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Background: The incidence of blast lung injury (BLI) has been escalating annually
due to military conflicts and industrial accidents. Currently, research into these
injuries predominantly uses animal models. Despite the availability of various
models, there remains a scarcity of studies focused on monitoring respiratory
mechanics post-BLI. Consequently, our objective was to develop a model for
monitoring esophageal pressure (Pes) following BLI using a biological shock tube
(BST), aimed at providing immediate and precise monitoring of respiratory
mechanics parameters post-injury.

Methods: Six pigs were subjected to BLI using a BST, during which Pes was
monitored. We assessed vital signs; conducted blood gas analysis,
hemodynamics evaluations, and lung ultrasound; and measured respiratory
mechanics before and after the inflicted injury. Furthermore, the gross
anatomy of the lungs 3 h post-injury was examined, and hematoxylin and
eosin staining was conducted on the injured lung tissues for further analysis.

Results: The pressure in the experimental section of the BST reached 402.52 ±
17.95 KPa, with a peak pressure duration of 53.22 ± 1.69 ms. All six pigs exhibited
an anatomical lung injury score ≥3, and pathology revealed classic signs of severe
BLI. Post-injury vital signs showed an increase in HR and SI, along with a decrease
in MAP (p < 0.05). Blood gas analyses indicated elevated levels of Lac, CO2-GAP,
A-aDO2, HB, and HCT and reduced levels of DO2, OI, SaO2, and OER (p < 0.05).
Hemodynamics and lung ultrasonography findings showed increased ELWI, PVPI,
SVRI, and lung ultrasonography scores and decreased CI, SVI, GEDI, and ITBI (p <
0.05). Analysis of respiratory mechanics revealed increased Ppeak, Pplat, Driving
P, MAP, PEF, Ri, lung elastance, MP, Ptp, Ppeak − Pplat, and ΔPes, while Cdyn,
Cstat, and time constant were reduced (p < 0.05).

Conclusion: We have successfully developed a novel respiratory mechanics
monitoring model for severe BLI. This model is reliable, repeatable, stable,
effective, and user-friendly. Pes monitoring offers a non-invasive and
straightforward alternative to blood gas analysis, facilitating early clinical
decision-making. Our animal study lays the groundwork for the early
diagnosis and management of severe BLI in clinical settings.
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1 Introduction

It has been observed that between 17% and 47% of fatalities
post-explosion suffer from blast lung injury (BLI), with the
prevalence exceeding 90% in terrorist attacks occurring in
enclosed spaces such as trains (Katz et al., 1989; Mellor and
Cooper, 1989; Arnold et al., 2003; Scott et al., 2017).
Furthermore, over 44% of hospitalized patients and 71% of
critically ill individuals were found to have lung injuries.
Treating severe BLI often necessitates advanced life support,
such as mechanical ventilation. However, a specific standard for
the mechanical ventilation of patients with primary BLI is lacking,
with the current best practices being derived from protocols for the
management of acute respiratory distress syndrome (ARDS). The
selection of ventilation strategies is varied, and the complexities of
BLI intensify the challenge of identifying the most effective
ventilation approach. Recent studies suggest that monitoring
respiratory mechanics using esophageal pressure (Pes) can offer
significant insights for treating respiratory difficulties associated
with BLI. Yet, no standardized methodology for ventilatory
treatment modalities and parameter settings for severe BLI have
been proposed, presenting a considerable challenge to the medical
community (Scott et al., 2020).

Currently, both nationally and internationally, there is a paucity
of research on the changes in respiratory mechanics following severe
BLI. Most animal-based studies have focused on the mechanisms of
injury, post-injury pathophysiological alterations, and their
underlying molecular mechanisms (Scott et al., 2017; Nguyen
et al., 2019; Smith and Garner, 2019; Hazell et al., 2022; Shakargy
et al., 2022; Al-Hajj et al., 2023). There has been insufficient
exploration into the maintenance programs for post-injury
respiratory function, especially those concerning variations in
respiratory mechanics parameters monitored by Pes in animals
afflicted with severe BLI; such studies are notably absent in the
existing literature.

