the TME and enhance the effectiveness of tumor imaging. Liu and
co-workers developed a hollowed virus bionic MnO2 nanoshell,
internally loaded with IR1061 and anchored with quantum dots
(PbS@CdS) on the surface (Wang et al., 2022c). Upon triggering the
MnO2 to respond to the TME leading to the degradation and
subsequent release of IR1061, precise visualization of tumor
margins is achieved. This approach serves the dual purpose of
diagnosis and synergistic therapy.

By combining with indocyanine-green (ICG), MnNMs can even
enhance the detection of sentinel lymph node metastases associated
with tumors. In the study carried out by Ai and co-workers,
Manganese porphyrin/ICG nanoparticles were synthesized under
the influence of Pluronic F127 surfactant (Fu et al., 2022). Following
the subcutaneous injection of this manganese nanomaterial into the
footpad of mice, the changes in NIR FL signal intensity were
monitored within 24 h. The fluorescence signal intensity variation
in the right lymph node (tumor metastatic sentinel lymph node,
T-SLN) exceeds that in the left lymph node (normal popliteal lymph
node, N-LN). This facilitated a precise differentiation between

FIGURE 3
Following the injection of DOX-Pt@CeO2@MnO2, in vivo PAI and temperature alterations in mouse tumors. (A) Temporal progression of PAI at the
tumor site. (B) Quantification of tumor PAI signals over time. (C) Changes in surface temperature of the tumor 8 h post-injection of DOX-Pt@CeO2@
MnO2 and PBS, both with and without laser irradiation. (Reprinted from Xu et al. (2021a). Copyright 2021 Nanoscale).

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Fei et al. 10.3389/fbioe.2024.1363569

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1363569


normal lymph nodes and sentinel lymph nodes linked to tumor
metastasis (Figure 4) (Fu et al., 2022).

In summary, MnNMs can be engineered as fluorescent
nanoprobes responsive to the TME, facilitating the enhanced
release of fluorescent agent and augmentation of NIR-FL. Varied
imaging outcomes can be achieved by loading MnNMs with distinct
fluorescent substances. These observations underscore the potential
of MnNMs in NIR-FL, offering novel insights into cancer
diagnostics.

2.4 The assistance of manganese-based
nanomaterials in multimodal imaging

Stimulus-responsive nanoprobes with integrated multimodal
imaging capabilities are highly desirable and dependable for
precise tumor visualization. Multimodal imaging methods offer
complementary advantages and have gradually become a focus of
early cancer screening (Lee et al., 2014). Manganese nanomaterial
contrast agents emerge as crucial candidates for MRI contrast
agents. Consequently, research on multimodal imaging based on
MRI in the field of manganese nanomaterials is continually
expanding (Jin et al., 2020; Wen et al., 2022).

The integration of PAI and MRI with the use of MnNMs has the
potential to significantly enhance tumor diagnostic capabilities.
Combining these two modalities enables the simultaneous
acquisition of information at both the molecular and tissue
structural levels within the same image. Huang and colleagues
devised a method involving the plasma modulation of Gold
Nanorods (GNRs) through MnO2 coating to produce GNR@

SiO2@MnO2 (GSM) (He et al., 2021). A dose of 5 mg kg⁻1 of
GSM was intravenously administered to mice bearing U87MG
tumors, followed by MRI and PAI. The PAI signal from the
tumor peaked 4 h after injection, whereas the strongest MRI
signal was detected 8 h after injection, indicating a 4-h delay in
the MRI signal compared to the PAI signal (Figure 5) (He et al.,
2021). This delay could be attributed to the gradual degradation of
MnO2 in the acidic TME, leading to the release of Mn2+ and thereby
enhancing the MRI contrast between normal tissue and the tumor.

The combination of MRI and PET is also one of the hot spots in
cancer diagnosis research in recent years. Compared to PET-CT, PET-
MRI offers advantages such as high image quality, fast scan speeds,
and minimal X-ray radiation exposure (Spick et al., 2016). In 2018, a
dual-modal imaging probe for PET-MRI was developed by Chen and
colleagues (Zhu et al., 2018a). They constructed folic acid-modified
multifunctional polyethyleneimine-coated Mn3O4 nanoparticles,
which were subsequently labeled with the radioactive isotope 64Cu.
This probe demonstrated excellent in vivo targeted PET imaging for
tumors overexpressing the folate receptor, accompanied by efficient
T1-weighted MRI images. The MRI signal intensity enhances with an
increase in the concentration of Mn3O4 nanoparticles.

