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In recent years, the amnion (AM) has emerged as a versatile tool for stimulating
tissue regeneration and has been of immense interest for clinical applications. AM
is an abundant and cost-effective tissue source that does not face strict ethical
issues for biomedical applications. The outstanding biological attributes of AM,
including side-dependent angiogenesis, low immunogenicity, anti-inflammatory,
anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering
and regenerative medicine. However, the clinical usage of thin AM sheets is
accompanied by some limitations, such as handlingwithout folding or tearing and
the necessity for sutures to keep the material over the wound, which requires
additional considerations. Therefore, processing the decellularized AM (dAM)
tissue into a temperature-sensitive hydrogel has expanded its processability and
applicability as an injectable hydrogel for minimally invasive therapies and a
source of bioink for the fabrication of biomimetic tissue constructs by
recapitulating desired biochemical cues or pre-defined architectural design.
This article reviews the multi-functionality of dAM hydrogels for various
biomedical applications, including skin repair, heart treatment, cartilage
regeneration, endometrium regeneration, vascular graft, dental pulp
regeneration, and cell culture/carrier platform. Not only recent and cutting-
edge research is reviewed but also available commercial products are introduced
and their main features and shortcomings are elaborated. Besides the great
potential of AM-derived hydrogels for regenerative therapy, intensive
interdisciplinary studies are still required to modify their mechanical and
biological properties in order to broaden their therapeutic benefits and
biomedical applications. Employing additive manufacturing techniques (e.g.,
bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive
nanoparticles), and biochemical alterations (e.g., modification of dAM matrix
with photo-sensitive molecules) are of particular interest. This review article
aims to discuss the current function of dAM hydrogels for the repair of target
tissues and identifies innovative methods for broadening their potential
applications for nanomedicine and healthcare.
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GRAPHICAL ABSTRACT

The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

1 Introduction

Damage to tissues can be caused due to several reasons, such as
sudden or unexpected accidents, genetic disorders, congenital
anomalies, and trauma (Krafts, 2010). In simple cases, the body can
recover tissue through inflammation, cell proliferation, and tissue
regeneration (Poss, 2010). However, in serious injuries, medical
interventions such as transplanting tissue substitutes (i.e., autografts,
allografts, or xenografts) or stimulating tissue regeneration using tissue-
engineered constructs (TECs) are required (Gaharwar et al., 2020).
Among various TECs or bio-derived scaffolds, the amniotic membrane
also named as amnion (AM) has gained great attention for tissue
engineering (TE) and regenerative medicine (RM), thanks to its
exquisite biological characteristics, including excellent
biocompatibility, anti-bacterial, anti-inflammatory, anti-fibrotic,
immunomodulatory and angiogenic properties (Munoz-Torres et al.,
2023). AMmeets all basic requirements of TE, including a rich source of
stem cells, growth factors, and bioactive molecules as well as
extracellular matrix (ECM) components that further highlight its
eligibility for therapeutic purposes (Jahanafrooz et al., 2023).

AM has been discovered as a potential candidate for skin
regeneration and reconstruction surgeries since the early 20th century
(John, 2003). Thefirst report of usingAMas a skin replacementwas done
byDavis in 1910 (Davis, 1910). Later in 1913, AMwas used by Stern et al.
for treating burn and ulceratedwounds (Stern, 1913). Since then, AMhas
shown promising results in the repair of various tissues including, the
heart, ocular surface, vascular, cartilage, uterus, etc (Cornwell et al., 2009;

Horn et al., 2019; Hossain et al., 2020; Lacorzana, 2020). Despite the
advantageous clinical results obtained by grafting AM, there are some
challenges for surgeons to handle thin AM tissue without tearing or
folding, which limits the incorporation of fresh AM into routine clinical
applications to some extent (Murphy et al., 2017; Dadkhah Tehrani et al.,
2021). Besides, the dense structure of the AM tissue is known to limit the
penetration of cells to the wounded site (Nasiry et al., 2021; Nasiry et al.,
2022; Khalatbary et al., 2023; Nasiry et al., 2023). One of the methods to
solve these issueswas to use its dehydrated form,which is easier to handle
and can be stored at room temperature with a shelf life of about 5 years
(Fetterolf and Snyder, 2012). Although the dehydrated AM tissue has
shown promising outcomes for treating wounds, it lacks efficacy for the
treatment of large or irregularly shaped injuries (Murphy et al., 2017).
Therefore, processing of the AM tissue into a hydrogel can afford easier
handling by gelation inside any nonuniform defect injuries. To this end,
some researchers have developed a gel formula based on the
incorporation of AM powder or AM extracts into a hydrogel solution
(Murphy et al., 2017; Rahman et al., 2019; Islam et al., 2023). In other
studies, the development of an injectable hydrogel through the enzymatic
digestion of decellularized amnion (dAM) powder in a mildly acidic
solution has been performed (Ryzhuk et al., 2018). This category of
hydrogels forms physical crosslinking by incubation of the pH-
neutralized dAM solution at the physiologic temperature (Li et al., 2022).

The applications of AM tissue and AM-derived stem cells in
different fields of TE and RM are well-covered in recent literature
(Jafari et al., 2021; Elkhenany et al., 2022; Hu et al., 2023). This
review aims to comprehensively explain the advanced multifaceted
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therapeutic functions of hydrogels derived from AM or dAM for
tissue regeneration. The structural features and components of AM
are introduced and various biological functions of the tissue are
presented and discussed. The commercial products based on AM,
including their features and shortcomings, are also demonstrated.
Besides, the most relevant fabrication processes of the AM/dAM
hydrogels and their applications in the engineering and regeneration
of heart, skin, cartilage, vascular, endometrium and fetal membrane,
and dental pulp are critically reviewed. Finally, recent insights into
the modification of AM/dAM-derived hydrogels, such as designing
hybrid hydrogels by incorporating supporting polymeric
constituents, rapid photocrosslinking process through grafting
light-sensitive functional groups, and nanoparticles, are concluded.

2 Structural and biochemical features
of amnion

The human placenta is considered a biowaste for hospitals and is
discarded after the baby is born (Mamede et al., 2012). Hence, the

placenta is an available and cost-effective source of tissue that does
not require extreme ethical considerations for its clinical usage
(Haghshenas et al., 2022). AM is the innermost fetal membrane
of the placenta that protects the fetus during pregnancy (Figure 1A).
The outer layer is called the chorion plate, which contacts with the
mother’s cells (Salah et al., 2020). AM is a thin (0.02–0.5 mm) and
translucent tissue that does not possess any muscles, nerves, or
vessels, and its nutrition occurs due to diffusion (Toda et al., 2007).
As depicted in Figure 1B, the human AM is composed of three main
layers, including the epithelium, basement membrane, and stromal
(Niknejad et al., 2008). The epithelial cells secrete a wide range of
growth factors (GF) and cytokines, including epidermal GF (EGF),
vascular endothelial GF (VEGF), keratinocyte GF (KGF), basic
fibroblast GF (bFGF), alpha- and beta-transforming GF (TGF-α,
TGF-β), interleukin-8 (IL-8), angiogenin, serine protease inhibitor
(serpin) E1, insulin-like GF (IGF), and their binding proteins
(IGFBP) (Favaron et al., 2015). These cells are firmly attached to
the basement membrane that is a supply of sulfated proteoglycans
(e.g., heparan sulfate) and as a permeable barrier allows the
transport of several macromolecules, including α-actinin,

FIGURE 1
The structural architecture of AM tissue and biochemical components within the dAM matrix. A scheme of human (A) placenta and (B) AM
membrane. (C) The main proteins of the dAM matrix evaluated by mass spectroscopy [Reprinted from Comperat et al. (2023), Copyright (2023), with
permission from Wiley-VCH GmbH]. (D) The most frequent cytokines in dAM hydrogel assessed by the angiogenesis array [Reprinted from Ryzhuk et al.
(2018), Copyright (2023), with permission from Elsevier]. Panel 1B was partly generated using Servier Medical Art, provided by Servier, licensed under
a Creative Commons Attribution 3.0 unported license.
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spectrin, vimentin, laminin, desmoplakin, cytokeratins, etc. (Ohno
et al., 1983; Liu et al., 2019; Shariatzadeh et al., 2021). The basement
membrane of AM also contains collagen (type III, IV, and V) and
various non-collagenous glycoproteins, such as elastin, laminin,
nidogen, fibronectin, and vitronectin as well as
glycosaminoglycans like hyaluronic acid (Arki et al., 2023;
Fitriani et al., 2023). The stromal layer is composed of three
sublayers, including 1) compact layer, 2) fibroblast layer, and 3)
intermediate layer (Dadkhah Tehrani et al., 2021). The compact
layer which is located beneath the basement membrane is a cell-free
connective tissue that mainly consists of collagen (type I, III, V, and
VI) (Sadler, 2022). The next layer, which is the thickest layer of AM,
contains mesenchymal fibroblast-like cells and collagen-rich ECM
which significantly affects the tensile strength of the AM tissue
(Mamede et al., 2012). The outermost layer is a cell-free nonfibrillar
matrix containing type III collagen, proteoglycans, glycoproteins,
and hydrated glycoproteins that separate the AM from the
underlying chorion (Toda et al., 2007). This layer is called the
“spongy layer” because the proteoglycans and glycoproteins
components inside this layer produce a spongy appearance
(Fénelon et al., 2021). It is noteworthy to mention that collagen I
and II and elastin regulate the tensile strength of the AM, while
collagen III is responsible for the elasticity (Mamede et al., 2012).
Therefore, it can be concluded that AM is a rich source of various
proteins, GF, and GAGs, including collagen (types I, III, IV, V, and

VI), fibronectin, elastin, nidogen, and hyaluronic acid that support
the proliferation and differentiation of cells, and encourage re-
epithelialization (Rana et al., 2020).

Decellularization of native tissues and organs is a prerequisite step
for their safe implementation for TE applications, since the resident
cells may cause intense host immunologic reactions after
transplantation and transplant rejection (Bhattacharjee et al., 2020).
Accordingly, various mechanical, chemical, and enzymatic techniques
and a combination of these methods have been adopted for the
successful removal of cells from tissues (Arrizabalaga and Nollert,
2018). Although the decellularization process is quite a promising tool
for diminishing cellular components of tissues and organs, it may also
cause the loss of some bioactive ECM components (Kim et al., 2020).
Hence, it is important to choose a decellularization agent in a way that
provides sufficient cell removal without seriously damaging the ECM
structure and existing biochemical cues (Kim et al., 2017). Regardless
of losing some of the ECM components during the decellularization
process, a sufficient amount of bioactive components still remain
within the dAM matrix to provide reliable functionality for TE
applications (Wassmer and Berishvili, 2020). As reported by
Comperat et al. (2023), the dAM matrix is mainly composed of
structural proteins such as collagen, and fibrillin-1, and cytoskeletal-
associated proteins (e.g., keratin-type I) (Figure 1C). The results of the
angiogenesis assay also suggest that the dAM matrix is a valuable
source of various proteins and GF, including placenta (PlGF), platelet

FIGURE 2
(A) The diverse therapeutic properties of the amnion induced by different inherent cytokines, growth factors, and ECM components. (B) Various
types of processing methods to fabricate biomedical scaffolds from AM. Panel 2A was partly generated using Servier Medical Art, provided by Servier,
licensed under a Creative Commons Attribution 3.0 unported license.
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factor 4 (PF4), insulin-like binding protein 1 (IGFBP-1), and
endocrine gland-derived vascular endothelial (EG-
VEGF) (Figure 1D).

3 Bio-functionality of amnion

Although AM is an avascular tissue, it plays an important role as
a tissue for the production of several bioactive molecules, including
growth factors, cytokines, and vasoactive peptides (Cunningham
et al., 2014). As schematically shown in Figure 2A, AM is a
biocompatible tissue that provides outstanding biological
characteristics, such as low immunogenicity, anti-inflammatory,
anti-fibrotic, and anti-bacterial properties along with side-
dependent angiogenesis (Elkhenany et al., 2022). In several
studies, for example, Favaron et al. (2015), Babajani et al.
(2022a), Babajani et al. (2022b), Biniazan et al. (2022), Jafari
et al. (2023), AM-derived stem cells with angiogenic,
immunosuppressive, and anti-tumoral properties have been
found of interest for tissue regeneration. The various types of
ECM components are mostly secreted from resident cells of AM
to form different sublayers of AM as described thoroughly in the
previous section. In the following, the regenerative effects induced
by bioactive constituents of the amnionmatrix, e.g., proteins, growth
factors, and cytokines, are presented and discussed. It is noteworthy
that the biological properties of AM tissue, as similar to other native
tissues, may be more pronounced than the decellularized AM
(dAM) because the decellularization process is potentially
susceptible to the loss of some part of the bioactive and
functional constituents of native tissues (Elkhenany et al., 2022).
However, exploiting an optimized decellularization process may
guarantee the preservation of a considerable portion of these
biochemical cues within dECM biomaterials (Saldin et al., 2017).