Among the various animal models for BLI, the shock tube
represents the most commonly used injury device in laboratories.
Consequently, we developed a porcine model of severe BLI under
Pes monitoring, employing a large biological shock tube (BST) to
induce injury. This study aimed to investigate the alterations in
respiratory mechanics parameters following severe BLI in pigs,
thereby providing a foundational animal model for subsequent
research on respiratory function management strategies post-BLI.

2 Materials and methods

2.1 Animal preparation

Six Panamanian pigs (aged 6–7 months, all male, weighing on
average 27.23 ± 1.84 kg) were sourced from the Animal
Experimentation Center of the Army Specialty Medical Center
[Animal Production License No. SCXK (Yu) 2017-0002 and
Animal Use License No. SYXK (Yu) 2017-0002]. The study was
approved by the Ethics Committee for Animal Experimentation of
the Army Military Medical University (Ethics Approval No.
AMUWE20223478). All animal procedures were conducted
following the Guide for the Care and Use of Laboratory Animals.

2.2 Instruments and equipment

In this study, we used a BST-I type shock tube based on the
compressed air principle (Figure 1). Equipment and materials
included a 24G closed venous indwelling needle (Intima, China),
a monitor (Mindray, China), a 5-F double-lumen central venous
catheter (Medical Components of America, USA), a 4-F PiCCO
catheter (Pulsion Medical Systems SE, Germany), a handheld
ultrasound device (Huaxi, China), a portable blood gas analyzer
(Abbott, USA), and a 3-mL arterial blood collection syringe
(BD, England).

2.3 Establishment of animal models

Before inducing BLI, anesthesia was initiated with a 4 mg/kg
intravenous injection of propofol into the ear vein, which was
followed by continuous infusion of propofol (3.2–6 mg/kg/h),
esketamine (0.4–0.65 mg/kg/h), and fentanyl (0.4–0.65 μg/kg/h) for
analgesia and sedation. The depth of sedation wasmonitored using the
bispectral index of the electroencephalogram, aiming for a score of
60–80. Pain levels were assessed using the Critical Care Pain
Observation Tool, with a score of 0 indicating no pain. Following
the stabilization of anesthesia, the animals were secured in a supine
position on the operating table. A neck incision was made for blunt
separation to expose the pharynx, followed by an incision above the
thyroid cartilage for tracheal intubation. A tracheal intubation cannula
(Elmac, China) was inserted through the vocal folds and connected to
a ventilator (Padus 8, China) set to volume-controlled ventilation: tidal
volume of 300 mL, oxygen concentration of 21%, PEEP of 5 cm H2O,
inspiratory time of 1 s, and a respiratory rate of 20 breaths per minute.
Respiratory mechanics parameters were monitored following the
intravenous administration of vecuronium bromide (0.05 mg/kg). A
cannula for Pes monitoring (Mindray, China) was inserted through
the pharyngeal region. To access the femoral artery and vein, an
incision was made in the right lower limb, and the muscle was bluntly
separated. A 4-F PiCCO catheter (Pulsion Medical Systems SE,
Germany) was inserted into the femoral artery, and a 5-F double-
lumen central venous catheter (Medical Components of America,
USA) was inserted into the femoral vein using the Seldinger technique
(Yu et al., 2022). The tip of the femoral vein catheter was positioned
within 2 cm of the right atrium opening, as confirmed by ultrasound
(Wisonic, China). Arterial blood pressure and central venous pressure
were measured via the femoral artery and venous catheters,
respectively. The correct placement of the manometric tube in the
stomach was verified by either aspirating the gastric fluid or through
auscultation. The transition from intra-abdominal to intrathoracic
pressure waveform during gradual catheter withdrawal indicated the
balloon’s entry into the esophagus, while a heartbeat artifact on
pressure tracing suggested proximity. A ΔPaw/ΔPes ratio between
0.8 and 1.2 confirmed proper localization. If incorrect, the catheter was
repositioned and the measurements taken again. A single Panamanian
pig was randomly selected to establish the optimal ventilation (Vbest)
settings (Figure 2) (Jiang et al., 2022). Subsequently, relevant
parameters, such as vital signs, blood gas analysis, lung ultrasound,
and respiratory mechanics, were collected.