The combination of MRI and NIR-FL is also widely recognized
and studied. Wang and their team engineered a hollow mesoporous
manganese-doped, DOX-loaded SiO2 shell (Mn-ZGOCS-PEG) (Zou
et al., 2021). Mn-ZGOCS-PEG generates Mn2+ in response to
reductive and acidic TME, enhancing MRI and achieving clear
differentiation between muscle and tumor tissues. Over time, as
Mn-ZGOCS-PEG degrades within the tumor, the NIR-FL signal at
the tumor site gradually strengthens, reaching stability at 60 min, with
a sustained NIR-FL signal observed in the tumor area at 180 min.

FIGURE 4
(A) Schematic representation of F127-ICG/Mn NPs for NIR-FL. (B, C) Images illustrating NIR-FL. (Reprinted from Fu et al. (2022). Copyright 2022
Journal of Materials Chemistry B).
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Integrating multiple imaging modalities for comprehensive
tumor visualization is a key goal in cancer treatment, aiming for
higher precision and personalization. The paramagnetic properties
and tumor-targeting specificity of MnNMs make them highly
promising in the field of cancer multimodal imaging diagnosis.

3 The assistance of manganese-based
nanomaterials in cancer treatment

In addition to common cancer treatment methods like
chemotherapy, surgical resection, and radiation therapy,
researchers have also pioneered a spectrum of innovative
nanomaterial-mediated approaches for cancer treatment, including
PDT, SDT, CDT, and immunotherapy (Wu et al., 2022; Kang and Li,
2023). These approaches are at the forefront of cancer research due to
their non-invasive nature, targeting capabilities, and potential
advantages. MnNMs have gained significant attention in the field
of immunotherapy research due to their promising features, including
their ability to carry drugs (Xu et al., 2023), modulate the TME (Ding
et al., 2021), and activate the cGAS/STING pathway (Wang et al.,
2018; Sun et al., 2021). In this section, we will discuss in detail the
applications of MnNMs in the context of PDT, SDT, CDT, and
immunotherapy for cancer treatment.

3.1 The assistance of manganese-based
nanomaterials in PDT

PDT is a cancer treatment that utilizes visible light, near-infrared
light, or ultraviolet light as an excitation source (Li et al., 2020). Under
light exposure, tumor cells can undergo phototoxic cell death induced

by light-sensitive materials generating toxic reactive oxygen species
(ROS). Currently, a great number of research is focused on MnNMs
due to their ability to improve the hypoxic TME and facilitate
photosensitizer delivery in PDT (Xu et al., 2021c; Cheng et al., 2022).

In 2021, Zhang and colleagues devised an innovative strategy to
tackle the issue of low levels of ROS in the TME (Figure 6) (Liu et al.,
2021). They encapsulated small-sized Mn3O4-Ce6 nanoparticles
(MC) within dendritic mesoporous SiO2 nanoparticles and
subsequently coated them with hyaluronic acid to create a
sustainable ROS generator. This nanomaterial could be evenly
distributed throughout the entire tumor. In reaction to the TME,
MC undergoes degradation, producing Mn2+ that facilitates the
sustained transformation of H2O2 generated during PDT into the
highly deleterious ROS. This process intensifies the cytotoxic effects
on the tumor. For their study, they selected 4T1 mouse breast cancer
cells expressing high levels of GSH as the tumor model cells. They
also utilized Hs578Bst human normal breast cells with low GSH
expression as control cells to confirm the higher tumor selectivity of
Mn3O4-Ce6 nanoparticles. The outcomes demonstrated a
substantial decrease in both tumor volume and weight in the
group treated with MnNMs. Moreover, the tumor tissues
displayed more extensive damage when compared to other
treatment groups, as evidenced by H&E staining.

Combining manganese nanomaterials with suitable metal
materials can provide higher photothermal conversion efficiency.
In 2020, Zhu et al. reported manganese nanomaterials BSA-Ce6@
IrO2/MnO2 with a remarkable photothermal conversion rate of up
to 65.3% (Wu et al., 2020). Ce6 serves as a photosensitizer, while
IrO2 and MnO2 act as catalysts to improve the TME, decompose
endogenous H2O2 to generate oxygen (O2), thereby enhancing the
efficacy of PDT. Simultaneously, the released Mn2+ from the
composite material can serve as a contrast agent for MRI.

