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Portable measurement systems using inertial sensors enable motion capture
outside the lab, facilitating longitudinal and large-scale studies in natural
environments. However, estimating 3D kinematics and kinetics from inertial
data for a comprehensive biomechanical movement analysis is still
challenging. Machine learning models or stepwise approaches performing
Kalman filtering, inverse kinematics, and inverse dynamics can lead to
inconsistencies between kinematics and kinetics. We investigated the
reconstruction of 3D kinematics and kinetics of arbitrary running motions
from inertial sensor data using optimal control simulations of full-body
musculoskeletal models. To evaluate the feasibility of the proposed method,
we usedmarker tracking simulations created from optical motion capture data as
a reference and for computing virtual inertial data such that the desired solution
was known exactly. We generated the inertial tracking simulations by formulating
optimal control problems that tracked virtual acceleration and angular velocity
while minimizing effort without requiring a task constraint or an initial state. To
evaluate the proposed approach, we reconstructed three trials each of straight
running, curved running, and a v-cut of 10 participants. We compared the
estimated inertial signals and biomechanical variables of the marker and
inertial tracking simulations. The inertial data was tracked closely, resulting in
low mean root mean squared deviations for pelvis translation (≤20.2 mm), angles
(≤1.8 deg), ground reaction forces (≤1.1 BW%), joint moments (≤0.1 BWBH%), and
muscle forces (≤5.4 BW%) and high mean coefficients of multiple correlation
for all biomechanical variables (≥0.99). Accordingly, our results showed that
optimal control simulations tracking 3D inertial data could reconstruct the
kinematics and kinetics of individual trials of all running motions. The
simulations led to mutually and dynamically consistent kinematics and
kinetics, which allows researching causal chains, for example, to analyze
anterior cruciate ligament injury prevention. Our work proved the feasibility of
the approach using virtual inertial data. When using the approach in the future
with measured data, the sensor location and alignment on the segment must be
estimated, and soft-tissue artifacts are potential error sources. Nevertheless, we
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demonstrated that optimal control simulation tracking inertial data is highly
promising for estimating 3D kinematics and kinetics for a comprehensive
biomechanical analysis.
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optimization, musculoskeletal model, change of direction

1 Introduction

Kinematic and kinetic analysis of walking and running leads to
essential insights in sport science and medicine. State-of-the-art
measurement systems use marker-based optical motion capture
combined with floor-embedded force plates or an instrumented
treadmill. However, these systems are expensive and restricted to a
controlled lab environment. Portable systems, such as RGB cameras
or inertial sensors, can measure human motion outside of the lab
and are far less expensive (Tan et al., 2023). Hence, portable
measurement systems could enable longitudinal measurements of
larger study populations under real-life conditions on the sports
field, in the clinic, or at home. For example, change of direction
movements could be measured during practice and in games to
investigate the effectiveness of anterior cruciate ligament (ACL)
injury prevention training programs with a larger evidence (Alanen
et al., 2021) or osteoarthritis progression could be predicted based on
joint loads during daily-living (Bennell et al., 2011).

Recently, the open-source web application OpenCap has been
published, which estimates 3D human movement kinematics and
kinetics from video data of two or more smartphones (Uhlrich et al.,
2023). Pose estimation algorithms, like OpenPose (Nakano et al.,
2020; Cao et al., 2021), directly extract the position of joints or body
landmarks from the video data. OpenCap reconstructs the motion
from these key points using inverse kinematics and obtains the
kinetics by tracking the motion in an optimal control simulation of a
musculoskeletal model (Uhlrich et al., 2023). Camera-based systems
are promising solutions for large-scale studies outside of the lab.
However, cameras require a line of sight, have a limited field of view,
and are not privacy-preserving. These limitations make cameras
unsuitable for the analysis, for example, of sports disciplines where
the athlete travels long distances, team sports where other players
cause occlusions, or home monitoring where the patient’s privacy
should be preserved.

Inertial sensors are small, lightweight wearable sensors that have
an unlimited capture volume compared to cameras. Hence, they can
measure motion in an unrestricted environment without requiring a
line of sight. However, inertial sensors do not measure absolute
positions or joint angles but contain an accelerometer and gyroscope
measuring linear acceleration and angular velocity (Hafer et al.,
2023). This makes the motion reconstruction challenging since
strapdown integration of noisy acceleration and angular velocity
signals leads to drift (Weygers et al., 2020). Sensor fusion algorithms
constraining the motion with kinematic models can improve the
estimation of the joint kinematics as these models reduce integration
drift (Roetenberg et al., 2013; Al Borno et al., 2022; Lavikainen et al.,
2023). In addition to the kinematics, kinetics, specifically joint
moments, ground reaction forces (GRFs), and muscle forces, give
valuable information about the underlying mechanisms in the body.