BLI induction: The animal was positioned in the experimental
section of the BST (developed by the Third Affiliated Hospital of
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Army Medical University, China), supported by a bracket to stand
on its left side facing the source of the shock wave. Based on prior
studies, a driving pressure of 4.8 MPa was applied to induce BLI.
Subsequent to the injury, targeted analgesia and sedation were
administered. The overpressure from the experimental shock
wave was recorded using a data acquisition system (DH8301N).

Post-BLI assessment: After blast exposure, the same set of parameters
as pre-injury parameters was collected to evaluate the effects of the blast
injury on the animal. These included vital signs, blood gas analysis,
hemodynamics, lung ultrasound, and respiratory mechanics.

General procedure: All procedures were conducted while the
animals were under continuous anesthesia to ensure humane
treatment and minimize distress.

2.4 Collection of relevant parameters for
animal models

Following the completion of all animal procedures and a
stabilization period of 20 min, analgesia, sedation, and muscle

FIGURE 1
Presentation of the injury device. (A) BST-Ⅰ type biological shock tube. (B) Animals placed in the experimental section before the injury. (C) Animal
support auxiliary device.

FIGURE 2
Schematic diagram of the Panamanian pig showing the settings and esophageal balloon pressure–balloon volume curves. 1. Femoral artery
catheter. 2. Central venous catheter via the femoral vein. 3. Tracheal intubation tube. 4. Pes catheter. 5. Vmin. 6. Vbest. 7. Vmax.
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relaxation with rocuronium (5 mL/10 mg) were administered to
inhibit spontaneous respiration. Vital signs, such as heart rate (HR),
mean arterial pressure (MAP), and SpO2 (pulse oxygen saturation),
were continuously monitored and automatically recorded using an
electrocardiogram monitor.

Blood gas analysis: Arterial blood samples were drawn from the
femoral artery catheter, and central venous blood samples were obtained
from the femoral vein central venous catheter. These samples were
immediately analyzed using a blood gas analyzer (Abbott, USA).

Measurement of hemodynamic parameters: Hemodynamic
parameters were assessed using a bolus injection of 10 mL of
0.9% physiological saline (isotonic sodium chloride injection,
chilled to 0°C–4°C) administered into the central venous catheter
within 7 seconds. Three consecutive measurements were taken, with
the average value used for hemodynamic analysis.

2.4.1 Parameter calculation formula
Oxygenation index (OI) = PaO2/FiO2 ratio.
Pulmonary arterial oxygen tension (PAO2) = FiO2 × (760 −

47) − PaCO2/0.8.
Difference of alveoli − arterial oxygen pressure

(A-aDO2) = PAO2 − PaO2.
CO2-GAP = PcvCO2 − PaCO2.
Oxygen extraction ratio (OER) = DO2/VO2,
DO2 (mL/kg/min): DO2 = CO × Hb × 1.36 × SaO2 +

PaO2 × 0.0031,
VO2 (mL/kg/min): VO2 = Hb × 1.34 × SaO2 − SvO2 × 10 × CO.
Re = Driving P/PEF.
*The placement of the femoral vein catheter tip was accurately

localized at the opening of the right atrium using ultrasound guidance.
Consequently, mixed venous oxygen saturation (SvO2) was substituted
with central venous oxygen saturation (ScvO2) for this study (Endo
et al., 2021).

Lung ultrasonography was conducted according to the BLUE-plus
protocol using the ten-zonemethod. This involved the collection of data
from five specified points: upper blue points, lower blue points,
diaphragm points, PLAPS points, and posterior blue points on both
the left and right sides of the lungs. The lung ultrasonography scoring
(cLUSS) criteria were established as follows: score 0 for A-line or ≤2 B-
lines; score 1 for ≥3 B-lines; score 2 for diffuse B-lines; and score 3 for
tissue-like signs (Mongodi et al., 2017).