FIGURE 5
In vivo assessment of GSM using PAI and MRI. (A) Illustrative PAI images capturing the U87MG tumor at 0, 1, 2, 4, 8, and 24 h after the injection of
GSMs (5 mg kg−1). (B) The corresponding PAI values for the tumors in (C). (C) Representative T1-weightedMRI scans ofmice administeredwith GSMs at 0,
1, 2, 4, 8, and 24 h post-injection with GSM. (D) Analysis of the signal-to-noise ratio in tumors based on the MRI signals (Reprinted from He et al. (2021).
Copyright 2021 Advanced materials).
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In general, MnNMs demonstrate promising applications in PDT
by improving the hypoxic TME and enhancing the generation of ROS.
Furthermore, their combination with other suitable metal materials
and photosensitizers may yield additional surprising performances.

3.2 The assistance of manganese-based
nanomaterials in CDT

CDT, based on Fenton or Fenton-like reactions, transforms H2O2

into highly toxic hydroxyl radical (•OH) to selectively eliminate tumor
cells (Jana and Zhao, 2022). This method was first introduced by Bu,
Shi, and their team in 2016 (Zhang et al., 2016). Nevertheless, the high
levels of antioxidants in the TME, including GSH, have impeded the
clinical translation of this strategy. These antioxidants scavenge ROS to
maintain cellular redox homeostasis, thereby substantially reducing the
effectiveness of CDT (Cheung and Vousden, 2022). Fortunately,
MnNMs possess a strong ability to deplete intracellular antioxidants
like GSH. They preferentially accumulate in tumor sites due to EPR,
utilizing Fenton-like reactions (Gu et al., 2021; Gao et al., 2022), thereby
annihilating tumors.

In 2022, the Liu research team utilized the microemulsion
method to synthesize manganese-doped Prussian blue
nanoparticles (MnPB NPs) (Tao et al., 2022). Due to the
incorporation of Mn2+, MnPB NPs demonstrated robust catalytic
activity, efficiently converting H2O2 into •OH through the Fenton
reaction. Experimental findings from both in vitro and in vivo
studies indicated that MnPB NPs-mediated CDT exhibited
excellent tumor-killing efficacy. MnNMs can synergistically
enhance CDT in conjunction with other metallic nanomaterials.

In another study, the research team led by Hu developed a
versatile biomimetic nanozyme, Se@SiO2-Mn@Au/DOX (SSMA/

DOX) (Zheng et al., 2022). This nanozyme exhibits responsive
degradation in the acidic TME, producing Mn2+ as a byproduct.
Mn2+ not only enables therapeutic monitoring through MRI
imaging but also catalyzes the conversion of endogenous H2O2

into •OH for CDT (Figure 7) (Zheng et al., 2022). Additionally, Au
NPs catalyze glucose to provide the required H2O2 for CDT.

In summary, manganese nanomaterials lay the foundation for
enhancing CDT by degrading within the TME to generate Mn2+,
thereby initiating Fenton-like reactions. The integration ofmanganese
nanomaterials with other substances or treatment modalities offers
expanded possibilities for their synergistic effectiveness.

3.3 The assistance of manganese-based
nanomaterials in SDT

SDT is a therapeutic approach that employs low-intensity
ultrasound to stimulate sonosensitizers, inducing the generation
of reactive oxygen species within tumor cells, thereby leading to the
destruction of tumor cells (Pan et al., 2018). It was first introduced
by Umemura and colleagues in 1990 (Umemura et al., 1990; Yumita
et al., 1990). The selection of suitable sonosensitizers is essential for
the efficacy of SDT (Son et al., 2020). Manganese-based nanoscale
sonosensitizers, in comparison to traditional organic counterparts,
the capability to catalyze H2O2 molecules for the conversion into O2

is instrumental in enhancing SDT.
Li et al. have fabricated nanostructured materials by loading

manganese oxide (MnOx) onto piezoelectric bismuth oxychloride
nanosheets (BiOCl NS), resulting in M-BOC@SP NSs. The
piezotronic effect of BiOCl NS serves as a sound sensitizer.
Leveraging the diverse enzymatic-like activities of MnOx,
M-BOC@SP NSs not only downregulate the levels of GSH in the

FIGURE 6
(A) After encapsulation by dendritic mesoporous silica nanoparticles (DMSNs), MC is enveloped in hyaluronic acid to form the “Sustainable ROS
Generator” (SRG). Under the action of hyaluronidase (HAase), SRG degrades to produce MC. (B) In vivo behavior of SRG. (Reprinted from Liu et al. (2021).
Copyright 2021 Theranostics).
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TME but also facilitate the decomposition of intracellular H2O2 into
O2 and •OH. This process stimulates the production of ROS and
reverses hypoxia, thereby enhancing SDT.