After motion reconstruction, the kinetics can be estimated with
inverse dynamics (Karatsidis et al., 2019) using estimated GRFs
(Skals et al., 2017) or using pressure insoles (Wang et al., 2023).
However, this approach has the disadvantage that multiple
processing steps are required, while it also results in
inconsistencies between kinematics and kinetics.

Alternatively, machine learning is a promising method to map
inertial measurements to kinematic or kinetic variables [see
Gurchiek et al. (2019); Lee and Lee (2022) for reviews]. Trained
machine learning models can be applied in real-time, allowing direct
feedback to the user. However, many machine learning models do
not provide a complete analysis but estimate only a small number of
variables for a specific application, for example, vertical GRF and
knee flexion angle (Wouda et al., 2018) or knee flexion and
adduction moments (Stetter et al., 2020). Moreover, separate
machine learning models were trained for kinematics and
kinetics without taking the physical relation of the estimated
variables into account (Mundt et al., 2021; Hossain et al., 2023).
These drawbacks make machine learning models poorly
generalizable to other applications and hinder explainability of
potential biomechanical findings.

Physics-based simulations, specifically open-loop optimal
control simulations of musculoskeletal models, have been
investigated extensively as a tool to reconstruct joint and muscle
kinematics and kinetics from optical motion capture and GRF
measurements (e.g., van den Bogert et al., 2011). A simulation is
generated by solving an optimal control problem that minimizes a
multi-objective function combining a tracking term and an energy-
related term with respect to the system dynamics of the model. As a
result, the estimated variables are mutually consistent, enabling the
interpretation of causal chains such that a certain joint angle change
can be related to a change in joint moments or muscle forces.
However, solving these optimal control problems, especially for
complex 3D full-body musculoskeletal models, requires
computationally efficient algorithms (Nitschke et al., 2020).

We previously showed that optimal control simulations of a
sagittal-plane lower-body musculoskeletal model could accurately
estimate kinematics and kinetics from inertial data of seven sensors
for straight walking and running with Pearson correlation
coefficients greater than or equal to 0.93 and 0.90 for the
kinematics and kinetics, respectively (Dorschky et al., 2019).
Furthermore, we found that the same approach achieved similar
accuracy using sparse sensor setups, i.e., setups without an inertial
sensor on each body segment of interest (Dorschky* et al., 2023).
The optimal control problems of both studies tracked the mean
accelerometer and gyroscope signals of multiple gait cycles by
minimizing the sum of squared differences between the mean
measured and simulated signals normalized by the variance of
the measured signals (Dorschky et al., 2019; Dorschky et al.,
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2023). The normalization helps not to track signal components that
are not reproducible over multiple gait cycles. Additionally, a task
constraint enforced the simulation to generate periodic straight gait
cycles to improve convergency. Accordingly, this research was
limited to 2D lower-body kinematics and kinetics of straight
walking and running.

In this work, we extended the previous research on optimal
control simulations for the reconstruction of kinematics and kinetics
from inertial data to the application for arbitrary 3D running
movements, including change of direction movements. Our
contribution to optimal control simulations tracking inertial data
is three-fold: (1)We simulated 3D full-body musculoskeletal models
leading to a high number of unknowns in the optimization problem
and, therefore, a high complexity; (2) We reconstructed individual
trials instead of tracking the mean of multiple trials normalized by
the variance allowing us to investigate changes between trials; (3)
We did not apply any task constraint or assumed any initial state to
be able to reconstruct arbitrary running movements without any
prior knowledge about the movement. To investigate if creating such
reconstructions is theoretically feasible, i.e., if the inertial sensor data
without an initial state contains sufficient information about the
kinematics and kinetics, we reconstructed movements from virtual
inertial sensor signals, for which the desired solution was known
exactly. Virtual data allows us to evaluate our proposed approach in
the absence of potential sources of errors, such as noise or soft-tissue
artifacts. As a reference, we used optimal control simulations, which
tracked marker trajectories from optical motion capture and GRF
data (Nitschke et al., 2023b). From these marker tracking
simulations, we computed virtual accelerometer and gyroscope
data. To evaluate, we generated inertial tracking simulations from
the virtual inertial data for three trials each of straight running,

curved running, and a v-cut of 10 participants. Finally, we compared
the inertial signals, pelvis translation, angles, GRFs, joint moments,
and muscle forces of the marker and inertial tracking simulations
(see Figure 1).

2 Methods

2.1 Data set

We used optical motion capture data of 10 healthy young
participants (4 female, 6 male; age: 27.5 ± 3.5 years; height:
1.76 ± 0.10 m; mass: 71.3 ± 12.1 kg) (Nitschke et al., 2022). The
recordings contained trajectories of 42 reflective markers recorded
with 11 infrared cameras (175 Hz, Qualisys, Gothenburg, Sweden)
and GRFs of the right and left foot (1,750 Hz, Bertec Corporation,
Columbus, United States). The participants first performed a static
trial in a neutral pose with the palms pointing towards the body.
Afterward, the participants performed multiple trials of straight
running, curved running with a radius of 7 m, and a 90 deg v-cut.