Following the administration of analgesia, sedation, and muscle
relaxation, respiratory mechanics parameters were measured using a
ventilator. The operational procedures and methods were in
accordance with those outlined by Yoshida and Brochard (2018)
and Jiang et al. (2022). Measurements were taken three times for
each parameter, and the average values were used for the analysis.

These parameters were systematically collected both before and
after the induction of injury.

2.5 Gross and histologic assessment of the
extent of lung injury

Three hours post-injury, the animals were euthanized via injection
of an overdose of anesthetics, and a necropsy was performed.
Pathological features such as pulmonary hemorrhage, lacerations,
percentage of hemorrhagic area, and hemorrhagic pleural effusion

were documented. The severity of the injuries was assessed using
the pathologic severity scale of lung blast injury (PSSLBI), which
assigns scores from 1 to 4, corresponding, respectively, to mild,
moderate, severe, and extremely severe BLI (Jihong, 2018).

2.6 Measurement of the dry and wet weight
of lung tissue

The lung tissue, excluding the trachea and main bronchi, was
weighed and then dried in an oven at 60°C until a constant weight was
achieved. The lung coefficient was calculated: lung coefficient = (lung
wet weight/body weight) × 100%. The lung wet/dry weight ratio (W/D)
was determined: W/D = lung wet weight/lung dry weight. Additionally,
the lung water content was calculated: lung water content = [(lung wet
weight − lung dry weight)/lung wet weight] × 100%.

2.7 Statistical analysis

The experimental data were analyzed using SPSS version 27.0,
Microsoft Excel, and GraphPad Prism 8 software. Normally distributed
measurement data were expressed as mean ± standard deviation (SD).
Comparisons between groups were performed using one-way repeated
measures analysis of variance. Non-normally distributed data were
presented as median (25th–75th percentile), and intergroup
comparisons were conducted using the Wilcoxon test. Frequencies
and percentages were also calculated for categorical data. A p-value <
0.05 was considered statistically significant.

3 Results

3.1 General conditions of animals

Following the injury, immediate assessment was conducted on the
animals’ overall condition. There were no visible external injuries on the
animals’ body surfaces or apparent fractures; however, all six animals
exhibited varying degrees of bloody secretions from the airways. The
experimental section of the BST registered a pressure of 402.52 ±
17.95 KPa, with a peak pressure duration of 53.22 ± 1.69 ms. The
survival rates dropped to 50% after 1 h and to 16.7% 3 h post-injury.
Anatomical evaluations conducted 3 h post-injury revealed that all six
animals scored ≥3 points on the PSSLBI (Figure 3), indicating severe
injuries. Optical microscopic examination revealed typical BLI features,
such as alveolar rupture, intra-alveolar hemorrhage, and inflammatory
exudation in the alveolar interstitium (Figure 4). The lung coefficient,
W/D ratio, and lung water content, measured in the six animals, were
18.93 ± 3.06, 3.17 ± 1.44, and 61.84% ± 18.15%, respectively (Figure 5),
confirming the presence of severe or greater BLI.

3.2 Relevant parameters of experimental
animal models

Post-injury, the animals exhibited significant alterations in vital
signs. Following severe BLI, there was an observed increase in HR
and SI, whereas MAP and SpO2 declined (Figure 6).
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Following severe BLI, the blood gas analysis revealed significant
physiological changes. There was a notable increase in lactate (Lac),
arterial and venous carbon dioxide pressure difference (CO2-GAP),
alveolar–arterial oxygen pressure difference (A-aDO2), hemoglobin
(Hb), and hematocrit (HCT). Conversely, there was a decrease in
pH, oxygen delivery (DO2), oxygenation index (OI), arterial oxygen
saturation (SaO2), and oxygen extraction ratio (OER), as depicted in
Figures 7A–C,E. However, there were no statistically significant

differences in transcutaneous–arterial PCO2 (Tc-artPCO2), the total
carbon dioxide content in the plasma (TCPCO2), partial pressure of
carbon dioxide (PCO2), bicarbonate (HCO3

−), end-tidal respiratory
carbon dioxide, oxygen consumption (VO2), and calcium (Ca2+)
levels before and after the injury (p > 0.05).