The combination of manganese nanoparticle with organic
sonosensitizers also can enhances the efficacy of SDT (Zhu et al.,
2018b; Chen et al., 2022b). In 2022, the Niu research team developed
IR780/poly (lactide-co-glycolide) (PLGA)@MnO2 nanomaterials

(Xu et al., 2022). IR780 served as the sonosensitizer, and PLGA
was employed to enhance the biocompatibility and stability of
IR780. The MnO2 nanocoating not only prevented the premature
release of IR780 in the bloodstream, enhancing the stability of
IR780/PLGA nanomaterials, but also responded to the acidic
TME, degrading in acidic conditions to produce O2. Upon
degradation of MnO2, IR780 is released in the tumor, promoting

FIGURE 7
Preparation of SSMA/DOX and schematic diagram of MRI-guided CDT collaborative therapy. (Reprinted from Zheng et al. (2022). Copyright
2022 Journal of Materials Chemistry B).

FIGURE 8
Schematic representation of IR780/PLGA@MnO2 NPs employed to enhance breast cancer SDT and MRI (Reprinted from Xu et al. (2022). Copyright
2022 Frontiers in Bioengineering and Biotechnology).
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the generation of ROS and enhancing SDT (Figure 8) (Xu et al.,
2022). And mn2+ can enhance the signal intensity of MRI.

MnNMs primarily enhance SDT by catalyzing the decomposition
of H2O2 into O2 within the tumor. When combined with suitable
sonosensitizers, MnNMs can also elicit additional effects, such as
enhancing ferroptosis and inducing immunogenic cell death (Xu et al.,
2021b; Chen et al., 2021). This demonstrates the great potential of
manganese nanomaterials in sonodynamic cancer therapy.

3.4 The assistance of manganese-based
nanomaterials in immunotherapy

In recent years, there has been rapid advancement in the field of
immunetherapy, which stands as a potent therapeutic modality for
cancer (Dagher et al., 2023). Unlike traditional methods such as
surgery, chemotherapy, radiation therapy, and targeted treatment,
immunotherapy works by stimulating and enhancing the inherent
anti-tumor immune functions to suppress and eliminate cancer cells
(Yang et al., 2023). Through the combination with nanomaterials,
immunotherapy presents the potential for personalized and precise
cancer treatment strategies (Martin et al., 2020).

Similar to most nanomaterials, MnNMs can serve as carriers for
delivering immunotherapeutic agents, preventing premature
degradation of the immunotherapeutic agents. In 2022, the Shen
research team engineered TME-responsive nanomaterials by
employing MnO2-albumin as a drug carrier, loaded with the PD-
L1 inhibitor Butformin (Bu) and the PD-1 inhibitor Methylene Blue
(MB), resulting in the preparation of the MB@Bu@MnO2

nanomaterial (Zhou et al., 2022). The MnO2 nanomaterial
selectively delivers the drugs, preventing premature release of MB
and Bu. Upon reaching the tumor site, the acidic TME triggers the
degradation ofMnO2, leading to rapid drug release. MnO2-mediated
O2 generation further enhances PDT, subsequently downregulating
PD-L1 expression and inhibiting PD-1 activation.

MnNMs also play a role in enhancing anti-tumor immune
responses by improving the hypoxic TME (Liang et al., 2018;
Luo et al., 2023). In 2021, M. Adjei and colleagues encapsulated
MnO2 in PLGA to create PLGA-MnO2NPs (Murphy et al., 2021).
Within the tumor, PLGA-MnO2NPs catalyze the generation of
oxygen from H2O2, leading to an improvement in the function of
NK cells due to the amelioration of the hypoxic microenvironment.
In the situation of PLGA-MnO2 NP-induced changes in the TME,
NK cells effectively enhance IFN-γ production, and the heightened
cytotoxicity against tumor cells is confirmed through Lactate
dehydrogenase assay. This suggests that PLGA-MnO2NPs can
promote tumor immunotherapy by facilitating oxygen production.