3.1 Anti-inflammatory

So far, different mechanisms have been proposed for explaining
the anti-inflammatory effect of AM by different generations of
researchers in this field. The anti-inflammatory of AM is ascribed
to its inhibiting effect on the infiltration of inflammatory cells to an
injured site (Shimmura et al., 2001). The soluble factors secreted
from epithelial cells (e.g., interleukin-1 receptor antagonist (IL-1Ra),
IL-2Ra, IL-10, and endostatin) are also effective (Hao et al., 2000; Li
et al., 2005). These factors hinder the immune cells and reduce
angiogenesis and tumor growth by restricting the proliferation of
endothelial cells. Particularly, IL-10 suppresses the activity of pro-
inflammatory cytokines, such as IL-1, IL-6, IL-8, interferon-γ (IFN-
γ), and tumor necrosis factor-alpha (TNF-α) (Silini et al., 2017;
Koelink et al., 2020). The anti-inflammatory property of AM is
further speculated to be due to the suppression effect of its stromal
matrix on the expression of IL-1α and IL-1β pro-inflammatory
cytokines (Niknejad et al., 2008). Amnion also enables the
expression of tissue inhibitors of metalloproteinase (TIMPs)-1, 2,
3, and 4, which can suppress the ECM digestive function of matrix
metalloproteinases (MMPs) produced by macrophages and
polymorphonuclear cells (Kim et al., 2000). The ability of AM to
combat inflammation can also be explained by its protease

inhibitors, such as α1 anti-trypsin and inter-α-trypsin (Elkhenany
et al., 2022). Antimicrobial peptides (AMPs) within AM, such as
human beta-defensins (HBDs), cathelicidin, and histones are
capable of attenuating inflammation induced by
lipopolysaccharide (LPS) (Guaní-Guerra et al., 2010).
Furthermore, the protease and elastase inhibitory effects of elafin
and secretory leucocyte proteinase inhibitor (SLPI) control the
inflammatory responses in the surfaces of tissues suspected of
contamination (Zare-Bidaki et al., 2017).

3.2 Antibacterial and anti-viral activity

AM exhibits promising results in controlling the infection of
wounds because it not only acts as an adherent shield over an
injured tissue to inhibit the infiltration of bacteria but also regulates
the expression of molecules with antibacterial or antiviral properties
(King et al., 2007). Ni et al. (1997) have stated that AM offers anti-viral
properties due to the presence of cystatin E in its matrix which is an
analog for cysteine proteinase inhibitor. The collagen fibers within the
AM matrix can also contribute to reduced bacterial accumulation and
inhibited hematoma formation, owing to their hemostatic property
(Baradaran Rafii et al., 2007). The epithelial cells of AM can secrete
AMPs, such as β-defensin 1-3 (HBD 1–3), LL37, histone H2B, and
elafin which are helpful in the management of wound infection (Kim
et al., 2002; Tehrani et al., 2013). The elastase inhibitors expressed by
AM, including elafin and SLPI proteins that contain Whey acidic
peptide (WAP) motifs, are also responsible for anti-inflammatory
and antibacterial properties (Mohan et al., 2017; Tehrani et al., 2017;
Lohajaroensub et al., 2022). Moreover, the AM contains various AMPs,
including human neutrophil peptides 1-3, calprotectin (MRP8/14),
lysozyme, and ubiquitin that exhibit antimicrobial function (Kim
et al., 2007). The AMPs may exhibit antimicrobial effects through
several pathways, but the most frequent mechanism of action involves
the electrostatic interactions between positively charged AMPs and
negative bacterial membranes (Zasloff, 2002). The quantitative mass
spectroscopy of amnion/chorion extract has detected several
ribonucleases [e.g., RNaseT2, RNaseK6, RNase7, RNase5
(angiogenin), RNase H2 subunit C, RNase pancreatic] and hydrolase
components with antibacterial potential that destroy the biofilms
(Yadav et al., 2017). The lysozyme secreted by epithelial cells of AM
is capable of hydrolyzing the peptidoglycan backbone of bacterial cells,
damaging their cell membrane, followed by lysis of bacteria (Yadav
et al., 2017).

In a study, the antimicrobial activity of cryo-preserved AM
(containing viable cells) was compared to the air-dried or freeze-
thawed devitalized AM (with non-viable cells) counterpart (Mao
et al., 2017). The results showed that the antimicrobial property of
AM is governed by soluble antimicrobial factors secreted from
endogenous viable cells, whereas non-viable cells in dehydrated
devitalized AM do not participate in the synthesis of
antimicrobial proteins. Recently, Tehrani et al. (2017) have
reported that the exposure of AM to IL-1β may improve the
secretion of antimicrobial peptides, including elafin, cathelicidin
LL-37, HBD-2, and HBD-3. In addition to protein-based
antimicrobial compounds existing in the AM, lactoferrin and
hyaluronic acid (HA) components may also participate in anti-
inflammatory and antibacterial responses (Zare-Bidaki et al., 2017).
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3.3 Immunomodularity

The clinical application of AM has shown negligible immune
response without acute rejection (Niknejad et al., 2008). This finding
may be attributed to low expression of human leucocyte antigens
(HLA) class I and no expression of HLA class II by epithelial cells
(Hori et al., 2006). Herein, no expression of immunogenic markers,
including CD86, CD40, CD80, HLA-A, HLA-B, HLA-D, and HLA-
DR, are noticed which determines low immunogenicity (Magatti
et al., 2018). The presence of immune-regulatory factors, e.g., HLA-
G, IL-10, TGF-β, HGF, prostaglandin E2 (PGE2), and indoleamine
2,3-dioxygenase (IDO) are also responsible for its immune privilege
through the suppressive effect on the proliferation of T cells and the
CD8+ activity (Parolini et al., 2008; Silini et al., 2017). The HLA-G is
an immunosuppressive molecule that interacts with the
ILT4 receptor on monocytes and dendritic cells or the
ILT2 receptor on various immune cells, such as natural killer
cells, B-cells, monocytes, and dendritic cells (Wassmer and
Berishvili, 2020). The interaction of HLA-G with different types
of immune cells can in turn inhibit their proliferation, and
immunoglobulin secretion, or attenuate their innate cytotoxicity
(Kapasi et al., 2000; Selmani et al., 2008).

The cells existent in AM are highly capable of blocking immune
responses by influencing immune cells’ function and secretion
(Wassmer and Berishvili, 2020). For example, the conditioned
medium extracted from AM has shown apoptotic effects on
in vitro cultured neutrophil cells, whereas the direct in vivo
administration of epithelial cells of AM exhibited a significant
influence on decreasing the infiltration of neutrophil cells (Zhou
et al., 2003; Tan et al., 2014). The transplantation of AM cells has
shown an inhibiting effect on the infiltration of immune cells (e.g.,
T cells, monocytes, and macrophages) to the injured site, thereby
reducing intense inflammatory responses (Liu et al., 2012). The
immunosuppressive action of AM cells or conditioned media
derived from AM is related to the bioactive modulators secreted
from these cells and their ability to induce M2 macrophages over
M1 macrophages (Magatti et al., 2017; Silini et al., 2017). The
polarized forms of macrophages (i.e., M1 and M2) are known for
their opposite actions in the tissue regeneration process, where the
M1 macrophages boost the inflammatory phase of healing and
M2 macrophages contribute to the regeneration process while
showing some anti-inflammatory effects (Barboni et al., 2012).
Magatti et al. have reported that conditioned media derived from
in vitro culture of MSC cells of AM can impede the proliferation and
differentiation of B lymphocytes through the action of prostanoids
such as PGE2 (Magatti et al., 2020). The AM cells can also regulate
the cytokine and chemokine secretion of immune dendritic cells to
increase anti-inflammatory cytokines such as IL-10 or decrease the
release of proinflammatory mediators, including IL-8, IL-12p70,
TNF-α, and MIP-1α (Magatti et al., 2015). The immunosuppressive
effect may also be linked to the expression of the Fas ligand by
epithelial and mesenchymal cells (Chopra and Thomas, 2013).

3.4 Angiogenesis duality

Studies have demonstrated that AM is able to suppress
neovascularization due to its anti-angiogenesis property (Shao

et al., 2004). This anti-angiogenesis can be explained by the
physical barrier effect that inhibits the permeation of pro-
angiogenesis factors (Kobayashi et al., 2002). It can also happen
as a result of ECM proteins, including collagen α2 (IV), laminin-1,
laminin-5, fibronectin, collagen type VII, integrin 4, and integrin 6,
which are known for their inhibition effect on corneal
neovascularization (Fukuda et al., 1999). Moreover, the amniotic
cells can secrete cytokines with an anti-angiogenesis effect, such as
endostatin and thrombospondin-1 (Hossain et al., 2019;
Bakhshandeh et al., 2021; de la Torre et al., 2021).
Thrombospondin-1 is a potential anti-angiogenic peptide
produced by mesenchymal cells (Ju et al., 2022), whereas
endostatin is an anti-angiogenesis factor that prevents the growth
of endothelial cells (Ghazani et al., 2022). Furthermore, some
proteins, including collagen XVIII, IL-10, IL-1Ra, TIMP-1,
TIMP-2, TIMP-3, and TIMP-4 exhibit anti-angiogenic activity
(Hao et al., 2000). On the other hand, epithelial cells may play a
role in mediating anti-angiogenic characteristics through the
production of IL-1Ra, TIMP-3, and TIMP-4 (Parolini et al.,
2009). For instance, the pigment epithelium-derived factor
(PEDF) expressed by AM has been shown to act as a potent
chemical inhibitor of angiogenesis (Shao et al., 2004).

The pro-angiogenic activity of AM has also been reported in the
literature (Niknejad et al., 2013; Niknejad and Yazdanpanah, 2014;
Yazdanpanah et al., 2015; Abbasi-Kangevari et al., 2019). Niknejad
et al. (2013) have shown that the angiogenesis effect of AM is a side-
dependent phenomenon. They have demonstrated that the vessel
formation in a dorsal skinfold chamber rat model is enhanced when
the AM is positioned epithelial side, whereas the vascularization is
suppressed when the material is positioned stromal side. The pro-
angiogenic effect of AM may originate from PDGF, VEGF, and
angiogenin secreted by mesenchymal cells (Farhadihosseinabadi
et al., 2018). On the other hand, fibronectin is able to promote
angiogenesis by activating the ERK signaling pathway via interacting
with PDGF, EGF, and bFGF (Hu et al., 2023). Tsai et al. (2007) have
concluded that the upregulating the expression of integrin, platelet-
endothelial cell adhesion molecule-1 (PECAM-1), and VE-cadherin
adhesion molecules in the cultured endothelial cells make them a
potential candidate as vascular grafts.

3.5 Anti-fibrosis

Fibrosis is a well-recognized hypertrophic pathological
characteristic observed during the wound healing process that
occurs due to excess secretion of fibroblast cells activated by
TGF-β1 (Garrido et al., 2018). TGF-β1 stimulates fibrogenesis by
encouraging the synthesis of ECM and the deposition of collagen by
resident cells (Gonçalves et al., 2014). The anti-fibrotic characteristic
of AM is attributed to its inhibition effect on the expression of TGF-
β1 receptors in fibroblast cells (Arki et al., 2023). For example, the
AM patch has been used in the treatment of liver fibrosis for
reducing collagen deposition by down-regulating the pro-fibrotic
factors, such as TGF-β1 and IL-1 (Sant’Anna et al., 2016). Studies
also have shown that AM can downregulate the expression of apelin
ligands in cirrhosis liver (Garrido et al., 2018). The paracrine
signaling activated by the release of soluble factors from resident
cells of AM tissue is effective in reducing the activity of pro-fibrotic
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TABLE 1 AM-based commercial products.

Product Company Features Safety approval/
references

Therapy

Grafix Advanced wound management
Smith+Nephew Consolidated Inc.

Cryopreserved placental
membranes stored at −75°C
to −85°C

NICE Wound covering of acute and
chronic wounds in head-to-toe
locations

Grafix PL membrane Advanced wound management
Smith+Nephew Consolidated Inc.