Hemodynamic parameters demonstrated significant alterations.
The cardiac index (CI), stroke volume index (SVI), global end-
diastolic index (GEDI), and intrathoracic blood volume index (ITBI)

FIGURE 3
Lung microgram of pig no. 5. (A) Dorsal side. (B) Ventral side. (C) Cross-section of the right lower lobe of the lung.

FIGURE 4
H&E staining of the lung tissue of pig no. 5. Red arrows point to inflammatory cells. Yellow arrows point to red blood cells. Green arrows point to
pulmonary interstitial edema. Blue arrows point to alveolar rupture.
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were significantly decreased (p < 0.05), indicating compromised
cardiac function and reduced blood volume within the chest cavity.
Conversely, there was a significant increase in the systemic vascular
resistance index (SVRI), extravascular lung water index (ELWI), and
pulmonary vascular permeability index (PVPI) (p < 0.05), as shown
in Figures 7D–F, reflecting increased vascular resistance and
pulmonary edema. However, there was no statistically significant
difference in the global ejection fraction (GEF) between pre-injury
and post-injury measurements (p > 0.05), suggesting that the overall
contractility of the heart remained unchanged.

Post-injury, there was a noticeable increase in the lung
ultrasound score compared to the pre-injury values, as illustrated
in Figure 7C.

Post-severe BLI, there were significant changes in the respiratory
mechanics observed in the pigs. Parameters such as peak inspiratory
pressure (Ppeak), end-inspiratory plateau airway pressure (Pplat),
driving pressure (Driving P), esophageal end-inspiratory pressure
(Eip), mean airway pressure (MAP), transpulmonary pressure (Ptp),
peak expiratory flow (PEF), inspiratory resistance (Ri), mechanical
power (MP), lung elasticity, the difference between peak pressure

and plateau pressure (Ppeak − Pplateau), and esophageal oscillatory
pressure (ΔPes) all exhibited increases. By contrast, dynamic lung
compliance (Cdyn), static compliance (Cstat), and time constant
showed decreases, as depicted in Figure 8. There were no statistically
significant differences in total positive end-expiratory pressure (total
PEEP), intrinsic PEEP (PEEPi), peak inspiratory flow (PIF), and
expiratory resistance (Re) post-injury (p > 0.05).

4 Discussion

BLI represents one of the most prevalent types of injuries in
warfare and chemical manufacturing explosions; however, these
injuries are often insidious and challenging to detect (Al-Hajj
et al., 2021; Tabakan et al., 2021). Accurate modeling and early
identification of the evolution of blast injuries are imperative for
both scientific research and clinical management of BLI. Blast
injuries typically occur abruptly, rendering prevention difficult.
Consequently, early detection and intervention in BLI are
essential in mitigating the risk of mortality and long-term disability.

Current research on BLI predominantly uses live ammunition or
laboratory shock tubes to develop animal models. However, these
studies are mainly confined to biomechanics, pathology, and
anatomy, with a notable gap in the systematic examination of
changes in respiratory mechanics parameters associated with BLI.
Efforts are ongoing to identify early detection techniques and
strategies for maintaining respiratory function post-injury. Unlike
traditional acute lung injury models developed through methods
such as intravenous injection of endotoxin, intratracheal instillation
of oleic acid, exposure to high oxygen levels, or ventilator-induced
injury (Champion et al., 2009; Matute-Bello et al., 2011; Hazell et al.,
2022; Rozenfeld et al., 2022), blast injury replicates acute blunt
traumatic lung injury caused by external forces impacting the lungs.
This mode of injury differs significantly in its mechanism and
impact from previous models, which failed to accurately replicate
the nuances of acute traumatic blunt lung injuries, particularly lung
contusions. BLI represents a distinct category of acute lung injury

FIGURE 5
Correlation coefficient of lung water content after blast injury.