We have previously used the optical motion capture data to
evaluate the reconstruction of change of direction motions by
directly tracking marker and GRF data in 3D optimal control
simulations (Nitschke et al., 2023b). Here, in the current study,
we used the results of these marker tracking simulations as a
reference. To generate virtual inertial sensor data, we applied an
inertial sensor model (see Section 2.3) to the marker tracking
simulations. We placed 12 virtual inertial sensors on the
sternum, sacrum, laterally on the right and left humerus, radius,
femur, and tibia, and on the right and left instep at the shoes (see
Figure 2). To represent differences in sensor placement, we shifted

FIGURE 1
Processing pipeline. We used marker tracking simulations that tracked marker trajectories from optical motion capture and ground reaction force
(GRF) data as reference (Nitschke et al., 2023b). Then, we computed virtual accelerometer and gyroscope data which we tracked in inertial tracking
simulations. In the evaluation, we compared various biomechanical variables of the inertial tracking simulations to those from the marker tracking
simulations.
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the virtual sensors along the body segments by a defined offset for
each participant. For example, for the first participant, all sensors
were shifted by 0.5 cm along the body segments from the original
sensor positions. For the 10 participants, we used offsets of ±0.5,
±1.0, ±2.0, ±3.0, or ±4.0 cm, respectively.

2.2 Musculoskeletal model

We used the 3D full-body musculoskeletal model “runMaD”
(Nitschke et al., 2020) for the optimal control simulations. The
model has been adapted for running motions with a change of
direction and has 33 degrees of freedom, 92 muscle-tendon units in
the lower body, and five torque actuators per arm (see Figure 2). For
the simulation, we fitted polynomial functions to describe the
muscle-tendon length depending on the joint angles and modeled
ground contact with a penetration-based model with eight contact

points at each foot [see supplemental information of Nitschke et al.
(2020)]. The generic model was scaled with OpenSim 4.3 (Seth et al.,
2018) using the marker trajectories of the static trial to match each
participant (Nitschke et al., 2023b).

2.3 Inertial sensor model

We employed an inertial sensor model to compute virtual
acceleration and angular velocity for a given state trajectory of
the musculoskeletal model. We used it first to generate virtual
inertial data from marker tracking simulations and then to track
this data in the optimal control problem. We assumed rigid
attachment of the virtual sensor on the body segment at a known
position pSen relative to the segment origin (see Figure 3).
Furthermore, we assumed that the sensor and body segment axes
were aligned. We obtained the position of the segment origin rSeg
and the segment orientation RSeg in the global coordinate system
using forward kinematics.

Using this information, we computed the virtual acceleration a
as following (van den Bogert et al., 1996):

a � RT
Seg €rSeg + €RSegpSen − g( ), (1)

where €rSeg and €RSeg denoted the second order derivatives of the
segment origin and orientation, respectively. The global gravity
vector was g � (0,−9.80665, 0)T. Furthermore, we obtained the
virtual angular velocity ω � (ωx,ωy,ωz)T using the following
skew-symmetric matrix (Craig, 2005):

FIGURE 2
Musculoskeletal model “runMaD” (Nitschke et al., 2020)
illustrating the placement of the inertial sensors shown in blue and
markers in green. In total, 12 virtual inertial sensors were placed on the
sternum, sacrum, laterally on the right and left humerus, radius,
femur, and tibia, and on the right and left instep (fixed to the
calcaneus). Data from 42 reflective markers attached to anatomical
landmarks were used as a reference.

FIGURE 3
Representation of the inertial sensor model. The position of the
virtual sensor pSen was defined in the segment coordinate system
(orange). The position of the segment origin rSeg and the segment
orientation RSeg were defined in the global coordinate
system (green).
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ω[ ]× � RT
Seg

_RSeg �
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎛⎜⎜⎝ ⎞⎟⎟⎠. (2)

Additionally, we defined the analytical derivatives of the
acceleration a and the angular velocity ω to solve the optimal
control problem. The same model implementation was used to
generate virtual inertial data and to track this data. Hence,
theoretically, our virtual inertial data could be tracked exactly,
such that the resulting simulation would match the reference
motion exactly.

2.4 Optimal control problems

To reconstruct the movement from the inertial data, we
generated inertial tracking simulations by solving optimal control
problems using the scaled musculoskeletal models. We aimed to find
control trajectories u that result in state trajectories x, i.e., a motion,
matching the given inertial data as closely as possible while
minimizing effort. To do so, we used direct collocation and
backward Euler discretization to formulate a constrained non-
linear optimization problem with the multi-objective function
J(x, u) and the model dynamics f as constraints.