Lyopreserved placental
membranes stored at room
temperature (RT)

NICE Skin and wound care, surgical
applications across multiple
different specialties

Plurivest and
Dermavest

AediCell Inc. Freeze-dried pulverized
decellularized amnion/chorion/
placental disk/umbilical cord
tissues, pressed into a sheet form,
stored at RT

FDA (as a human tissue-based
product under section 361 of the
Public Health Service Act)

Deep and tunneled wounds,
Partial and full-thickness wounds,
Drainage wounds, Trauma
Wounds (abrasions, lacerations,
and skin tears), Second-degree
burns, Diabetic ulcers, Pressure
Ulcers, Venous Ulcers, Chronic
vascular ulcers, Surgical (donor
sites/graft post Mohs surgery, post
laser surgery, podiatric)

AmnioBioGraft Alamo Biologics Inc. Single-layer patch-like tissue
derived from amnion

AATB, U.S. FDA Regenerative medicine, Wound
management, Chronic and non-
healing dermal wounds,
Cutaneous wound care,
Reconstructive medicine, Ocular,
Injuries and reparative eye work,
Burn Care

Allowrap DS Allosource Inc. Dual layer amnion with epithelial
layer facing outwards on both
sides of the graft, stored at RT

Samaniego (2011), Hinderland
and Alan (2012)

Trauma, Orthopedics, Biological
barrier after surgical repair

PalinGen
Hdromembrane

Amnio Technology Inc. Human amnion packaged in
sterile saline

AATB, FDA Full and partial-thickness, acute,
and chronic wounds

PalinGen membrane Amnio Technology Inc. Air-dried human amnion AATB, FDA Full and partial-thickness, acute,
and chronic wounds

PalinGen XPlus Amnio Technology Inc. Air-dried human amnion
chemically crosslinked with
glutaraldehyde

AATB, FDA Wound covering

Clarix Flo Amniox Medical Inc. Injectable particulate human
amnion and umbilical cord tissue

AATB, FDA Regenerative injection therapy,
Sports medicine

XWRAP Applied Biologics Inc. Processed amnion wrap, cover, or
patch

— Regenerative medicine

AmnioShield Atec Spine Inc. Dehydrated dual-sided amnion/
chorion membranes

U.S. FDA Chronic and scarred wounds,
Wound barrier

AmnioBarrier Biohealing Inc. The gel form of the amnion,
stored at RT

Under development to be tested in
clinical trials

Preventative measures for the
development of unwanted
adhesions after cesarean section
deliveries and small pelvic surgery,
Gynecology

AmnioDerm Biohealing Inc. Lyophilized biological patch from
human amnion

FDA (Lipový et al., 2021;
Schmiedova et al., 2021)

Chronic and acute injuries, burns,
venous leg ulcers, arterial skin
ulcers, pressure ulcers,
neuropathic skin ulcers,
lymphedema ulcers

AmnioDisc Biohealing Inc. Lyophilized amnion Passed phase 3 clinical trials, ready
to enter the market

Eye and ear wounds, corneal and
ear erosions, neurotrophic
ulcerations, acute chemical/
thermal burns, non-healing
epithelial defects, post-infectious
keratitis, Bullous keratopathy,
repair of tympanic, membrane
perforations

(Continued on following page)
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TABLE 1 (Continued) AM-based commercial products.

Product Company Features Safety approval/
references

Therapy

AmnioDrop Biohealing Inc. Lyophilized particulate amnion
intended for resuspension, stored
at RT

Under development to be tested in
clinical trials

Accelerated regeneration after eye
surgery

AmnioEye Biohealing Inc. Lyophilized amnion, stored at
RM or deep frozen in medium
and stored at −40°C to −80°C

FDA Keratitis of various origins,
Corneal erosion, and ulcers,
Bullous keratopathy, Mechanical
and chemical injury to the eye,
Lysis or perforation of the cornea,
In the treatment of fornix
adhesions

AM-Nx Biohealing Inc. Cryopreserved patch of amnion,
deep frozen with medium, stored
at −40°C to −80°C

FDA Neurosurgery, Decompressive
craniectomy, craniotomy

AmnioGraft BioTissue Inc. Cryo-preserved amnion with
devitalized cells, stored at −80°C
to 4°C

U.S. FDA Pterygium, Mechanical dry eye,
Corneal defects, High-risk
trabeculectomies, Leaking
glaucoma blebs, Chemical burns,
Stevens-Johnson Syndrome,
Strabismus removal of tumors

AmnioGuard BioTissue Inc. Ultra-thick cryo-preserved
amnion with devitalized cells,
stored at −80°C to 4 °C

U.S. FDA Shunt tube exposure prevention,
Scleral melt/ischemia, Fornix and
socket reconstruction, Marginal
entropion repair, Removal of
tumors or lesions, Symblepharon,
Descemetocele or perforation,
Ocular dermal wounds, Limbal
tumors surface reconstruction

Clarix 100 BioTissue Inc. Thin cryo-preserved amnion
with devitalized cells, stored
at −80°C to 4°C

U.S. FDA Minimally invasive Achilles,
Midfoot/forefoot fractures,
Tendon/nerve repair, Ganglion
cyst excision, Bunionectomy,
Cheilectomy, Surgical barrier

Clarix 1K BioTissue Inc. Cryo-preserved amnion with
devitalized cells, stored at −80°C
to 4°C

U.S. FDA Complex bone and joint
reconstruction, Soft tissue repair
and reconstruction, Nerve repair
and decompression, Joint
arthroplasty and arthrodesis,
Cartilage repair, Fractures and
non-unions, Traumatic wounds
and reconstruction, Surgical
wound healing and dehiscence

Neox 100 BioTissue Inc. Thin cryo-preserved amnion
with devitalized cells, stored
at −80°C to 4°C

U.S. FDA Shallow wounds or large-wound
areas, including Diabetic foot
ulcers, Chronic wounds, Dehisced
wounds, Granulating/
epithelializing wounds,
Hypertrophic scars/keloids, Non/
minimally exudating wounds,
Pressure ulcers, Venous ulcers,
Burns

Neox 1K BioTissue Inc. Cryo-preserved ultra-thick
amnion with devitalized cells,
stored at −80°C to 4°C

U.S. FDA A wide array of wounds including
Diabetic foot ulcers, Chronic
wounds, Venous leg ulcers,
Arterial ulcers, Pressure ulcers,
Wound dehiscence, and Burns

Prokera BioTissue Inc. Cryo-preserved amnion with
devitalized cells, stored at −80°C
to 4°C

U.S. FDA Damaged ocular surfaces,
inflamed or scarred stroma

Biovance Celularity Inc. Decellularized dehydrated
human amnion sheet, stored
at RT

AABB, U.S. FDA Partial- and full-thickness, acute
and chronic wounds (such as
traumatic and complex wounds,

(Continued on following page)
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TABLE 1 (Continued) AM-based commercial products.

Product Company Features Safety approval/
references

Therapy

burns, surgical and Mohs surgery
sites; and diabetic, venous, arterial,
pressure, and other ulcers),
including wounds with exposed
tendon, muscle, bone, or other
vital structures

Biovance 3L Ocular Celularity Inc. Three-layered decellularized
dehydrated human amnion sheet
with stromal surface facing
outwards on both sides, stored
at RT

AABB, U.S. FDA Corneal and conjunctival injuries
or defects, Corneal epithelial
defects, Pterygium repair, Fornix
reconstruction

AmnioClip
Plus (AC+)

Deutsche Gesellschaft fur
Gewebetransplantation (DGFG) Inc.

Cryopreserved amnion clamped
in the ring system, stored
at −60°C

Kotomin et al. (2015), Hofmann
et al. (2021), Approved by the Paul
Ehrlich Institute (PEI) and
German Medicinal Products Acts

Dry eye syndrome, Persistent
epithelial defects including
neurotrophic corneal ulcers (on
host cornea/corneal transplants),
Reconstructions of conjunctival
injuries (e.g., burns or chemical
burns, perforating trauma),
Pterygium surgeries, Symptomatic
bullous keratopathy, High-risk
keratoplasty for limbal stem cell
deficiency

ViaShield Globus Medical Inc. Dual-layer human amnion patch
(chorion-free)

Cunningham et al. (2019) Wound barrier

AmnioExcel Integra Life Sciences Inc. Dehydrated human amnion
tissue, stored at RT

AATB, U.S. FDA (Barr, 2014;
Lintzeris et al., 2015; Abdo, 2016;
Rosenblum, 2016; Snyder et al.,
2016; Boyar and Galiczewski,
2018; Thompson et al., 2019; Tsai
et al., 2021; Doucette et al., 2022)

Closing chronic wounds, Wound
covering, Diabetic foot ulcers

AmnioExcel Plus Integra Life Sciences Inc. Three-layer dehydrated human
amnion-chorion-amnion layers

AATB, U.S. FDA, (Bonvallet et al.,
2022)

Wounds

AmnioMatrix Integra Life Sciences Inc. Cryopreserved suspension
derived from amnion and
components of amniotic fluid

U.S. FDA Advanced wound care especially
tunneling or deep wounds, repair,
reconstruction, and replacement
of tissue to aid in the closing of
chronic wounds

BioDFence G3 Integra Life Sciences Inc. Dehydrated three-layer amnion-
chorion-amnion, stored at RT

U.S. FDA Surgical reconstructions, wound
management, Tissue barrier in
soft tissue repair

BioDOptics Integra Life Sciences Inc. Dehydrated human amnion AATB, U.S. FDA Covering ocular surfaces

BioDRestore Integra Life Sciences Inc. Morselized, flowable amnion
tissue processed with CryoPrime
technique

AATB, U.S. FDA Wound care

Ambio5 IOP Ophthalmics Multi-layer dehydrated amnion
(thickness ˃ 100 μm)

Grewal and Mahmoud (2016),
Naxer et al. (2018)

Surgical regeneration of ocular
surface including Fornix
reconstruction, Symblepharon,
Vast pterygium excision

AmbioDisk IOP Ophthalmics Dehydrated amnion Choi and Jeon (2022) Ocular surface diseases and
disorders, Corneal erosions,
Neurotrophic ulcerations, Acute
chemical/thermal burns, Non-
healing epithelial defects,
Conditions associated with
excessive dry eye, Post-infectious
keratitis (herpetic, vernal,
bacterial)

AmbioDry2 IOP Ophthalmics Single-layer dehydrated amnion
(thickness of 35 μm)

Chun et al. (2013) Pterygium excision, Chemical and
thermal burns, Corneal ulcers,
Bullous keratopathy

(Continued on following page)
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TABLE 1 (Continued) AM-based commercial products.

Product Company Features Safety approval/
references

Therapy

Amniburn MiMedx Inc. Dehydrated human amnion/
chorion membranes

AATB Partial thickness and full-
thickness acute and chronic
wounds, Head/face, Hands,
Genitals, Feet, Bone and tendon,
Points of articulation

Amnieffect MiMedx Inc. Thick lyophilized human
placenta-derived membrane
comprised of amnion layer,
intermediate layer, and chorion
layer

AATB Amputations, Complex incision
management, Dehiscence repair,
Tendon and ligament repair,
Exposed bone or hardware, Flaps,
Laminectomies, Minimally
invasive surgeries, Hysterectomy,
Endometriosis, Pilonidal cysts

Amnifix MiMedx Inc. Dehydrated human amnion/
chorion membranes prepared in
sheet, fenestrated, and wrap
configurations

AATB Surgical applications including
debridement, surgical wounds,
Dehiscence repair, Tendon and
ligament repair, Myomectomies,
Bunionectomies, Rotator cuff
repair, Posterior lumbar interbody
fusion, Total knee and shoulder
arthroplasty, Limb salvage,
Amputations, Pilonidal cysts, Port
sites

Epieffect MiMedx Inc. Lyophilized human placenta-
derived membrane comprised of
an amnion layer, intermediate
layer, and chorion layer

AATB Acute and chronic wounds, Post
debridement, Dehisced wounds,
Diabetic foot ulcers, Venous leg
ulcers, pressure ulcers, Mohs
repair, Deep or tunneling wounds

EpiFix MiMedx Inc. Dehydrated human amnion/
chorion membranes in both sheet
and mesh fenestrated
configurations, stored at RT

AATB, (Zelen et al., 2015; Zelen
et al., 2016; Bianchi et al., 2018;
Bianchi et al., 2019)

Acute and chronic wounds,
Debridements, Dehisced wounds,
Diabetic foot ulcers, Venous leg
ulcers, pressure ulcers, Mohs
repair

AmnioBand
membrane

Mtf Biologics Inc. Dehydrated human amnion and
chorion membranes, stored at RT

U.S. FDA Acute or chronic wound covering

AmnioBand viable
membrane

Mtf Biologics Inc. Cryopreserved viable human
amnion

U.S. FDA Protective covering for internal
and external tissue defects
including acute, chronic, and
surgically created wounds

Affinity Organogenesis Inc. Fresh amnion containing living
cells preserved using
hypothermic technique,
refrigerated storage at 1°C to 10°C

U.S. FDA, (McQuilling et al.,
2017a; Serena et al., 2020)

Variety of soft tissue repair
applications as a physical barrier
to protect the site of repair,
including Tendon repair,
Cartilage and osteochondral
defects, Acute and chronic
wounds

NuCel Organogenesis Inc. Cryopreserved amniotic
suspension consisting of ECM
particles, amniotic fluid cells,
various cytokines, and growth
factors

U.S. FDA Bone fusion, Tendon repair, Acute
limb salvage, Acute wounds, and
Burns

NuShield Organogenesis Inc. Dehydrated amnion-chorion
membranes preserved with the
LayerLoc method, stored at RT

U.S. FDA, (McQuilling et al.,
2017b; McQuilling et al., 2019)

variety of soft tissue repair
applications as a physical barrier
to protect the site of repair,
including Tendon repair, Spine
adhesions, fibrosis, Acute and
chronic wounds

AMIcare Royan Stem Cell Technology Inc. Dried amnion as wound dressing,
stored at RT

Nouri et al. (2018),
Nilforoushzadeh et al. (2019)

Chronic and acute wounds

AmnioDisc SinaCell Inc. Decellularized lyophilized human
amnion, stored at RT

Iran FDA Repair of eye epithelial defects,
repair of conjunctival defects,
repair of various injuries such as

(Continued on following page)

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Kafili et al. 10.3389/fbioe.2024.1358977

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1358977


TABLE 1 (Continued) AM-based commercial products.