FIGURE 6
Changes in vital signs after severe BLI. (A) Pre- < post-injury HR (RM ANOVA, F = 15.384, p = 0.017), pre- > post-injury SpO2 (RM ANOVA, F = 20.34,
p = 0.011), pre- < post-injury SI (RM ANOVA, F = 35.735, p = 0.004). (B) Pre- > post-injury MAP (Wilcoxon, Z = −2.023, p = 0.043). *p < 0.05, **p < 0.01,
***p < 0.001. Before: blast lung before. After: blast lung after.
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that does not compromise the structural integrity of the chest wall.
Hence, the compliance of the chest wall remains largely unchanged.
The primary damage is inflicted within the intrathoracic lungs.
Additionally, clinical injury grading standards for BLI differ from
those established for ARDS (Pizov et al., 1999; Matthay et al., 2024).
The explosion’s shock wave exerts overpressure, dynamic pressure,
and other effects on the chest, causing injuries through complex
multidimensional forces such as implosion, spallation, and inertia
across tissues of varying densities. This results in heterogeneous
ruptures of alveolar capillaries, intrapulmonary bleeding, and edema
(Wolf et al., 2009; Smith and Garner, 2019).

In this study, Panamanian pig was selected as the experimental
subject due to its anatomical and physiological resemblances to
humans. The injury was induced using a BST within the laboratory
setting, where the shock tube’s driving pressure was meticulously
controlled to reliably establish a severe BLI model. To mitigate
potential impacts on cerebral blood flow, femoral vein central
venous cannulation was employed instead of vascular puncture of
the neck. Additionally, the Pes monitoring kit enters the esophagus
via the hypopharynx, while tracheal intubation enters the airway

through the glottis. The results from this investigation aim to
provide a foundation for monitoring of the respiratory mechanics
in severe BLI within clinical environments.

Post-injury vital signs indicated an increased HR, a decreased
MAP, and an increased SI, aligning with the changes observed in
central hemodynamic parameters (CI and SVI), volumetric parameters
(GEDI and ITBI), and vascular peripheral resistance (SVRI). These
findings are consistent with the lung ultrasonography scores and
anatomical observations, corroborating previous clinical
retrospective studies and laboratory research on blast injuries
(Zhang et al., 2015; Yuanbo et al., 2016; Tong et al., 2018; Smith
and Garner, 2019; April et al., 2021; Carius et al., 2022; Al-Hajj et al.,
2023). Previous studies have demonstrated that prompt and effective
arterial blood gas analysis following BLI is crucial for diagnosing
conditions and developing treatment plans (Manera et al., 2020;
Xue et al., 2020; Chong et al., 2021; Shi et al., 2022). However,
early-stage conditions may lack the necessary means for timely,
continuous, and effective arterial blood gas monitoring. Moreover,
initiation of artificial airways and ventilator-assisted breathing is
essential to ensure adequate oxygenation early in severe BLI cases