2.4.1 Objective function
We defined the multi-objective function J(x, u) as a weighted

sum of accelerometer tracking Jacc, gyroscope tracking Jgyr, muscular
effort Jmus, torque effort Jeff, and a small regularization term Jreg:

J x, u( ) � WaccJacc + WgyrJgyr + WmusJmus + WtorJtor

+ WregJreg, (3)

with the weights Wacc, Wgyr, Wmus, Wtor, and Wreg.
The tracking terms minimized the squared difference between

the tracked accelerations a or angular velocities ω and the estimated
signals â or ω̂ as follows:

Jacc � 1
N − 1( )Nacc

∑N−1

k�1
∑Nacc

i�1

ai k[ ] − âi k[ ]( )2
σ2a,i

, (4)

Jgyr � 1
NNgyr

∑N
k�1

∑Ngyr

i�1

ωi k[ ] − ω̂i k[ ]( )2
σ2ω,i

, (5)

where N was the number of collocation points, Nacc the number
of tracked acceleration signals, and Ngyr the number of tracked
gyroscope signals. We normalized the squared difference by the
variance σ2a or σ2ω of the tracked signal over time to scale the
tracking errors relative to each other. Alternatively to the
variance, the tracking error could be scaled by the peak-to-
peak amplitude of the reference signal. However, we observed
that the peak-to-peak amplitude was sensitive to high-impact
motions causing high signal peaks, for example, during initial
contact. In contrast to the gyroscope signal, the acceleration
signal was not tracked for the last node k = N since computing
the second-order derivative of the segment position and
orientation at node N using backward Euler discretization
would require a node N + 1.

To resolve the muscle redundancy problem, the muscular effort
term minimized the sum of cubed neural excitation ne of all lower-

body muscles weighted by the muscle volume wmus to account for
differences in muscle size as follows:

Jmus � 1
NNmus

∑N
k�1

∑Nmus

i�1

wmus,i

∑Nmus

j�1
wmus,j

ne,i k[ ]( )3, (6)

where Nmus = 92 was the number of muscle-tendon units.
Furthermore, we minimized the sum of squared torque controls
m actuating the upper body as follows:

Jtor � 1
NNtor

∑N
k�1

∑Ntor

i�1
mi k[ ]( )2, (7)

where Ntor = 10 was the number of torque actuators. Finally, a small
regularization term was added to support the convergence of the
solver (Nitschke et al., 2023b).

2.4.2 Model dynamics
We ensured the model dynamics in their implicit form

f(x, _x,u) � 0 using the following constraints:

f x k + 1[ ], x k + 1[ ] − x k[ ]
h

,u k + 1[ ]( ) � 0 ∀k � 1, . . . , N − 1,

(8)
f x 1[ ], x 2[ ] − x 1[ ]

h
, u 1[ ]( ) � 0, (9)

with h = T/(N − 1) and the duration T of the motion. This
combination leads to constant derivatives of the state and control
vectors between nodes k = 1 and k = 2, which creates a solvable
problem without having to fix the initial state or introduce a task
constraint (Nitschke et al., 2023b). As a result, arbitrary motions can
be reconstructed. More details about the model dynamics are given
in Nitschke et al. (2020).

2.5 Simulations

We created inertial tracking simulations for three trials each of
straight running, curved running, and a v-cut for each of the
10 participants. In the optimal control problems, we tracked the
virtual acceleration and angular velocity of 12 inertial sensors (see
section 2.1) in the x-, y-, and z-direction sampled at 175 Hz,
resulting in Nacc = Ngyr = 36. The tracking signal started
10 additional samples before the actual motion of interest,
i.e., before the initial contact, to avoid artifacts in the motion of
interest due to the constraint in Eq. 9 (Nitschke et al., 2023b). We set
the duration T of the motion to the duration of the tracking data. To
be comparable to the marker tracking simulations, which served as
reference, we applied the same values for the weights Wmus = 1,
Wtor = 10–1, and Wreg = 10–3 (Nitschke et al., 2023b). Then, we
empirically determined the tracking weightsWacc =Wgyr = 10 based
on the first participant’s simulations such that the magnitudes of the
neural excitations matched those of the marker tracking simulations.
We weighted the accelerometer and gyroscope tracking terms
equally since they should be tracked with the same importance.

As the inertial tracking data does not contain any position
information and, thus, does not specify the global position and
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orientation of the model in the horizontal plane, the objective value
would be the same for two identical simulations that are shifted or
rotated in the horizontal plane. In other words, the global horizontal
pelvis position and rotation at the first node must be prescribed to
define the optimal control problem uniquely. This initial state of the
horizontal pelvis position and rotation could be chosen arbitrarily
without prior knowledge of the motion, e.g., it could be set to zero.
However, to be comparable to the marker tracking simulations, we
set the global horizontal pelvis position and rotation at the first node
equal to those of the marker tracking simulations. All other initial
states, i.e., the global vertical position, the pelvis obliquity, the pelvis
tilt, the joint angles, and the muscle activations, did not need to be
prescribed, since they are uniquely defined by Eqs. 8, 9.