Product Company Features Safety approval/
references

Therapy

chemical or thermal burns, for eye
surgeries such as glaucoma
surgery, oculoplastic surgery,
healing eye pain

AmnioSin SinaCell Inc. Decellularized human amnion,
stored at −80°C

Iran FDA Ocular surfaces, Chronic wounds,
including diabetic foot ulcers and
burns

CellAmnioSin SinaCell Inc. Sterilized fresh human amnion,
stored at −80°C

Iran FDA Chronic wounds, including
diabetic foot ulcers and burns

OculoMatrix Skybiologics Inc. Thin amnion-only tissue
preserved with HydraTek process
(thickness of 45 μm), stored at
ambient temperature (10°C
to 30°C)

U.S. FDA Ophthalmology

VisiDisc Skybiologics Inc. Thick amnion-chorion
membranes preserved with
HydraTek process (thickness of
200 μm), stored at ambient
temperature (10°C to 30 °C)

U.S. FDA Ophthalmology

WoundEx 45 Skybiologics Inc. Dehydrated amnion (thickness of
45 μm)

U.S. FDA Homologous use as a wound
covering in the management of
acute and chronic wounds.

WoundEx 200 Skybiologics Inc. Dehydrated amnion-chorion
membranes (thickness of
200 μm)

U.S. FDA Homologous use as a wound
covering in the management of
acute and chronic wounds.

BioXclude Snoasis Medical Inc. Dehydrated human de-
epithelialized amnion-chorion
membranes

FDA dental, endodontic, oral
maxillofacial, and periodontal
regenerative procedures as a
barrier, conduit, connector, or
cushion

SurGraft Surgenex Inc. Dehydrated amnion sheet, stored
at ambient temperature

FDA Chronic non-healing foot ulcers,
including diabetic, pressure, and
venous ulcers

Five variations including (I)
SurGraft: single layer amnion,
(II) SurGraft XT: dual layer
amnion, (III) SurGraft TL: triple
layer amnion, (IV) SurGraft AC:
dual layer amnion/chorion, (V)
SurGraft ACA: triple layer
amnion/chorion/amnion

Sursight Surgenex Inc. Dehydrated single-layer amnion,
stored at ambient temperature

FDA Ocular repair and reconstruction
procedures

AmnioELITE Surgilogix Inc. Human amnion-only tissue
(chorion-free) and amniotic fluid
components

U.S. FDA Chronic wound repair

SXBarrier Surgilogix Inc. Human amnion in both dry
(stored at ambient temperature)
and wet (packaged in saline)
forms

AATB, U.S. FDA Open incisions or laparoscopy
surgical system procedures,
Wound covering

SXFluid Surgilogix Inc. Cryopreserved liquid format
ground human amnion-only
tissue (chorion-free) and
amniotic fluid components,
stored at −80°C ± 15°C

U.S. FDA Tissue repair and wound healing

AlloGen Vivex Biologics Inc. Natural liquid matrix derived
from amnion fluid

AATB, U.S. FDA Cushion surface articulation
within the joint capsule

(Continued on following page)
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and pro-inflammatory factors, such as TGF-β, IL-6, TNF-α, and
PDGF accompanied by increasing the expression of anti-
inflammatory cytokines, including IL-10 (Sant’Anna et al., 2016;
Silini et al., 2015; Manuelpillai et al., 2010). A study by Mao et al.
(2019) showed that condition media prepared from viable
lyophilized AM (VLAM) tissue provides antifibrotic properties
due to the presence of anti-fibrotic cytokines, such as HGF and
IL-1β. The VLAM was also effective in reducing the expression of
collagen I and α-SMA as pro-fibrotic factors.

The epithelial cells of AM can further participate in
alleviating abnormal fibril arrangement by secreting anti-
fibrotic factors, such as bone morphogenetic protein-7 (BMP-
7), PGE2, and IL-10 (Andrewartha and Yeoh, 2019). Similarly,
mesenchymal cells exhibit an anti-fibrotic effect by blocking the
Wnt/β-catenin signaling via secretion of IGFBP-3, Dickkopf-1
(DKK-1), and Dickkopf-3 (DKK-3) (Liu et al., 2022). In
addition, the conditioned medium released from
mesenchymal cells of AM presents an antifibrotic effect by
decreasing the levels of α-SMA and collagen I as well as
increasing the MMP-2, MMP-9, and MMP-13 levels, which
help degrade excess ECM (Fu et al., 2018).

3.6 Tissue regeneration and re-
epithelialization

The basement membrane of AM is an appropriate matrix for
encouraging the migration, adhesion, and differentiation of
epithelial cells, which ultimately accelerates the re-epithelization
of the wound site (Nazanin et al., 2022). The expression of various
growth factors, such as TGF-α, EGF, KGF, bFGF, HGF, and GF
receptors, including KGF-R and HGF-R, play major roles in wound
healing and tissue regeneration (Koizumi et al., 2000). Various types
of collagenous and non-collagenous proteins also significantly
contribute to tissue repair by supporting cell activities (Murri

et al., 2018). Altogether, these mentioned biochemical cues
accelerate tissue regeneration by encouraging cell proliferation
and angiogenesis (Chen et al., 2021).

4 Commercial products

Due to the outstanding therapeutic function of AM for
treating wounds and regeneration of tissues, there are several
international companies producing health products based on
AM. The immune privilege of AM-derived stem cells, including
epithelial and mesenchymal cells, through a low expression of
class I antigens (HLA-A, B, C) and no expression of class II
antigens (HLA-DR) have made it possible to commercialize AM-
related products without decellularization (Srinivasan et al.,
2020). Therefore, AM-based products are mostly dehydrated
or cryo-preserved forms of amnion and seldom are
decellularized (e.g., Biovance). To further enhance the
mechanical stability and ease of handling, some of the AM-
related products are composed of both layers of amnion and
chorion together, including AmniEffect, EpiFix, AmniFix,
AmniBurn, and AmnioExcel Plus. The AM-based commercial
products and their structural features along with specific medical
applications are summarized in Table 1. As mentioned in
Table 1, some of these products have obtained health
approval from the Food and Drug Administration (FDA) and
the American Association of Tissue Banks (AATB). The other
portion of these products are under clinical investigation to get
required health confirmations or even in the very early stages of
development. Nevertheless, the approved AM products are
considered aseptic healthcare products that do not show
adverse effects on the healing process of patients. However,
when using these products, it is of great importance to
meticulously follow the usage protocol of the manufacturer
and pay attention to the storage notes. Moreover, the sterility

TABLE 1 (Continued) AM-based commercial products.

Product Company Features Safety approval/
references

Therapy

Cygnus Vivex Biologics Inc. Five variations including (I) Solo:
single layer amnion, (II) Dual:
dual-layered amnion graft, (III)
Matrix: a flexible amnion-
intermediate-chorion layers, (IV)
MAX: more thickness graft
derived from the umbilical cord,
(V)MAX XL: Fenestrated version
of MAX

AATB, U.S. FDA Soft tissue barrier and wound
covering to repair underlying
damaged tissue, such as acute and
chronic wounds, including
diabetic foot ulcers and venous
ulcers, burn care, dermatology,
and oral surgery

MiAmnion Vivex Biologics Inc. Three variations including (I)
Single: only amnion layer, (II)
Dual: double amnion layer, (III)
Matrix: amnion and chorion
layers

AATB, U.S. FDA Soft tissue barrier and wound
covering in numerous clinical
applications, including spine and
neurosurgery, foot and ankle,
wound care, burn care, and
dermatology

ViaGenex Vivex Biologics Inc. Three variations including (I)
Matrix: amnion-intermediate-
chorion layers, (II) MAX:
Umbilical cord membrane, (III)
Cryo MAX: Cryo-preserved
umbilical cord membrane

AATB, U.S. FDA Soft tissue barrier and wound
covering in numerous clinical
applications, including wound
care, burn care, oral surgery,
shoulder, nerves, knees, tendons,
OB/GYN, and urology
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of the product should not be compromised. Furthermore, the
AM product is supposed to be placed from the epithelial side on
the wound bed to encourage angiogenesis (Munoz-Torres et al.,
2023). Among all AM products, there is only one product in gel
form (i.e., AmnioBarrier) which is under development to be
tested for clinical trials and is not on the market yet. However,
since the regulations for assessing AM tissue-derived products
are standardized and well-established by regulatory
organizations in healthcare, the production of processed
tissue products, such as AM gel hopefully seems to be
possible in the near future.

5 Biomedical applications of AM-
derived hydrogels

The therapeutic functionality has motivated researchers to
process AM by various methods to prepare TE scaffolds (Fenelon
et al., 2023). These methods involve using fresh AM sheets,
dehydrated AM sheets, cryopreserved AM sheets, freeze-dried
microporous scaffold, electrospun mat, 3D printed constructs,
and pepsin-solubilized dAM-derived hydrogels (Figure 2B). The
application of AM tissue or other types of AM-derived scaffolds has
thoroughly been reviewed in recent studies (Dadkhah Tehrani et al.,

FIGURE 3
(A) Processing of dAM tissue into temperature-responsive hydrogels through dissection from placenta tissue, decellularization, lyophilization,
pulverization, enzymatic digestion by pepsin in an acidic solution, and gel formation after incubation of pH-neutralized dAM solution at the physiologic
temperature [Reprinted from Kafili et al. (2022), Copyright (2023), with permission from Elsevier]. (B) Tissue engineering applications of AM/dAM hydrogels.
Panel 3B was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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TABLE 2 Summary of application of AM/dAM hydrogels for various TE fields.

Tissue Product Experimental setting Additive materials Outcome Ref.

Skin Non-cellular hydrogel In vivo (Immune compromised murine wound
model)

Hyaluronic acid-based hydrogel (heprasila, glycosilb,
Gelin-Sc, photoinitiatord, Extralinke)

• Acceleration of wound closure Murphy et al.
(2017)

In vitro (HEKs and HDFs) • Inhibition of wound contraction

• Promotion of neovascularization in
wounds treated with HA-SAM hydrogel
compared to HA hydrogel-treated or non-
treated wounds

Skin Non-cellular gel In vivo (Wistar rat skin with second-degree
burn wounds)

Aloe vera (AV) extract, carboxymethyl cellulose
sodium salt (CMC-Na) as a gelling agent,
methylparaben as antibacterial ingredients, glycerin
as a moisturizing agent, triethanolamine

• Less healing rate and angiogenesis Rahman et al.
(2019)

In vitro (blood cells, HaCaT HFF1 cell lines • More inflammatory response and scar
formation in the AM/AV group compared
to other treatment groups

• Enhanced re-epithelialization in the AM/
AV group compared to other groups

Skin Non-cellular hydrogel In vivo (Full-thickness Porcine skin) Hyaluronic acid-based hydrogel (Heprasil, Gelin-S,
Extralink)

• The complete healing, and normal
pathological and histological results of
wounds treated with HA-SAM hydrogel
and AM powder

Murphy et al.
(2020)

• No intense immune rejection

Skin Non-cellular gel In vivo (Wistar rat skin with second-degree
burn wounds)

Rabbit’s skin collagen, CMC-Na as a gelling agent,
methylparaben and propylparaben as antibacterial
ingredients, glycerin as a moisturizing agent,
triethanolamine

• Rapid wound healing; complete re-
epithelialization

Rana et al. (2020)

In vitro (blood cells) • The higher wound contraction rate

• No histological observation

Skin Non-cellular scaffold In vivo (Adult Wistar rats with full skin
thickness ischemic excision with type
1 diabetes)

2-(N-morpholino) ethane sulfonic (MES), 1-ethyl-
3-(3-dimethyl aminopropyl) carbo-diimide (EDC),
N-hydroxy sulfosuccinimide (NHS) as crosslinking
agents

• Higher thickness of newly formed
epidermis and dermis

Nasiry et al. (2021)

• More blood vessels

• Less inflammatory cells in dAM-derived
scaffold-treated diabetic wounds compared
to dAM membrane-treated or non-treated
diabetic wounds

Skin Non-cellular hydrogel In vivo (New Zealand rabbit with full-
thickness epithelial tissue defect)

Methacrylated gelatin (GelMA), methacrylic
anhydride (MA), and Acylphosphinate (AP) as the
photoinitiator

• Supporting proliferation of fibroblast cells
and expression of α-smooth muscle actin
(α-SMA)

Zhang et al. (2021)

In vitro (HFF) • Acceleration of wound healing process

• Promotion of in vivo collagen deposition
and angiogenesis

(Continued on following page)
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TABLE 2 (Continued) Summary of application of AM/dAM hydrogels for various TE fields.

Tissue Product Experimental setting Additive materials Outcome Ref.