FIGURE 7
Changes in arterial blood gas analysis for severe BLI. (A) Pre- > post-injury PH (RM ANOVA, F = 8.572, p = 0.033); pre- < post-injury Lac (RM ANOVA,
F = 13.114, p = 0.015); pre- < post-injury CO2-GAP (RM ANOVA, F = 12.317, p = 0.025). (B) Pre- > post-injury OI (RM ANOVA, F = 7.764, p = 0.039), pre- >
post-injury SaO2 (RM ANOVA, F = 7.883, p = 0.038), pre- > post-injury DO2 (RM ANOVA, F = 36.246, p = 0.002). There was no statistically significant
difference between VO2 pre-injury and post-injury (p > 0.05). (C) Pre- < post-injury A-aDO2 (Wilcoxon, Z = −1.992, p = 0.046), pre- > post-injury
ORE (Wilcoxon, Z = −2.201, p = 0.028 < 0.05), pre- < post-injury cLUSS (Wilcoxon, Z = −2.214, p = 0.027), pre- < post-injury R-cLUSS (Wilcoxon,
Z = −2.214, p = 0.027), pre- < post-injury L-cLUSS (Wilcoxon, Z = −2.032, p = 0.042). (D) Pre- > post-injury CI (RM ANOVA, F = 50.715, p = 0.002), pre- >
post-injury SVI (RM ANOVA, F = 37.612, p = 0.004). (E) Pre- < post-injury HB (RM ANOVA, F = 52.155, p = 0.010), pre- < post-injury HCT (RM ANOVA, F =
52.245, p = 0.010), pre- < post-injury ELWI (RM ANOVA, F = 14.004, p = 0.013), pre- < post-injury PVPI (RM ANOVA, F = 10.45, p = 0.032). (F) Pre- < post-
injury SVRI (RM ANOVA, F = 20.132, p = 0.011), pre- > post-injury GEDI (RM ANOVA, F = 102.765, p < 0.001), pre- > post-injury ITBI (RM ANOVA, F =
104.365, p < 0.001). *p < 0.05, **p < 0.01, ***p < 0.001. ns: no significance. Before: blast lung before. After: blast lung after.
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(Anonymous, 2022). Compared to blood gas analysis, Pes monitoring
is simpler to perform and less sensitive to environmental factors such
as temperature and atmospheric pressure. Therefore, in severe BLI, Pes
monitoring is more feasible, reliable, and stable for early-stage clinical
decision-making, potentially supplanting the role of blood gas analysis
(Loring et al., 2010; Mauri et al., 2016; Umbrello and Chiumello, 2018;
Yoshida and Brochard, 2018; Dostal and Dostalova, 2023). Following
severe BLI, both dynamic and static lung compliances decreased,
necessitating increased driving pressure for ventilator-assisted
breathing to achieve pre-injury tidal volumes. The increase in lung
ultrasound score, decrease in blood gas analysis oxygenation index,
increase in pulmonary vascular permeability as measured by PiCCO,
and increase in lung water content indirectly confirmed the reasons for
reduced lung compliance. The fundamental causes were diffuse
alveolar bleeding, interstitial inflammatory exudation, and edema.
Although bloody secretions increased in the airway post-injury, the
variations in airway resistance and peak airway flow rate did not
consistently align with the changes in peak and plateau airway
pressures, suggesting that bloody secretions are not the primary
factor affecting airway resistance changes. This hypothesis is

supported by the blood gas analysis showing differences in intra-
alveolar partial pressures of oxygen, indicating unique respiratory
mechanics changes. While airway pressure measurements provide
information about lung ventilatory capacity, they do not fully
capture the extent of blast lung damage. By contrast, Pes reflects
pleural pressures surrounding the lungs, and monitoring Pes can help
better assess lung pressure and stress states. Combining airway
pressure and Pes measurements offers a more comprehensive
evaluation of the extent of lung damage. Pes testing also indicated
that thoracic compliance remained unchanged, and there was no
increase in abdominal pressure post-injury. These characteristic
changes in respiratory mechanics can accurately guide clinical
treatment for severe BLI, minimize unnecessary ventilator-related
injuries, and offer insights similar to those observed in ARDS cases
(Talmor et al., 2008; Yoshida and Brochard, 2018; Pelosi et al., 2021).
Monitoring respiratory mechanics under Pes provides a reliable basis
for early-stage clinical decision-making, enabling accurate and
personalized respiratory treatments to reduce ventilator-induced
lung injuries and guide the entire course of mechanical ventilation
in severe BLI cases.