We solved the constrained non-linear optimization problems
with IPOPT 3.12.2 (Wächter and Biegler, 2006). We set the
convergence tolerance for the scaled nonlinear program (NLP)
error to 10–4 and the maximum number of iterations to 2 · 104.
The initial guess was a standing simulation generated with marker
tracking (Nitschke et al., 2023b). To reduce the risk of local optima,
we solved the optimal control problem additionally based on nine
variations of this standing solution created randomly with a
standard deviation of 10%. We ran the optimization on a high-
performance cluster to parallelize the 900 inertial tracking
simulations using four cores for each simulation and a wall time
of 24 h.

2.6 Evaluation

First, we evaluated the convergence and the required wall time of
the simulations. For each running trial, we then evaluated the solution
that converged and had the lowest objective value of the 10 simulations
generated from the different initial guesses. We analyzed the motion of
interest without the additional samples at the beginning, i.e., the
reconstructed motion from right initial contact to right initial
contact. We visually compared the reconstructed motion of the
inertial and marker tracking simulations by animating the models.
To evaluate how close the inertial data was tracked and how well
biomechanical variables were estimated, we generated trajectory graphs
of accelerations, angular velocities, pelvis translation, angles, GRFs, joint
moments, and muscle forces of the inertial and marker tracking
simulations. Furthermore, we computed the root mean squared
deviation (RMSD) and the coefficient of multiple correlation (CMC)
(Ferrari et al., 2010) for the inertial data and the reconstructed
kinematics and kinetics for each trial to quantify the waveform
difference and waveform similarity, respectively. Then, we obtained
the mean and standard deviation of the RMSDs and, using Fisher’s
Z-transform, the mean of the CMCs to summarize the results for each
variable type (e.g., accelerations) and each motion (e.g., straight
running). We scaled the GRFs and muscle forces to body-weight
percent (BW%) and the joint moments to body-weight body-height
percent (BWBH%).

3 Results

From the 900 inertial tracking simulations, 718 simulations
converged, 154 simulations failed in the restoration phase of the

optimization, seven simulations reached the maximum number of
iterations of 2 · 104, and 21 simulations exceeded the wall time of
24 h. The simulations converged on average after a wall time of 6 h
16 min, where the fastest and slowest simulation converged after 2 h
53 min and 21 h 08 min, respectively. In the following, we analyzed,
for each of the 90 trials, the solution that converged and had the
lowest objective value of the simulations generated from the
different initial guesses. For each trial, at least one
simulation converged.

Visual comparison of the animated motions showed that he
inertial tracking simulations generally reconstructed the kinematics
well, resulting in a natural running movement and a good overlay
between the inertial and marker tracking simulations. Figure 4
highlights the good overlay for an exemplary v-cut since the two
animations represent a similar movement pattern, resulting in
closely overlapping skeletons. We also provide this visualization
as a video in the supplemental data. However, the model ran slower
for the inertial than the marker tracking simulations. This effect was
small for most trials as the horizontal displacement of the pelvis at
the end of the motion differed less than 10 cm to the marker tracking
simulations (see Figures 4, 6). However, the effect was worse for
11 trials, leading to a difference in horizontal displacement of
approximately 10 to 45 cm. The three worst trials had the highest
objective values (>0.6), the highest accelerometer tracking term
(>0.15; weighted), and the highest gyrosope tracking term (>0.13;
weighted) of all trials. However, the three worst trials had neither
particularly low nor particularly high effort terms. Nevertheless, on
average, the muscular effort term was smaller for the inertial
tracking than for the marker tracking (0.06 vs. 0.09; weighted),
meaning that muscles were less excited in the inertial tracking
simulation than in the marker tracking simulation.

The inertial data, i.e., acceleration and angular velocity, was
tracked closely in the inertial tracking simulations since differences
compared to the reference signals of the marker tracking simulations
were hardly visible in the trajectory plots (see Figure 5). This resulted
in mean RMSDs of 0.2 m/s2 for the acceleration and 1.8 deg/s to
2.4 deg/s for the angular velocity signals for straight running, curved
running, and v-cut (see Table 1), which corresponds to less than
0.3% of the maximum range of the tracked inertial signals. All mean
CMCs were 1.0, with a minimum CMC value of 0.96. Only for the
11 trials for which the running motion was too slow the simulated
inertial signals deviated considerably from the reference signals
while still following the waveforms. For those 11 trials, the mean
RMSDs increased to 0.6 m/s2 and 6.2 deg/s for acceleration and
angular velocity, respecitvely. Furthermore, Figure 5 shows that
although the inertial data of the different trials of a motion by the
same participant had a similar waveform, they still differed
distinctly.