Skin Non-cellular hydrogel In vivo (New Zealand rabbit with full-
thickness skin defect model)

GelMA, MA, benzyl-2,4,6-
trimethylbenzoylphosphinate (LAP) as
photoinitiator

• Enhanced in vitro cell migration,
angiogenic potential, and anti-
inflammatory properties using
AdECMMA-GelMA composite hydrogel

Chen et al. (2023)

In vitro (RAW264.7 cells, HUVECs) • Accelerated in vivo re-epithelialization

Skin Non-cellular injectable hydrogel In vitro (L929 cell line) Amine-terminated polyethylene glycol (AT-PEG),
Laponite nanosilicates

• Improved distribution of ATPEG-
modified nanosilicates in dAM hydrogel

Kafili et al. (2022)

• Better cell adhesion to the hydrogel

Skin Non-cellular hydrogel bioink In vitro (L929 cell line and HDFs) Sodium alginate (Alg), Laponite nanosilicates • Improved printability Kafili et al. (2023b)

• Enhanced cell proliferation

• Accelerated in vitro wound healing

Skin Non-cellular gel In vivo (Wistar rat skin with second-degree
burn wounds)

Titanium dioxide (TiO2) nanoparticles, carbopol
934 as a gelling agent, propylparaben,
triethanolamine

• Antibacterial activity against A.aureus,
P.aeruginosa, and E.coli

Islam et al. (2023)

• Highest wound closure and faster re-
epithelialization

• Lower inflammatory cell infiltration

• More vascular formation

• More collagen synthesis in wound area in
the AM-TiO2 group compared to AM-only
or TiO2 groups

Skin Non-cellular gel In vivo (Wistar rats with second-degree burn
wounds)

Silver nanoparticle, carbopol 934 gelling agent,
acrylic acid, glycerine, triethanolamine

• Accelerated wound healing Jhumi et al. (2023)

In vitro cytotoxicity test (lethality test) • Less inflammatory response

• Reduced epithelialization period in the
AM-Silver group compared to AM-only or
silver-only groups

Cornea Non-cellular in situ hydrogel/tablet/eye
drop

In vivo (New Zealand rabbits with ocular acid
burns)

Poloxamer 407 (P407), Polyvinyl alcohol (PVA) • Less fibrosis and inflammatory responses
in corneal burns treated with dAME
containing P407 hydrogel

Luo et al. (2021)

In vitro (CECs, CSCs, NIH3T3 fibroblasts)

Cornea Non-cellular hydrogel In vivo (New Zealand rabbits with ocular alkali
burn)

GelMA, LAP photoinitiator • Prevention of symblepharon in the AME-
GelMA eye pad treated ocular burns

Chen et al. (2020)

Heart Non-cellular injectable hydrogel In vivo (MI-induced Sprague-Dawley rats) — • Improved cardiac contractility Henry et al. (2020)

In vitro (BAECs) • Decreased fibrosis

(Continued on following page)
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TABLE 2 (Continued) Summary of application of AM/dAM hydrogels for various TE fields.

Tissue Product Experimental setting Additive materials Outcome Ref.

• Enhanced cardiac ejection fraction

Vascular graft Non-cellular hydrogel In vivo (New Zealand white rabbits) Alginate dialdehyde (ADA), EDC-NHS, Arg-Glu-
Asp-Val (REDV) peptide, RGD peptide

• Supporting the attachment and
proliferation of HUVECs

Peng et al. (2020)

In vitro (HUVECs and HASMCs) • Inhibiting the proliferation of HASMCs

• Inhibiting the aggregation and activation
of platelets

Vascular graft Non-cellular hydrogel In vivo (New Zealand rabbits with muscle
incision)

Acrylamide, tetramethylethylenediamine (TEMED)
as the catalyst, ammonium persulfate (APS)
initiator, methylene bis acrylamide (MBAA)
crosslinking agent, proanthocyanidin crosslinking
agent, sodium alginate, SrCl2 crosslinking agent

• Anti-calcification ability Lei et al. (2020)

• High mechanical stability and elasticity

In vitro (HUVECs) • Inhibiting the activation of platelets

• Enhancing the adhesion and proliferation
of ECs

Vascular Cell-laden bioink In vitro (NIH-3T3 and HUVECs) Sodium alginate (Alg), CaCl2 crosslinking agent • 3D bioprinting of large-scale pre-
vascularized tissue with tubulogenesis

Heidari et al.
(2023)

Vascularized tissue
construct

Cell-laden bioink In vitro (HSFs and HUVECs) Methacrylic anhydride, Methacrylated hyaluronic
acid (Hya-MA), LAP photoinitiator

• In vitro vasculogenesis in 3D bioprinted
constructs

Comperat et al.
(2023)

• No significant difference between the
biological capacity of methacrylated
decellularized amnion (AdECMMA) or
methacrylated decellularized chorion
(CdECMMA) bioinks

Cartilage Cell-containing hydrogel In vitro (bovine chondrocytes) Fibrinogen, thrombin • Secreting cartilage-specific ECM
components, such as sGAG by
chondrocytes encapsulated in AM-fibrin
hydrogel

Hussin et al.
(2011)

Cartilage Cell-containing injectable hydrogel In vitro (ADSCs and primary chondrocytes) — • The synergistic effects of dAM hydrogel
and ADSCs in inhibiting catabolic
response of IL-1β

Bhattacharjee et al.
(2020)

• Inhibiting Wnt/β-catenin signaling
pathway

Cartilage Non-cellular hydrogel film No in vitro or in vivo studies Chitosan • Enhancing the mechanical properties of
chitosan by incorporating dAM hydrogel

Toniato et al.
(2020)

Cartilage Cell-containing injectable hydrogel In vivo (Collagenase II-induced osteoarthritis
(OA) rat model)

— • The synergistic effect of ADSCs
encapsulated in dAM hydrogel in
mitigating the progression of OA by

Bhattacharjee et al.
(2022)

(Continued on following page)
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TABLE 2 (Continued) Summary of application of AM/dAM hydrogels for various TE fields.

Tissue Product Experimental setting Additive materials Outcome Ref.

decreasing inflammation and activating
regenerative pathways

Fetal membrane Non-cellular 3D-printed medical device In vivo (Pregnant swine model with damaged
fetal membrane during fetoscopic surgery)

Polycaprolactone (PCL) framework • Sealing fetal membrane defect Lee et al. (2018)

In vitro (NIH-3T3 cells and amnion MSCs) • Preservation of amniotic fluid

Uterine Non-cellular injectable hydrogel In vivo (Female Sprague Dawley Rat model
of IUA)

— • Fibrosis reduction of IUA Li et al. (2022)

In vitro (rEECs) • Regeneration of endometrium

• Enhanced pregnancy rate

Dental pulp Both non-cellular and cell-loaded spongy
scaffolds derived from dAM hydrogel

In vivo (Sprague-Dawley rats) EDC-NHS crosslinking agents • Mild to moderate inflammatory response
after implantation

Bakhtiar et al.
(2022)

In vitro (hDPSCs) • Revasculation of newly formed pulp tissue

Dental pulp Both non-cellular and cell-loaded
hydrogel

In vivo (Sprague-Dawley rats) Genipin crosslinking agent • Filling the root canal using injectable dAM
hydrogel

Bakhtiar et al.
(2023)

In vitro (hDPSCs) • Low immunological responses

• Formation of pulp-like tissue with
vascularization

General tissue
engineering/cell delivery

Cell-containing hydrogel In vivo (Sprague-Dawley rats) — • Supporting cell viability for 3D cell culture Ryzhuk et al.
(2018)

In vitro (PMSCs, BM-MSCs, C2C12, OECs) • Less inflammation and immune response
for dAM hydrogel compared to collagen
hydrogel after 2 weeks of implantation

3D cell culture Both non-cellular and cell-loaded
hydrogel

In vitro (hBM-MSCs) Methacrylic anhydride (MA), Irgacure
2959 photoinitiator

• Versatile platform for 3D culture of cells Deus et al. (2022)

• Control over cell alignment by fabricating
nano and micro topographical features on
hydrogel surface

Ovarian organs Cell-containing hydrogel In vitro (MEFs) Alginate (Alg) • 3D culture of oocytes Haghshenas et al.
(2022)

• No significant difference in antral follicle
formation between dAM-Alg hydrogel and
Alg control group

aHeprasil is a thiolated hyaluronic acid with conjugated heparin groups.
bGlycosil is a thiolated hyaluronic acid.
cGelin-S is a thiolated gelatin.
d2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone was used as the photoinitiator in Murphy et al. (2017) reference work.
eExtralink is a polyethylene glycol diacrylate (PEGDA) crosslinker.
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2021). The main focus of the current work is exploring the
development of AM-derived hydrogel and its widespread
applications in TE and RM.

The preparation of hydrogels from the decellularized
extracellular matrix (dECM) consists of 1) enzymatic digestion
into monomeric protein components and 2) the temperature-
induced gelation of pH-neutralized pre-gel solution (Saldin et al.,
2017). In the first step, the cleavage of the terminal telopeptide
region of collagen within dECM material by the pepsin enzyme
enables digesting in dilute acidic solutions (Li et al., 2022). The
removal of terminal peptides of collagen also attenuates the
immunogenicity of the dECM-derived hydrogels (Lynn et al.,
2004). In the second step, the reformation of intermolecular
bonds within monomeric protein units forms a three-
dimensional (3D) gel network (Johnson et al., 2011). The loss of
water during incubation at physiologic temperature increases the
entropy within the dECM pre-gel solution and subsequently forms
aggregates of collagenous subunits in a so-called “self-assembly”
process (Saldin et al., 2017).

The processing steps of AM tissue into a temperature-responsive
injectable hydrogel include: 1) dissection of AM from underlying
chorion tissue, 2) washing blood clots, 3) decellularization of AM
tissue, 4) lyophilization and pulverization, 5) enzymatic digestion
with pepsin, 6) incubation of pH-neutralized dAM solution at
physiologic temperature (Kafili et al., 2022). Figure 3 shows these
steps and the potential applications of the derived hydrogels.
Processing AM into a hydrogel form has some advantages over
the tissue form. The first benefit of AM hydrogel over AM tissue is
related to the homogeneous distribution of biochemical cues in the
hydrogel structure. Although the AM is considered a rich source of
various proteins and bioactive growth factors, the distribution of
these components varies in its different sublayers (Dadkhah Tehrani
et al., 2021). This inhomogeneous distribution of the biomolecules
may interfere with the aimed therapeutic characteristic (Jahanafrooz
et al., 2023). For instance, the stromal side of AM exhibits better
outcomes for wound healing applications as a result of EGF and
TGF-β content (Gicquel et al., 2009), whilst the epithelial side shows
promising results for ophthalmology surgeries due to its low content
of TGF-β (Walkden, 2020). This medical choice is based on the fact
that a high TGF-β content offers a stimulating effect on the over-
deposition of collagen that may lead to hypertrophic scar formation
and fibrosis, which in turn causes the loss of corneal transparency
(Torricelli et al., 2016). Conversely, dAM hydrogels provide a more
homogenous distribution of bioactive factors within 3D networks.
On the other hand, despite the low immunogenicity of AM tissue,
there is always a risk of inflammatory responses arising after
transplantation (Gholipourmalekabadi et al., 2020). This issue
can preferably be addressed by using decellularized AM tissue for
the fabrication of injectable and temperature-sensitive hydrogels
(Ryzhuk et al., 2018). Some of the other profits of dAM-derived
hydrogel over AM or dAM tissues may include easier handling,
better cell permeability, and control over tailoring mechanical
properties by changing synthesis parameters, such as
concentration, digestion time, etc. (Kafili et al., 2023a;
Jahanafrooz et al., 2023).

The therapeutic properties of dAM hydrogels are multifaceted.
So far, dAM hydrogels have been employed for the regeneration of
the heart, skin, dental pulp, cartilage, vascular, fetal membrane,

endometrium, and to a lesser extent for cell carrier vehicles
(Figure 3B). It is noteworthy to mention that these studies are
carried out as in vitro and in vivo setups. Considering the potential of
AM tissue in wider biomedical applications, such as oral mucosa
regeneration, bone repair, corneal regeneration, urinary bladder
reconstruction, vaginoplasty, etc., its hydrogel has not yet been
fully exploited. We believe that dAM hydrogels can be used in
broader fields of medical therapies in the future, as it is reviewed in
the following sections. A summary of recent advancements is shown
in Table 2.

5.1 Tissue engineering and regeneration

The processing of AM/dAM into a hydrogel form has just
become a focus of research in the last decade. However, even in
such a short time, it has proven its therapeutic potential in the field
of tissue engineering and regeneration of injured tissues for a broad
range of tissue types. These biomedical applications of AM/dAM
hydrogels based on target tissue are summarized in the
following sections.