FIGURE 8
Changes in respiratory mechanics parameters. (A) Pre- < post-injury Ppeak (RM ANOVA, F = 69.56, p < 0.001), pre- < post-injury Pplat (Wilcoxon,
Z = −1890, p=0.021), pre- < post-injury Driving P (RMANOVA, F = 14.238, p=0.020). (B) Pre- < post-injury MAP (Wilcoxon, Z = −2.032, p=0.042), pre- <
post-injury PEEPtot (Wilcoxon, Z = −2.060, p = 0.039), pre- < post-injury Eip (Wilcoxon, Z = −2.201, p = 0.028). (C) Pre- > post-injury Cdyn (RM ANOVA,
F = 23.389, p = 0.008), pre- > post-injury Cstat (RM ANOVA, F = 20.607, p = 0.006), pre- < post-injury lung elastance (RM ANOVA, F = 20.892, p =
0.010). (D) Pre- < post-injury Ptp (RM ANOVA, F = 10.051, p= 0.034), Ppeak − Pplat (RM ANOVA, F = 77.076, p= 0.003), pre- < post-ΔPes (RM ANOVA, F =
32.772, p = 0.011). (E) Pre- < post-injury MP (RM ANOVA, F = 22.089, p = 0.009), pre- > post-injury time constant t (RM ANOVA, F = 17.228, p = 0.014). (F)
Pre- < post-injury PEF (RM ANOVA, F = 10.682, p = 0.031), pre- < post-injury Ri (RM ANOVA, F = 39.113, p = 0.003), no statistically significant difference in
PIF (peak inspiratory flow) and Re (expiratory resistance) (p > 0.05). *p < 0.05, **p < 0.01, ***p < 0.001. ns: no significance. Before: blast lung before. After:
blast lung after.
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Furthermore, this study employed a large biological shock tube
to induce injuries, resulting in stable injury parameters. Unlike
previous BLI models that relied on lung ultrasound, blood gas
analysis, and imaging for evaluation, monitoring respiratory
mechanical changes after BLI through Pes enables more direct
and precise quantification of mechanical properties such as
airway resistance and lung compliance. The research data can
guide clinical practice and provide an experimental foundation
(Li et al., 2020; Xue et al., 2020; Yang et al., 2020; Ding et al.,
2022). Future research should aim to establish a graded animal
model of primary BLI to improve the understanding of the temporal
and quantitative relationships between respiratory mechanics and
lung injury. This approach could lead to the development of a triage
tool to boost the rate of early intervention.

Our study has several limitations, which we plan to address in
future research. First, the small sample size could increase the risk of
Class 1 errors. Second, to prevent rupture from shock wave impact
in the Pes monitoring model, we deflated the balloon during injury
to avoid bursting of the Pes and tracheal intubation balloons,
necessitating catheter replacement. Lastly, our research was
limited to animals with severe or fatal BLI. In the future, we aim
to enlarge the sample size, extend the observation period, and
include BLI animals with varying levels of injury. Concurrently,
we plan to integrate other physiological parameters with respiratory
mechanics measurements to establish correlations that aid in early
injury detection and guide clinical management.
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Glossary

HR heart rate

MAP mean arterial pressure

SpO2 percutaneous oxygen saturation

SI shock index

A-aDO2 alveolar oxygen pressure difference

BLI blast lung injury

BST biological shock tube

Cdyn dynamic lung compliance

CI cardiac index

CO2-GAP arterial and venous carbon dioxide pressure difference

Cstat static compliance

DO2 oxygen delivery

Driving P driving pressure

ELWI extravascular lung water index

GEDI global end diastolic index

HB hemoglobin

HCT Hematocrit

ITBI intrathoracic blood volume index

Lac Lactic

Map mean airway pressure

MP mechanical power

OER oxygen extraction ratio

OI oxygenation index

PEF peak expiratory flow

Pes esophageal pressure

Ppeak peak inspiratory pressure

Ppeak − Pplat peak pressure–plateau pressure difference

Pplat plat end-inspiratory plateau airway pressure

Ptp transpulmonary pressure

PVPI pulmonary vascular permeability index

Ri inspiratory resistance

SaO2 arterial oxygen saturation

SVI stroke volume index

SVRI somatic vascular resistance index
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