The reconstructed kinematics and kinetics from the inertial
tracking simulations, i.e., GRFs, translations, angles, moments,
and muscle forces, mostly followed the reference from the
marker tracking simulations closely. Differences between
individual trials were reconstructed since characteristics of the
reference variables are also present in the estimated variables (see
Figure 6). For example, the peak ankle joint angle at push-off differs
between the three trials in Figure 6, which is visible in the reference
and reconstructed trajectories. Furthermore, the mean CMCs were
always 0.99 or higher, although individual CMC values of some
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variables of some simulations, e.g., of the metatarsophalangeal (mtp)
angle, were smaller or even zero. The mean RMSDs did not differ
considerably between straight running, curved running, and v-cut
(see Table 1). However, the mean RMSDs were larger for the
translation of straight and curved running due to the 11 outliers
with slow running. Even for those 11 trials, the reconstructed
kinematic and kinetic trajectories roughly followed the reference
signals, leading for those trials to mean RMSDs of 48.2 mm for
translations, 3.0 deg for angles, 2.7 BW% for GRFs, 0.3 BWBH% for
joint moments, and 7.2 BW% for muscle forces. Furthermore, the
reconstructed mtp joint angles did not match the reference well, as
the mtp was dorsiflexed during the swing phase. As a result, the
RMSDs averaged over all simulations were 24.4 deg and 11.8 deg for
the right and left mtp angle, respectively, while the mean RMSD of
all other angles was 0.9 deg. In contrast to the mtp joint angles, the
mtp joint moments achieved similarly high accuracies as the other
joint moments. However, the mtp dorsiflexion muscles extensor
digitorum and hallucis produced a considerably higher muscle force,
and the mtp plantarflexion muscles flexor digitorum und hallucis
produced a considerably lower muscle force for the inertial tracking
than for the marker tracking during the swing phase.

The scaled models with the inertial sensor positions, the virtual
accelerometer and gyroscope data, and the simulation results are
provided online (Nitschke et al., 2023a).

4 Discussion

We investigated the feasibility of estimating 3D movement
kinematics and kinetics from inertial sensor data using optimal
control simulations. We found that individual repetitions of running
motions can be reconstructed by tracking virtual accelerometer and
gyroscope signals with a 3D full-body musculoskeletal model
without the need for any prior knowledge about the running
movement. The simulation facilitates a full biomechanical
analysis by enabling the estimation of various mutually and
dynamically consistent biomechanical variables, such as pelvis
translation, angles, GRFs, joint moments, and muscle forces.

Optimal control simulations have multiple advantages
compared to other approaches for motion reconstruction from
inertial data. The linear acceleration and angular velocity signals
can be tracked directly in the optimal control problem without
applying any other sensor fusion algorithm, like the Kalman filter, to
estimate sensor orientations. This is possible since the simulation
takes the model dynamics into account and thus acts as a physical
filter. Furthermore, the simulation uses the sensor position on the
segment as input. Hence, it can handle different sensor placements
in comparison to machine learning models, which are usually
trained with predefined sensor locations. It has even been shown
that the simulation can reconstruct sagittal-plane kinematics and
kinetics of walking and running from a reduced number of inertial
sensors (Dorschky et al., 2023). Moreover, GRFs are obtained in the
simulation using a ground contact model, so they must not be
measured or estimated separately while leading to consistency
between reconstructed kinematics and kinetics. Therefore, the
inertial tracking simulation can be valuable for many
applications, especially when a comprehensive kinematics and
kinetics analysis is required, without adapting the methodology
or retraining a machine learning model. One possible application
could be the analysis of ACL injury prevention in a natural
environment where various biomechanical variables, like joint
angles, joint moments, GRFs, and muscle activation, are from
interest (Tan et al., 2023).

The inertial data was generally tracked closely, resulting in
accurate kinematics and kinetics. The inertial tracking
simulation could even reconstruct differences between trials
of the same motion performed by one participant (see
Figure 6). All in all, we obtained good RMSDs (see Table 1)
in comparison to related work that compared reconstructed
biomechanical variables from measured inertial data to
measured optical motion capture data. For example,
Karatsidis et al. (2019), compared to this work, reported
mean RMSDs of 4.1 deg to 9.7 deg vs. 1.7 deg to 1.8 deg for
joint angles, 2.1 BW% to 9.3 BW% vs. 0.9 BW% to 1.1 BW% for
GRFs, and 0.3 BWBH% to 2.2 BWBH% vs. 0.1 BWBH% for joint
moments. However, they used a step-wise approach of inverse

FIGURE 4
Kinematics for a v-cut including horizontal offset for visualization. The inertial and marker tracking simulation results are represented in blue and
green, respectively. The simulations were generated with 175 Hz. The trial corresponds to trial three in Figures 5, 6 and to Figure 3 in Nitschke
et al. (2023b).
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kinematics and dynamics for inertial and optical motion
capture, leading to inconsistencies between kinematics
and kinetics.