5.1.1 Skin regeneration
Murphy et al. (2017) were among the pioneering research

groups to develop amnion hydrogels by utilizing a photo-
crosslinkable hyaluronic acid-based hydrogel containing
solubilized amnion (HA-SAM). The HA-SAM liquid could be
placed on the wound bed and crosslinked within several seconds
of being exposed to UV light. An important feature was the
utilization of native AM tissue instead of decellularized AM
tissue. The solubilization process could kill the viable cells inside
the AM tissue, inhibiting the immune rejection concerns. Further
studies determined that the HA-SAM hydrogel provided accelerated
wound closure, enhanced re-epithelialization, and higher density of
small blood vessels compared to HA hydrogel-treated and non-
treated wounds. The promoted neovascularization observed in
wounds treated with HA-SAM hydrogel was most probably
attributed to the presence of growth factors, such as fibroblast
growth factor (FGF) family, epidermal growth factor receptor
(EGF-R), and VEGF preserved within SAM (Cross and Claesson-
Welsh, 2001). In another study, Murphy et al. (2020) showed that
treating full-thickness wounds with HA-SAM hydrogel or AM
powder resulted in faster wound closure rate, faster re-
epithelialization, and minimum contraction compared to other
treatment groups, including sterile bandage, HA hydrogel
without SAM, and two commercial products of AmnioGraft
(cryo-preserved amnion sheet) and Graftjacket (decellularized
human dermis matrix). The better performance of AM-related
products compared to other treatments could be attributed to the
preservation of various biochemical cues (e.g., heparin sulfate,
chondroitin sulfate, and other GAGs and proteoglycans) that
regulate the regeneration of tissue (Murphy et al., 2020). The
outcomes of skin regeneration by these AM products in the
porcine model revealed the potential of these AM-derived
products for translational medicine (Murphy et al., 2020). Zhang
et al. (2021) applied a methacrylated gelatin (GelMA) layer over a
methacrylated decellularized human AM (AdECMMA) to fabricate
a photo-crosslinkable hydrogel for wound healing. This rationale
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design of the biomimetic bilayer was based on the mechanical
support provided by the GelMA layer and the bioactivity
provided by the AdECMMA component. Their results showed
that the bilayer AdECMMA-GelMA skin substitute supported the
transformation of fibroblasts into myofibroblasts and enhanced
wound contraction during the wound-healing process.
Furthermore, the bilayer scaffold exhibited promoting effects on
collagen deposition and angiogenesis in vivo. These findings further
elaborated the preference of the dAM-derived biomaterial compared
to other prevalent biocompatible materials, such as GelMA, owing to
its rich bioactive components (Zhang et al., 2021). Chen et al. (2023)
have developed a composite hydrogel derived from a mixture of
AdECMMA and GelMA for treating skin wounds. The wound
healing process was improved accompanied by keratinization of
the epidermal layer in the AdECMMA-GelMA group compared to
the GelMA-only group. Interestingly, the infiltration of
inflammatory cells in the tissue treated with composite hydrogel
was significantly less than that in the wounds treated with GelMA-
only hydrogel, which is likely due to intrinsic anti-inflammatory
characteristic of dAMmatrix (Chen et al., 2023). Nasiry et al. (2021)
prepared three-dimensional (3D) microporous scaffolds by
lyophilization of dAM hydrogels for the treatment of diabetic
wounds. The engraftment of dAM-derived scaffolds into diabetic
wounds caused upregulation of regeneration markers, including
TGF-β, bFGF, and VEGF, and downregulation of pro-
inflammatory cytokines, including TNF-α and IL-1β. The
collagen deposition was also increased in diabetic wounds, which
could be due to the presence of collagen fibers or stimulation of
collagen synthesis by fibroblasts as a result of bFGF and TGF-β
cytokines preserved in the dAM scaffold (Nasiry et al., 2021).

The insufficient printability of dAM-derived hydrogels is similar
to other dECM-derived hydrogels due to their low viscosity and
time-limiting temperature-sensitive gelation process (Kim et al.,
2020). We have recently designed and developed a printable
nanoengineered bioink based on dAM hydrogels for wound
healing (Kafili et al., 2023b). We have shown that the
employment of sodium alginate (Alg), as a structurally
supportive component, in combination with dAM hydrogels
provides enough stability for 3D printing of self-standing tubular
constructs. We have also investigated the effect of Laponite
nanosilicate as a physical crosslinker and rheology-modifying
agent on the improvement of printing quality. Laponite is a disc-
shaped two-dimensional nanoclay with a thickness of ~1 nm and a
diameter of about 25–30 nm (Kafili et al., 2023c). The anisotropic
distribution of electric charges on the surface/edge of Laponite
nanosilicates enables them to interact with various biopolymers
non-covalently and strengthen the polymeric networks via the
formation of physical crosslinks (Lokhande et al., 2018). Our
results have affirmed that non-covalent electrostatic interactions
between the positively charged edges of Laponite with anionic Alg or
negatively charged surfaces of Laponite and amine groups of the
dAM matrix improve the mechanical stability and rheological
characteristics required for better printability (Kafili et al.,
2023b). Nevertheless, nozzle clogging due to the formation of
nanosilicate aggregates in ion-containing dAM solution was likely
to occur when the Laponite concentration exceeded 2 %w/v. On the
other hand, the addition of nanosilicates cooperates in the
acceleration of cell proliferation and migration as a result of the

bioactivity of ions degraded from the nanosilicates (Kafili et al.,
2023b). In an attempt to improve the dispersibility of Laponite in
dAM hydrogels, we have examined the effect of stabilization of
nanosilicates by amine-terminated polyethylene glycol (AT-PEG)
(Kafili et al., 2022). We have demonstrated that layer-by-layer self-
assembly of collagen fibers and Laponite clusters occurs in Laponite-
containing dAM hydrogels due to the disparate hydrophilic nature
of nanosilicates and the dAM matrix. The coating of Laponite
nanosilicates with the hydrophilic AT-PEG agent improves their
distribution in the hydrophilic dAM matrix (Kafili et al., 2022).
Therefore, dAM hydrogels containing PEG-modified nanosilicates
are a potential candidate for TE applications, particularly for skin
regeneration.

Rahman et al. (2019) have shown the advantageous effect of
AM/Aloe vera (AV)/carboxymethyl cellulose sodium (CMC-Na)
hydrogels for the medication of second-degree burns. Their results
have determined that the healing rate of burn wounds treated with
AV hydrogel is higher than that of AM-treated and AM/AV-treated
wounds. However, more scar formation is noticeable after 4 weeks.
Herein, the scar formation in the AM group is less than in the AV
and AM/AV groups. The AM/AV group also exhibits a higher
inflammatory score after 18 days of treatment. Therefore, it can be
deduced that the synergistic effect of AM/AV facilitates the re-
epithelialization process without affecting wound healing in terms of
the inflammatory response, healing rate, remaining scar mark, and
angiogenesis. Rana et al. (2020) have developed a hydrogel
containing AM, collagen, and CMC-Na gelling agent for treating
second-degree burn wounds. Their results indicate that the AM-
containing hydrogel facilitates the healing process without a sign of
scar formation and promotes re-epithelialization in a quicker time,
as compared to the control groups (i.e., 1% silver sulfadiazine and
the non-treated group as positive and negative control, respectively).
Islam et al. (2023) have shown the positive effect of titanium dioxide
(TiO2) nanoparticles (NPs) in AM gels containing Carbopol 934 (as
a gelling agent) for the treatment of second-degree burn wounds.
Their study reveals that treating burn wounds with AM-TiO2 gels
enhances wound closure and re-epithelialization while encouraging
vascular formation. Their results also exhibit less scar formation
after the treatment of burn wounds, which is an important feature
from the aesthetic point of care. Similarly, the antibacterial, anti-
inflammatory, and anti-angiogenic properties of silver NPs for the
treatment of burn wounds have been shown in several studies
(Pourali and Yahyaei, 2016; Huang et al., 2022; Ajaykumar et al.,
2023). For instance, Jhumi et al. (2023) have shown that the
incorporation of Ag NPs into AM gels accelerates the healing of
second-degree burn wounds in terms of expedited re-
epithelialization and elevated contraction. It is noteworthy that in
this study and many others (Rahman et al., 2019; Rana et al., 2020;
Islam et al., 2023; Jhumi et al., 2023), AM tissue has been utilized
without decellularization.

5.1.2 Heart regeneration and treatment
Myocardial infarction (MI) is a heart failure-associated issue

caused by blockage of blood flow to the heart followed by ischemia
and tissue death (Kim et al., 2018). The disability of the myocardial
tissue to regenerate itself after MI leads to scar formation during left
ventricular (LV) regeneration and eventually heart failure (Tallquist
and Molkentin, 2017). So far, various tissue engineering (TE)-based
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FIGURE 4
Development of AM-based hydrogels for vascular tissue engineering [adapted with permission from Peng et al. (2020), Copyright (2020) American
Chemical Society]. (A) ADA-dAM hybrid hydrogel modified with REDV peptide as a vascular graft. (A-i) Representative image of modification steps of dAM
hydrogel as an artificial vascular graft. (A-ii) Chemical bondings between dAM, ADA, and REDV peptide. (A-iii) CLSM images of HUVECs loaded in various
dAM-based hydrogels, including fresh dAM, ADA-dAM, ADA/REDV-dAM, ADA/RGD-dAM, and GA-crosslinked dAM hydrogels stained with
rhodamine-phalloidin for cytoskeleton organization and DAPI for cell nuclei. (B) Coaxial bioprinting of vascularized constructs [Reprinted from Heidari
et al. (2023), Copyright (2023), with permission from Elsevier]. (B-i) Bioprinting of lattice structure using coaxial nozzle containing cell-loaded Alg-dAM
particulate bioink as sheath and CaCl2 crosslinker solution as core material. (B-ii) Perfussability of the microchannels in 4-layer bioprinted construct
exhibited through injection of orange dye. (B-iii) Live-dead staining of HUVECs in bioprinted microchannels and their cross section indicating
tubulogenesis. (B-iv) Mechanical properties of lattice constructs printed using bioinks containing various amounts of dAM powder.
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treatments, including stem cell therapies, cardiac patches, and
injectable hydrogels, have been employed to improve cardiac
regeneration after MI (Hashimoto et al., 2018). However, studies
on the application of dAM-derived hydrogels for heart treatment are
rare. The angiogenesis, antifibrotic, and anti-inflammatory
properties of the dAM-derived matrix offer an exquisite
alternative for the treatment of heart post-MI (Blume et al.,
2021). In a recent study by Henry et al. (2020), the treatment of
MI-induced myocardium using injectable dAM hydrogels has been
demonstrated. They have shown that dAM-treated myocardium
with acute infarction exhibits higher left ventricular ejection fraction
(LVEF), enhanced fractional shortening, and reduced infarct size
compared with the PBS-treated control group.

5.1.3 Vascular tissue engineering
Cardiovascular diseases are among the common complications

faced by modern societies that may lead to death in some cases
(Newman et al., 2017). One of the main medical procedures for
treating cardiovascular diseases is the replacement of the vasculature
with artificial grafts (Adipurnama et al., 2017). Synthetic vascular
grafts suffer from the occurrence of stenosis or thrombus after
transplantation due to their intrinsic procoagulant property and low
cell adhesion rate (Radke et al., 2018). Among various dECM-
derived materials, dAM has attracted abundant attention for
vascular replacement due to its biological properties, including
cytocompatibility, anti-inflammation, anti-fibrosis, and low
immunogenicity (Swim et al., 2019; Cheng et al., 2021; Wang
et al., 2023). Nevertheless, the dAM sheet lacks the appropriate
processability required for vascular reconstruction while its rapid
biodegradability limits in vivo applications (Wehmeyer et al., 2015).
Peng et al. (2020) have developed a dAM hydrogel-based
biomaterial as an artificial vascular intima that mimics the
structural and functional features of natural blood vessels
(Figure 4Ai). The designed vascular graft is composed of a
thermosensitive dAM hydrogel crosslinked with alginate
dialdehyde (ADA) via chief-base reaction. The crosslinking is
preceded by imine linkage between aldehyde groups of ADA and
amine groups of dAM. The hydrogel is further grafted with Arg-Glu-
Asp-Val polypeptide (REDV) via 1-ethyl-3-(3-dimethyl
aminopropyl) carbo-diimide (EDC)/N-hydroxy sulfosuccinimide
(NHS) catalysis to mimic the anticoagulant characteristic of
natural blood vessels (Figure 4Aii). The REDV peptide is an
endothelial cell (EC)-specific ligand that is commonly utilized for
the modification of vascular substitutes because of its potential to
stimulate rapid endothelialization while inhibiting platelet adhesion
(Yang et al., 2015). As shown in Figure 4Aiii, this vascular graft
shows selectivity for supporting the adhesion and proliferation of
ECs while impeding the attachment and proliferation of smooth
muscle cells (SMCs) (Peng et al., 2020). Implantation of the ADA/
REDV-dAM vascular graft in rabbit models provides a template for
EC growth along with hindering thrombosis occurrence. Lei et al.
(2020) have developed a vascular graft based on dAM-
polyacrylamide (PAM)-alginate (Alg) hydrogels to support the
adhesion, proliferation, and migration of ECs while inhibiting the
activation of platelets. This vascular graft enhances the secretion of
nitrogen oxide (NO) and prostacyclin (PGI2) by HUVECs, which in
turn play important roles in vascular remodeling. Besides, the graft
exhibits an anti-calcification effect, which is presumably related to

the presence of anti-inflammatory factors within the dAM matrix.
These factors significantly downregulate the secretion of
calcification-related proteins by inflammatory mediators, such as
TNF-α and IL-6 (Pober and Sessa, 2015; Lei et al., 2020).