In recent years, extensive research has indicated that Mn2+ can
serve as a cGAS-STING agonist, enhancing tumor immunotherapy
(Lv et al., 2020; Wang et al., 2022a). Therefore, MnNMs have
garnered increasing attention in the field of tumor
immunotherapy (Zheng et al., 2023b; Cheng et al., 2023).

In 2022, Hou et al. combined hollow mesoporous SiO2-coated
MnO nanoparticles with the tumor homing peptide iRGD,
constructing MnO@mSiO2-iRGD NPs (Sun et al., 2022). MnO@
mSiO2-iRGD NPs accumulate in tumors through active targeting
facilitated by iRGD and respond to the acidic TME, resulting in the
decomposition of MnO and the generation of Mn2+, enhancing T1-

weighted MRI. Upon injecting MnO@mSiO2-iRGD nanomaterials
intomice, a noticeable upregulation of STINGwas observed (Figure 9)
(Sun et al., 2022). Furthermore, whenMnO@mSiO2-iRGD and α-PD-
1 antibody were used in combination for tumor treatment, the
number of CD8+ T cells in the tumor tissue significantly increased
compared to the use of α-PD-1 antibody alone.

In conclusion, manganese nanostructures can enhance tumor
immunotherapy by delivering immunotherapeutic drugs and
modulating the tumor immune microenvironment to promote
immune responses. Furthermore, the degradation of manganese
nanostructures in response to the TME, leading to the release of
Mn2+ and activation of the cGAS-STING pathway, is being extensively
researched as a mechanism to trigger tumor immunotherapy.

4 Discussion

In summary, with the continuous increase in cancer incidence,
the ongoing development of diagnostic and therapeutic methods is
imperative, with nanotechnology playing a crucial role. Therefore,
researchers are extensively exploring multifunctional nanomaterial
systems. It is noteworthy that MnNMs, owing to their paramagnetic
properties and responsiveness to the TME, are poised to play a
pivotal role in future imaging diagnostics.

The application of manganese in cancer treatment is noteworthy
due to its roles in TME response and modulation. •OH, and O2 are
generated for cancer therapy through a Fenton-like catalytic
reaction between MnOx nanoparticles and H2O2, effectively
improving the hypoxic TME. Hollow MnNMs, functioning as
drug carriers, offer promising potential in targeted drug delivery.
Furthermore, the degradation of MnNMs within the TME produces
Mn2+ ions and activates the cGAS-STING pathway, providing
evidence for their application in immunotherapy.

Anticipating the future, further research and development in the
integration of innovative cancer diagnostic and therapeutic methods
with manganese nanomaterials hold the promise of delivering more
effective and personalized treatment strategies for cancer patients.
However, the majority of current experiments are in the pre-clinical
research stage, posing a challenge in expediting their practical
application in clinical settings. This challenge encompasses
several aspects, including:

1. Biocompatibility and Safety:

While numerous studies have underscored the favorable
biocompatibility and low toxicity of manganese-based nanomaterials,
several additional factors require careful consideration prior to clinical
translation. These factors include distribution, metabolism, potential
immune reactions, among others. Currently, the assessment of the
biological safety of manganese-based nanomaterials heavily relies on
in vitro cell viability tests. To expedite clinical translation, there is a
pressing need for a systematic and comprehensive collection of
substantial and reliable data pertaining to biosafety.

2. Exploring Novel, Efficient Synthesis Pathways:

Despite extensive research into manganese nanoplatform
synthesis methods conducted over the past decade, the
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necessity to explore new, efficient, and direct synthesis routes
persists. While progress has been made in comprehending
these synthesis pathways, further investigation is imperative to
identify simpler and more effective methods of producing
these platforms.

3. Integration of Functional Components:

The judicious utilization of various components’ functionalities
and their seamless integration into manganese-based nanomaterials
to achieve optimal integrated cancer diagnosis and treatment effects
poses a significant challenge. Designing these platforms demands
meticulous consideration of how different components interact and
behave within the TME.

Nevertheless, it is indisputable that significant breakthroughs
have been made in the field of biomedical cancer diagnosis and
treatment using manganese-based nanomaterials, indicating their
substantial developmental potential. The expedited clinical
applications of these platforms in cancer treatment can be
realized through the initiative-taking addressing of challenges
and the strengthened integration of fundamental research with
clinical practice. The synergy between basic research and clinical
approaches is poised to accelerate the utilization of manganese-
based nanomaterials in cancer therapy, confronting these
challenges head-on. This approach holds the promise of
providing patients with more effective and personalized
treatment strategies.
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