While high accuracies were obtained for most joint angles,
the simulation inaccurately estimated mtp joint angles during the
swing phase. The mtp dorsiflexed during the swing phase due to
higher muscle forces in the mtp dorsiflexion muscles and lower
muscle forces in the mtp plantarflexion muscles compared to the
marker tracking simulations. We found that this behavior was
related to inaccuracies in the muscle-tendon parameters. The
muscle-tendon parameters are such that a solution with

dorsiflexed toes during the swing phase were more efficient
than a solution with straight toes, because the muscular effort
term in the optimal control problem promoted load sharing
among the muscle-tendon units. The tracking data did not
contain information for the ulna, talus, and toes since we did
not place multiple sensors on the forearms or feet to increase
usability. Therefore, this increased dorsiflexion did not cause the
tracking term to increase. Nevertheless, optimal control
simulations with a musculoskeletal model with more realistic
muscle-tendon parameters should be able to predict the mtp
angle without data of the toes since optimal control can also

FIGURE 5
Trajectories of simulated acceleration and angular velocity data of the right side. The different colors represent the results of the three trials of a v-cut
of one participant. The solid lines show the results of the inertial tracking simulations. The dashed lines show the reference obtained from the marker
tracking simulations. The dashed lines of the marker tracking simulations are hardly visible as the inertial tracking simulations followed it almost perfectly.
The sensor placement is illustrated in Figure 2. The simulations were generated with 175 Hz.
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predict novel movements (Nitschke et al., 2020). We used scaled
musculoskeletal models obtained from marker data using OpenSim
(Seth et al., 2018), which alternatively could be generated from
smartphone videos and OpenCap (Uhlrich et al., 2023) before
using our proposed inertial motion capture in an unrestricted
environment. However, these approaches scale only body segment
parameters. In addition, the model parameters of the muscle-tendon
units could be personalized to represent individual participants more
accurately (Hicks et al., 2015).

Our study confirmed previously reported (Dorschky et al.,
2019) convergency issues of IPOPT solving the optimal control
problem. We solved the simulations from 10 different initial
guesses to reduce the likelihood of the simulation ending up in a
local optimum. However, this still seems to have happened for
11 out of the 90 trials. Nevertheless, we observed that the
suboptimal trials’ objective values were clearly larger than
the objective values of the other trials. Hence, instead of
solving the problem for a fixed number of initial guesses, the
problem could be solved with new initial guesses until the
objective reaches a prior defined satisfaction criterion. This
would avoid the risk of terminating in a suboptimal local
optimum and would reduce the number of required solving

processes in case a good solution was found early and would
thus reduce computational cost. The initial guess is not the only
factor influencing convergence, but also the solution algorithm
(IPOPT) and its implementation could affect the final solution.
While we implemented the gradient of the objective function
and the Jacobian of the constraints analytically, we used a
limited-memory quasi-Newton method to approximate the
Hessian of the Lagrangian. Previous research showed that
using the exact Hessian from algorithmic differentiation,
rather than an approximation, led to a faster convergence for
small pendulum simulations (Falisse et al., 2019). However, the
opposite was observed for 2D predictive simulations of walking
(Falisse et al., 2019). Furthermore, using the exact Hessian
caused memory issues for 3D tracking simulations of walking
(Falisse et al., 2019). Therefore, the solution process should be
further investigated.

The optimal control problem contained a multi-objective
function minimizing muscular effort and tracking error between
the reference and simulated inertial data, meaning that the
weighting between these two objectives needs to be defined. A
high weighting of the effort term causes the simulation not to
follow the reference data and to move at slower speeds. A high
weighting of the tracking term leads to unrealistically fast activation
and deactivation of the muscles. We determined the tracking
weights empirically by matching the magnitudes of neural
excitations with those observed in the marker tracking
simulations for the first participant. In our results, most inertial
tracking simulations slightly underestimated pelvis translation,
possibly since effort can be minimized by moving less. The
underestimated pelvis translation for inertial tracking is
consistent with the result that tracking virtual inertial data
yielded, on average, a lower muscular effort than the reference
marker tracking simulations. A speed-related weight of the effort
term could account for the effort increase required for movements at
higher speeds (Dorschky et al., 2019). However, specifying a relation
between effort and speed is more complex when simulating not only
straight walking and running but arbitrary running motions.
Moreover, the muscular effort term is likely also smaller for the
inertial than for the marker tracking since virtual and no measured
data was tracked. Theoretically, achieving a zero tracking error
should be possible when tracking perfect virtual inertial sensor
data, as we did in this work. Our inertial tracking simulation
resulted in small tracking errors (see Table 1). In contrast, the
marker tracking had to follow noisy measurements, causing a trade-
off between effort and tracking.