In a recent study, a cell-laden construct with vessel-like
microchannels was 3D bioprinted using a coaxial nozzle with
cell-encapsulated Alg bioink containing particulate dAM tissue as
sheath and CaCl2 crosslinker solution as core material (Figure 4Bi)
(Heidari et al., 2023). By changing the feed rate of core and sheath
materials, perfusable microchannels with a thickness between
100 and 400 μm were successfully fabricated (Figure 4Bii). This
study confirmed that HUVECs encapsulated in optimized bioink
with 0.6 %w/v dAM particle content within the bioprinted construct
were able to arrange themselves toward tube formation as a sign of
the formation of blood vessels (Figure 4Biii). Therefore, these types
of bioprinted constructs may have great potential for engineering
pre-vascularized thick tissues. However, using the particulate dAM
in the bioink formulation led to a declined elastic modulus of the
bioprinted constructs as a result of weak chemical bonding between
Alg and dAM particles (Figure 4Biv). Moreover, the high content of
dAM particles in the bioink hydrogel caused reduced pore sizes by
filling the pore areas within the bioprinted scaffold, which may harm
nutrient transportation and cell activities, such as cell proliferation.
Therefore, it seems that using the solubilized form of dAM as bioink
can be considered a better alternative instead of the direct
incorporation of dAM particles in the formulation to resolve the
above-mentioned challenges (Lee et al., 2020). In another study done
by Comperat et al. (2023), bioinks comprised of 0.3% methacrylated
decellularized amnion (AdECMMA) or methacrylated
decellularized chorion (CdECMMA) reinforced with 1.5%
methacrylated hyaluronic acid (Hya-MA) was utilized for 3D
bioprinting of vascularized explants. The matured tissue
constructs bioprinted with HUVECs encapsulated in
AdECMMA-HyaMA and CdECMMA-HyaMA bioinks
demonstrated a better capillary-like structure organization and
vasculogenic networks compared to HyaMA-only bioink as the
control group. However, the incorporation of CdECMMA or
AdECMMA in the bioink did not provide significantly different
results for the in vitro maturation of ECs.

5.1.4 Cartilage regeneration
Osteoarthritis (OA) is a disease condition of cartilage

degeneration caused by inflammation induced by the expression
of IL-1β and TNF-α pro-inflammatory cytokines (Heinegård and
Saxne, 2011). Bhattacharjee et al. (2020) have employed a dAM
hydrogel, as a platform for delivering adipose-derived stem cells
(ADSCs), to decrease IL-1β induced inflammation in stimulated
chondrocytes. ADSCs are well-known for their paracrine effects on
inhibiting inflammation and down-trending cartilage degeneration
through secreting anti-inflammatory factors (e.g., IL-10, IL-1RA,
and TGF-β). On the other hand, the AM is capable of suppressing
pro-inflammatory cytokines, including IL-1α and IL-1β, and
decreasing the expression of matrix-degrading factors (MMPs)
through the presence of natural MMP inhibitors within its
matrix (Niknejad et al., 2008). Moreover, the elastase inhibitors,
including elafin, SLPI, and β-defensin within AM, are responsible
for their potential anti-inflammatory and antibacterial properties
(King et al., 2007). Hence, dAM hydrogels for carrying ADSCs not
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only support the viability, proliferation, and stemness of stem cells
but also provide a synergistic effect on reducing catabolic responses
of inflamed chondrocytes (Bhattacharjee et al., 2020). In another
study, Bhattacharjee et al. (2022) investigated the effect of
intraarticular injecting of the dAM hydrogel with or without
ADSCs into a collagenase-induced OA rat model. They have
shown that both cell-free dAM hydrogels and ADSC suspensions
provide comparable outcomes in decreasing inflammation-induced

damage and promoting tissue regeneration in articular cartilage.
Meanwhile, the encapsulation of ADSCs into dAM hydrogels
synergetically enhances the therapeutic effect.

Chitosan, a linear polysaccharide derived from chitin, is well-
recognized for its biocompatibility and antibacterial properties
(Tohidi et al., 2022). The combination of chitosan with the dAM
matrix containing various types of collagen (especially collagen type
IV) offers an interesting choice of biomaterial for biomimicking the

FIGURE 5
(A) Endometrium regeneration using dAM hydrogel [Reprinted from Li et al. (2022), Copyright (2022), with permission from Royal Society of
Chemistry]. (A-i) Histological Masson’s trichrome staining of uterine after 3–28 days after operation in the sham operation group (Sham), endometrium
damage group (IUA), and dAM hydrogel treated group (dAM gel); (A-ii)Quantification of fibrotic area in uterine treated from different groups; (A-iii) IHC
staining of CD31 at 3, 7, 14, and 28 days post-operation (Black arrows show the capillaries); (A-iv) quantification of number of blood vessels. (B)
Healing of fetal membrane using developed decellularized amnion analogous medical device (AMED) [Reprinted from Lee et al. (2018), Copyright (2018),
with permission from Wiley]. (B-i) Fetoscopic surgery procedure using inserted AMED to fill the amniotic cavity; (B-ii) Histological Masson’s trichrome
staining of en bloc sections of uterine in negative control (unmanipulated sac), positive control (unclosed entry site), and fetoscopic access site covered
with commercial AmnioGraft patch and with AMED.
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cartilage-related microenvironment (Toniato et al., 2020). Toniato
et al. (2020) have developed a hybrid chitosan-dAM hydrogel for
articular cartilage TE. Despite tailoring the mechanical properties by
adjusting the concentration of dAM (2.5, 5, and 10%w/v) at constant
chitosan concentration (2%w/v), the highest obtained elastic
modulus (i.e., ~80 kPa for 2% chitosan-5% dAM hydrogel) is still
inferior to that of native articular cartilage [500–2000 kPa (Zhou
et al., 2018)]. Therefore, chitosan-dAM hydrogels require further
mechanical support to better mimic the cartilage tissue regarding
mechanical properties. Hussin et al. (2011) have fabricated 3D
scaffolds for cartilage TE by incorporating the HAM particulates
(without decellularization) into fibrin hydrogels. The resemblance of
the chondrocyte-embedded fibrin-HAM hydrogel to hyaline
cartilage with the capability of secreting sulfated GAG has been
demonstrated.

5.1.5 Endometrium and fetal membrane
regeneration

Intrauterine adhesion (IUA), also known as Asherman
syndrome (AS), is a uterus disease situation related to the
formation of fibrotic tissue in the uterine cavity as a result of
damage to the endometrium (Hooker et al., 2014). Decellularized
and lyophilized AM is one of the ECM-derived biomaterials that
have been utilized clinically for treating intrauterine damage by
suppressing TGF-β1 (which is responsible for developing IUA)
(Chen et al., 2018). However, the fresh dAM membrane is very
difficult to fix and suture into the uterus cavity. Hence, processing
dAM into hydrogels provides the opportunity to fill irregularly
shaped cavities. Islam et al. (2023) have recently employed a
thermosensitive dAM hydrogel to prevent IUA in rat models. It
has been shown that the injection of the dAM hydrogel into the
uterus cavity can significantly decrease fibrosis formation through
re-epithelialization of the damaged endometrium (Figures 5Ai, ii),
while supporting angiogenesis within the regenerated endometrium
(Figures 5Aiii, iv).

The rupture of fetal membranes during pregnancy is a serious
issue that endangers the fetus and leads to premature delivery
(Chmait et al., 2017). Lee et al. (2018) have designed a 3D-
printed dAM-analogous medical device (AMED) comprising a
polycaprolactone (PCL) framework filled with a dAM hydrogel
for treating fetal membrane defects (Figure 5Bi). The fabricated
AMED exhibits surgical handling privilege along with
biocompatibility, non-immunogenicity, and proper healing of
AM compared to other commercial equivalents (such as
AmnioGraft patch, Bio-Tissue Inc.) to seal the fetal membrane
and block the leakage of amniotic fluid (Figure 5Bii). As the
developed AMED is easy to apply by a fetoscopic instrument, the
device significantly decreases the surgical time in comparison with
the transplantation of AmnioGraft.

5.1.6 Dental pulp regeneration
An appropriate scaffold for endodontic regeneration requires

biocompatibility to support the growth, proliferation, and
differentiation of cells to the odontogenic lineage (Yuan et al.,
2011). So far, various types of scaffolds using natural, synthetic,
and composite biomaterials have been utilized for the restoration of
endodontic functions (Moussa and Aparicio, 2019). Among the
various types of scaffolds, injectable hydrogels are a preferable

option to fill the canal roots with complex geometry (Chang
et al., 2017). The dAM tissue as a biological scaffold is
considered a promising candidate for dental pulp regeneration,
mostly owing to its angiogenic and anti-inflammatory properties
along with its accessibility (Honjo et al., 2015). Bakhtiar et al. (2022)
have investigated the potential of spongy scaffolds derived from
dAM hydrogels for regenerative endodontics. They have shown that
the subcutaneous implantation of scaffolds derived from dAM
hydrogels can cause mild to moderate inflammatory responses as
evidenced by the migration of mononuclear inflammatory cells,
such as lymphocytes and macrophages, and primary multinucleated
giant cells to the implanted scaffolds. Interestingly, both the cell-free
scaffolds and human dental pulp stem cells (hDPSCs)-loaded
scaffolds have exhibited pulp-like tissue growth in the root canal
area accompanied by angiogenesis after 7 weeks of implantation.
The observed regeneration capacity is attributed to the presence of
bioactive molecules, including bFGF and TGF-β, in the dAMmatrix
(Kim et al., 2012). However, a mild fibrosis formation has also been
observed (Bakhtiar et al., 2022). In another study, pulp regeneration
has been studied by injectable dAM hydrogels with or without
hDPSCs (Bakhtiar et al., 2023). To reduce the biodegradability of the
hydrogel, Genipin (up to 10 mM) was utilized to react with free
amine residues of dECM (Nagaoka et al., 2014; Výborný et al., 2019).
In vivo studies on the tissue regeneration in the root canal model
implanted in rat calvaria have revealed that the hDPSC-seeded dAM
hydrogels do not cause a significant difference in pulp-like tissue
formation compared to cell-free counterparts. Therefore, the pulp-
like tissue regeneration is likely attributed to the migration of
housing calvarial progenitor cells instead of the odontogenic
differentiation of hDPSC cells. No significant differences in
infiltration of inflammatory cells, angiogenesis, and fibrosis have
also been noticed. In summary, the dAM hydrogels seem to be useful
for the formation of vascularized pulp-like tissue without sufficient
effect on the formation of tubular dentin structure (Bakhtiar
et al., 2023).

5.1.7 Ocular regeneration
Both corneal tissue and AM share some mutual characteristics

like thin thickness, being avascular, and proper light transmittance
(Deihim et al., 2016). Therefore, AM has a long history of ocular
transplantation for treating corneal injuries or diseases by
promoting re-epithelialization, reducing scar formation and
neovascularization, and controlling inflammatory responses
(Pogozhykh et al., 2020). However, AM transplantation is prone
to dissolving and rapid degradation that burdens multiple painful
surgeries and might cause allergic reactions in some cases as an
allograft (Shimazaki et al., 2004). Therefore, processing dAM into in
situ forming hydrogels seems to be a practical solution to address
these issues.

Yazdanpanah et al. have shown that thermoresponsive corneal
dECM (dCO)-derived hydrogel possesses proper transparency as
well as bioactivity to be used in ocular TE applications, owing to the
presence of essential growth factors and proteins, such as collagen,
lumican, keratocan, and laminin within corneal dECM
(Yazdanpanah et al., 2021). They also compared the ECM
composition of dCO with dAM and showed that these two tissue
matrices share a great portion of similar proteins. Moreover, the
dAM contained proteins like decorin and periostin, which are well-
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known for their therapeutic effects on the cornea (Yazdanpanah
et al., 2021; R Mohan et al., 2011). These comparisons pave the way
for the application of dAM hydrogel for ocular regeneration as well.
We even predict that thermoresponsive dAM hydrogel can even
provide better dynamic mechanical properties compared to dCO
hydrogel at the same concentration by comparing available data in
the literature [e.g., G′~ 40 Pa for dCO hydrogel (Yazdanpanah et al.,
2021) as compared to G′~1.5 kPa for dAM hydrogel (Li et al., 2022)
at the same concentration of 15 mg.mL−1]. The higher mechanical
strength of dAM hydrogel compared to dCO hydrogel can enhance
the structural stability of hydrogel upon application on ocular
defects. However, to the best of our knowledge, there is no
publication about the application of dAM hydrogels for ocular
regeneration or TE, yet. Nevertheless, the incorporation of AM
extract into various hydrogel formulations for treating ocular
diseases has been exploited in several cases. For example, Luo
et al. (2021) proposed the application of dAM extract (dAME) in
different ways, such as eye drops, and the incorporation of dAME in
temperature-sensitive P407 hydrogels or freeze-dried PVA tablets to
treat corneas with acid burns. Treatment of severe corneal burns
with these three alternatives was accompanied by the best results in
terms of less stromal opacity and faster corneal regeneration for in
situ forming dAME containing P407 hydrogel, followed by second
best results for dAME containing PVA tablets, and moderate results
for dAME liquid drop. The better therapeutic effect of dAME
incorporated into a hydrogel can be due to sustained and long-
term release of dAME compared to two other administration
methods that improve its efficiency and reduce its loss during
treatment. Moreover, the mRNA expression of TGF-β1 in
corneal burns treated with hydrogel and tablet containing dAME
was less than that in dAME liquid drop-treated and control groups,
which impedes excessive stromal fibrosis. During the inflammatory
phase of healing, the corneas treated with dAME incorporated
hydrogel and tablet expressed higher LRIG1, which is a protein
in corneal cells that prevents inflammatory responses and
contributes to corneal transparency. In another study, eye pads
were fabricated by loading AM extract (AME) in GelMA hydrogel
and were used for treating ocular chemical injuries (Chen et al.,
2020). The AME-GelMA eye pads showed similar re-
epithelialization compared to AM transplantation, while the
expression of TGF-β1 in AME-GelMA treated groups was lower
than that in AM transplanted and control groups leading to the
occurrence of less scar hyperplasia. In addition to these therapeutic
effects, the AME-loaded GelMA eye pads have the advantage of
processability and easier handling over AM tissue and can be
fabricated in a dome shape to fit the conjunctival sac.

5.2 Cell therapy and cellular studies

In addition to the therapeutic effect of AM hydrogel for various
TE and regenerative applications, it can further be utilized for other
biological applications. For instance, AM hydrogel has shown
excellent potential as a cell carrier for stem cell therapy (Ryzhuk
et al., 2018). Moreover, it has the potential to be used as an in vitro
platform to study cell behaviors, such as cell-matrix interactions,
and the mechanistic effect of matrix on cell phenotypes, or be
applied for disease modeling and drug screening purposes (Deus

et al., 2022). Accordingly, these applications are discussed in the
following sub-section.

5.2.1 Cell carrier and cell culture platform
During the last decade, the delivery of stem cells to injured sites

has gained great attention and has been applied in several pre-
clinical and clinical experiments (Margiana et al., 2022). Stem cells
are known to regulate the regeneration process of injured tissues by
secreting various types of cytokines and growth factors (Murphy
et al., 2013). However, the delivery of cells into the target tissue still
suffers from insufficient cell survival and cell engraftment after
transplantation. For instance, mesenchymal stem cells (MSCs) are
required to adhere and spread in the desired environment to survive,
thereby cell suspension delivery significantly degrades their
integration into the target tissue (Phinney and Prockop, 2007).
Systemic delivery of stem cells also faces serious issues related to
their entrapment in the capillaries of untargeted tissues (Kraitchman
et al., 2005). Therefore, the delivery of stem cells in a biocompatible
carrier into the desired defect site can ensure their viability and
survival after transplantation (Slaughter et al., 2009). Ryzhuk et al.
(2018) have shown the potential of dAM hydrogels for the delivery
of different cell sources, including placenta-derived mesenchymal
stem cells (PMSCs), by supporting their viability and biological
functionality. The implantation of dAM hydrogel in the back of rats
exhibits less immune cell infiltration as compared to collagen
hydrogel. The lower density of CCR7+ cells (macrophage
marker) in dAM hydrogel compared to collagen hydrogel further
affirms less immune reaction. Deus et al. (2022) have developed
photo-crosslinkable methacrylated decellularized amnion
(AdECMMA) hydrogels as a versatile platform for cell culture
and TE. The results demonstrate that the degree of
methacrylation has a significant effect on the morphology and
viability of the encapsulated hBM-MSCs due to variations in the
viscoelastic properties of hydrogels and their structural porosity.
Micro- and nano-topographical grooves were made on the surface of
the hydrogels and used as a guidance pattern for hBM-MSCs
alignment. It has also been shown that both micro- and nano-
features are very effective on cell spreading as compared to the
hydrogel without topographical features. Haghshenas et al. (2022)
have developed dAM-Alg hybrid hydrogels containing various
amounts of dAM (15 mg/mL, 30 mg/mL, 45 mg/mL) for the 3D
culture of oocytes. Although the developed hydrogels are efficient
carriers for long-term culture of oocytes, no significant differences in
antral formation rate, follicle diameter, and estradiol secretion are
noticed as compared to the control group (Alg-only hydrogel). This
inferior functionality is attributed to the loss of growth factors, such
as bFGF and EGF, after decellularization of AM using sodium
dodecyl sulfate (SDS) that are known to improve follicle growth
(Price, 2016). Hence, the employment of other agents for the
decellularization process of AM should be considered for future
studies to better preserve biochemical cues within the dAM matrix
for delivering oocytes.

6 Conclusion and future prospectives

The AM tissue has a long history in the medical field and has
already been approved for clinical applications, such as treating
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burn wounds and corneal regeneration. There are also several
commercial AM-related products for clinical use (Nejad et al.,
2021). During the last decade, AM/dAM hydrogels have shown
wonderful therapeutic outcomes for the regeneration of
damaged tissues (Dadkhah Tehrani et al., 2021). Therefore,
clinical applications of AM/dAM hydrogels are a rational and
possible trend. Nevertheless, clinicians and researchers need to
be more focused on examining the function of AM/dAM
hydrogels on large animals and standardizing it for clinical
applications to validate its safety and facilitate the
approval processes.

Hydrogels derived from AM are considered a valuable
platform for various medical therapies, owing to their
reservoir of active biochemical cues and excellent bio-
functionality (Deus et al., 2022). However, multiple processing
steps, including decellularization and enzymatic digestion, can
lead to the loss of some ECM components and alleviated
mechanical stability (Sasikumar et al., 2019). It has been
hypothesized that the utilization of micronized AM inside a
hydrogel formulation can address this issue (Heidari et al.,
2023). However, these materials may suffer from the
inhomogeneous distribution of bioactive AM particles in the
hydrogel matrix, interfering with expected therapeutic results.
Processing AM/dAM into a hydrogel form or utilizing AM/dAM
extracts can be considered practical alternatives to resolve these
issues. Besides, the hydrogel derived from dAM privilege over
AM hydrogel in the concept of thermo-sensitivity for minimally
invasive therapies (Li et al., 2022).

Despite the promising medical outcomes of dAM hydrogels,
their low mechanical properties and rapid degradability are some
issues that need to be addressed. Several trending methods, such as
crosslinking and modifying the hydrogel matrix with methacrylate
groups for photo-crosslinking, may be helpful for the reinforcement
of dAM hydrogel networks (Deus et al., 2022; Bakhtiar et al., 2023).
Moreover, the combination of nanotechnology approaches with
dAM hydrogel can be considered a beneficial tool in several
biomedical directions. For instance, the incorporation of gold
nanorods in dAM hydrogels can be considered for improving
electrical conductivity and enhancing the functionality and
maturation of cardiomyocyte cells (Zhang et al., 2019). The
incorporation of TiO2 and silver NPs can offer antibacterial
properties for treating infected or burn wounds as well (Islam
et al., 2023; Jhumi et al., 2023). Other biocompatible
nanomaterials, such as layered nanosilicates, are also usable for
enhancing mechanical stability and printability (Kafili et al., 2023b).
These kinds of examples seem to be endless and worth applying to
provide superior therapeutic outcomes for AM/dAM hydrogels.
Meanwhile, it is of great importance to precisely explore the
effectiveness and biosafety of modified AM/dAM hydrogels
before in vivo and pre-clinical experiments.

3D bioprinting is a powerful and reliable technique that
facilitates controlling the internal structure and bulk
dimensions of designed scaffolds (Abaci and Guvendiren,
2020). This fabrication method also provides control over the
deposition of desired biomaterial or intended cell types on the
exact pre-defined location, which expands the medical relevance
of scaffolds by mimicking native biosystems (De Santis et al.,
2021). It has been a while since dECM-derived bioinks have
proven their priority for TE and RM, owing to their intrinsic
biochemical cues, such as growth factors, cytokines,
glycosaminoglycans, and regulatory proteins (Choudhury
et al., 2018). Nevertheless, the application of dAM bioinks for
3D bioprinting has not been widely explored yet except few
studies (Lee et al., 2018; Kafili et al., 2023b; Comperat et al.,
2023). The preparation of bioinks based on dAM hydrogels is a
huge breakthrough, which broadens its potential for
regenerative therapy.
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Glossary

AABB American Association Blood Bank

AATB American Association of Tissue Banks

ADA Alginate dialdehyde

ADSCs adipose-derived stem cells

Alg alginate

α-SMA Alpha-smooth muscle actin

AM Amnion

AME amnion extract

AMED amnion-analogous medical device

AdECMMA methacrylated decellularized amnion

AMP antimicrobial peptides

AP Acylphosphinate

APS ammonium persulfate

AS Asherman syndrome

AT-PEG amine-terminated polyethylene glycol

AV Aloe vera

BAECs bovine aortas endothelial cells

bFGF basic fibroblast growth factor

BM-MSCs bone marrow-derived mesenchymal stem cells

BMP-7 bone morphogenetic protein-7

CECs Corneal epithelial cells

CdECMMA methacrylated decellularized chorion

CLSM Confocal laser scanning microscopy

CMC-Na carboxymethyl cellulose sodium salt

CSCs Corneal stromal cells)

3D three-dimensional

dAM decellularized amnion

dAME decellularized amnion extract

DAPI 4′,6-diamidino-2-phenylindole

dCO corneal decellularized extracellular matrix

dECM decellularized extracellular matrix

DKK-1 Dickkopf-1

ECM extracellular matrix

ECs endothelial cells

EDC 1-ethyl-3-(3-dimethyl aminopropyl) carbo-diimide

EECs endometrial epithelial cells

EGF epidermal growth factor

EGF-R epidermal growth factor receptor

EG-VEGF endocrine gland-derived vascular endothelial growth factor

FDA Food and Drug Administration

FGF fibroblast growth factor

GA glutaraldehyde

GAG glycosaminoglycan

GelMA methacrylated gelatin

GF Growth factors

HA Hyaluronic acid

HAM human amnion

HASMCs human aortic smooth muscle cells

HBD human beta-defensin

hBM-MSCs human bone marrow-derived mesenchymal stem cells

HDF human dermal fibroblast

hDPSCs human dental pulp stem cells

H&E Hematoxylin and eosin

HEKs human epidermal keratinocytes

HFF human fetal fore-skin derived fibroblast

HGF hepatocyte growth factor

HGF-R hepatocyte growth factor receptor

HLA human leucocyte antigens

HSF human skin fibroblasts

Hya-MA methacrylated hyaluronic acid

HUVECs human umbilical vein endothelial cells

IDO indoleamine 2,3-dioxygenase

IFN-γ interferon-γ

IGF insulin-like growth factors

IGFBP-1 insulin-like growth factor-binding protein 1

IHC immunohistochemistry

IL-10 interleukin-10

IL-1α interleukin-1 alpha

IL-1β interleukin-1 beta

IL-1Ra interleukin-1 receptor antagonist

IL-2Ra interleukin-2 receptor antagonist

IUA intrauterine adhesion

KGF keratinocyte growth factor

KGF-R keratocyte growth factor receptor

LAP Lithium phenyl (2,4,6,-trimethylbenzoyl) phosphinate

LPS lipopolysaccharide

LRIG1 leucine-rich repeats and immunoglubin-like domains 1

LV left ventricular

LVEF left ventricular ejection fraction

MA methacrylic anhydride

MBAA methylene bis acrylamide

MEFs mouse embryonic fibroblasts

MES 2-(N-morpholino) ethane sulfonic
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MI myocardial infarction

MIP-1α macrophage inflammatory protein-1 alpha

MMP matrix metalloproteinase

MMP-8 matrix metallopeptidase 8

MSCs mesenchymal stem cells

NHS N-hydroxy sulfosuccinimide

NICE National Institute for Health and Care Excellence

NO nitrogen oxide

NPs nanoparticles

OA Osteoarthritis

OECs outgrowth endothelial cells

P407 Poloxamer 407

PAM polyacrylamide

PCL polycaprolactone

PDGF platelet-derived growth factor

PECAM-1 platelet-endothelial cell adhesion molecule-1

PEDF pigment epithelium-derived factor

PEGDA Polyethylene glycol diacrylate

PF4 platelet factor 4

PGE2 prostaglandin E2

PGI2 prostacyclin

PlGF placenta growth factor

PMSCs placenta-derived mesenchymal stem cells

PVA Poly(vinyl alcohol)

REDV Arg-Glu-Asp-Val peptide

RGD Arginylglycylaspartic acid

RM regenerative medicine

RT room temperature

SAM solubilized amnion

sGAG sulfated glycosaminoglycan

SLPI secretory leukocyte proteinase inhibitor

SMCs smooth muscle cells

TE tissue engineering

TECs tissue-engineered constructs

TEMED tetramethylethylenediamine

TGF-α transforming growth factor-alpha

TGF-β transforming growth factor-beta

TIMP tissue inhibitors of metalloproteinase

TNF-α tumor necrosis factor-alpha

VEGF vascular endothelial growth factor

VLAM viable lyophilized AM

vWF von Willebrand factor

WAP Whey acidic peptide
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