Our work provides a proof of concept showing that it is feasible
to reconstruct 3D full-body running kinematics and kinetics of
individual trials by tracking virtual accelerometer and gyroscope
data in an optimal control simulation of a musculoskeletal model.
We tracked virtual data to refer to the exact solution during the
analysis and to investigate whether the inertial data without prior
knowledge about the initial state contains enough information to
drive the simulations. In order to implement this method on actual
measured data, we need to overcome some potential sources of
errors. The virtual data was calculated from reference marker
tracking simulations without modeling sensor noise. Therefore,
we have not yet investigated the ability of our proposed method
to handle the integration drift that is commonly associated with

TABLE 1 Mean ± standard deviation of the root mean squared deviation
(RMSD) between inertial and marker tracking simulations. The results were
summarized over all variables of the specific type (e.g., over all
accelerations) and all trials of the respective motions straight running (SR),
curved running (CR), and v-cut (VC).

Motion RMSD

Acceleration SR 0.2 ± 0.5 m/s2

CR 0.2 ± 0.4 m/s2

VC 0.2 ± 0.2 m/s2

Angular velocity SR 2.4 ± 6.7 deg/s

CR 2.3 ± 6.0 deg/s

VC 1.8 ± 2.2 deg/s

Translation SR 20.2 ± 44.2 mm

CR 14.0 ± 22.0 mm

VC 8.8 ± 7.3 mm

Angle SR 1.8 ± 5.2 deg

CR 1.8 ± 5.5 deg

VC 1.7 ± 5.0 deg

GRF SR 1.1 ± 1.5 BW%

CR 1.1 ± 1.0 BW%

VC 0.9 ± 0.6 BW%

Joint moment SR 0.1 ± 0.3 BWBH%

CR 0.1 ± 0.2 BWBH%

VC 0.1 ± 0.1 BWBH%

Muscle force SR 4.5 ± 6.5 BW%

CR 4.2 ± 6.3 BW%

VC 5.4 ± 6.8 BW%
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inertial sensor data (Weygers et al., 2020), which could be reduced
when using a kinematic model (Roetenberg et al., 2013; Al Borno
et al., 2022; Lavikainen et al., 2023). We also assumed a rigid
connection of the sensor to the body segment while, in real
measurements, the inertial sensor would move with respect to
the bone resulting in soft-tissue artifacts. To accurately represent
this behavior, a mass-spring model could be investigated for the
connection of the inertial sensor. Furthermore, we assumed a known
position and a perfect alignment of the sensor axes on the body
segment the sensor was fixed to. For real measurements, the sensor-
to-segment alignment would have to be assessed by applying
estimation algorithms to defined functional calibration
movements (Zrenner et al., 2020) or arbitrary movements
(Seel et al., 2012). The sensor position on the segment could be

measured manually (Dorschky et al., 2019) or obtained from an
optimization algorithm (Seel et al., 2012).

While our feasibility study tracking virtual inertial data
showed promising results compared to the literature, the
accuracy has to be further evaluated in the context of specific
applications. Being able to correctly reconstruct individual trials
and thus estimate the movement variability of a participant is of
high importance for many applications, like the assessment of
fatigue (Cortes et al., 2014), the analysis of injury risk (Bartlett
et al., 2007), or the investigation of injury prevention training
programs (Alanen et al., 2021). We formulated the optimal
control problem to reconstruct individual trials instead of a
normalized mean of multiple trials. However, whether the
method can detect statistically significant group differences

FIGURE 6
Trajectories of simulated kinematics and kinetics of the right side. The different colors represent the results of the three trials of a v-cut of one
participant. The solid lines show the results of the inertial tracking simulations. The dashed lines show the reference obtained from the marker tracking
simulations. The simulations were generated with 175 Hz.
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must be analyzed for the respective application. Furthermore, our
evaluation was limited to the analysis of 90 trials of 10 healthy
young participants and to straight running, curved running, and
a 90◦ v-cut. Although we formulated the optimal control
problem to be capable of reconstructing arbitrary running
motions, the accuracy should be reevaluated, especially if gait
impairments are present.

In conclusion, we investigated musculoskeletal movement
simulations for the reconstruction of 3D running kinematics and
kinetics from inertial sensor data. Our results showed that it is
feasible to reconstruct individual trials of arbitrary running motions
with high accuracy by tracking virtual accelerometer and gyroscope
data in an optimal control simulation of a 3D full-body
musculoskeletal model. However, although optimal control
simulations successfully reconstructed measured 2D inertial data
(Dorschky et al., 2019) and despite our work on virtual 3D inertial
data, tracking measured 3D inertial data of individual and arbitrary
running motions remains an open challenge. Nevertheless, our work
underlines that inertial tracking simulations are a promising tool for
a comprehensive movement analysis outside of a motion lab.
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