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Rehabilitation robots have gained considerable focus in recent years, aiming to
assist immobilized patients in regainingmotor capabilities in their limbs. However,
most current rehabilitation robots are designed specifically for either upper or
lower limbs. This limits their ability to facilitate coordinated movement between
upper and lower limbs and poses challenges in accurately identifying patients’
intentions for multi-limbs coordinated movement. This research presents a
multi-postures upper and lower limb cooperative rehabilitation robot
(U-LLCRR) to address this gap. Additionally, the study proposes a method that
can be adjusted to accommodate multi-channel surface electromyographic
(sEMG) signals. This method aims to accurately identify upper and lower limb
coordinated movement intentions during rehabilitation training. By using genetic
algorithms and dissimilarity evaluation, various features are optimized. The Sine-
BWOA-LSSVM (SBL) classification model is developed using the improved Black
WidowOptimization Algorithm (BWOA) to enhance the performance of the Least
Squares Support Vector Machine (LSSVM) classifier. Discrete movement
recognition studies are conducted to validate the exceptional precision of the
SBL classification model in limb movement recognition, achieving an average
accuracy of 92.87%. Ultimately, the U-LLCRR undergoes online testing to
evaluate continuous motion, specifically the movements of “Marching in place
with arm swinging”. The results show that the SBL classification model maintains
high accuracy in recognizing continuous motion intentions, with an average
identification rate of 89.25%. This indicates its potential usefulness in future
rehabilitation robot-active training methods, which will be a promising tool for
a wide range of applications in the fields of healthcare, sports, and beyond.
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1 Introduction

According to statistics from the World Health Organization,
approximately 15 million individuals worldwide suffer strokes
annually, with over 80% of survivors experiencing motor function
disorders (World Health Organization, 2023). Leveraging the human
brain’s plasticity, precise and timely rehabilitation training facilitates
patients in neural reorganization or compensation. This process
stimulates the creation of new neural cells related to motor function,
thus significantly enhancing the chances of survival and recovery of
motor abilities (Rossini et al., 2003). Traditional hemiplegia
rehabilitation, mainly conducted by physicians providing manual
training assistance, presents challenges such as increased workload,
reduced efficiency, and an unbalanced physician-to-patient ratio
(Rossini et al., 2003). The incorporation of rehabilitation robots in
limb motor function rehabilitation training emerges as a newfound
prospect for individuals afflicted with paralysis (Zhang et al., 2017).

In the past decade, there has been continuous development of
intelligent robots for limb rehabilitation, attracting extensive attention
from scholars (Pérez-Bahena et al., 2023). However, the current focus of
rehabilitation robots primarily centers on the limbs most affected in
patients, with relatively less research dedicated to rehabilitation robots
that address multi-limbs coordination and balance training systems (Mu
et al., 2019). Recent research on upper limb rehabilitation robots has
concentrated on the joint rehabilitation of upper limbs but lacks
attention to lower limb rehabilitation needs (Durand et al., 2019; Xie
et al., 2022; Wu et al., 2023). Similarly, recently developed lower limb
rehabilitation robots can only provide training for the patients’ lower
limbs (Han et al., 2019; Gao et al., 2022; Tian et al., 2022). However,
relevant studies have shown that the movements of the upper and lower
limbs are coupled and mutually influential during normal walking, with
the normal swing of the upper limbs playing a crucial role in an
individual’s walking (Dietz et al., 2002; Arya et al., 2019).
Rehabilitation robots that can coordinate upper and lower limb
training consider the comprehensive recovery of limb function. By
applying theories of motor neuron coupling, these robots enhance
the strength and coordination of both upper and lower limbs
through specific task training (Fang et al., 2017; Huo et al., 2019)
integrated coordinated upper limb swing functions into the Rowas
rehabilitation robot, ensuring synchronous movement between the
lower limbs and the upper limb shoulder joint, thereby achieving
coordinated rehabilitation of both upper and lower limbs in patients
(Huang et al., 2023). designed an exoskeleton-based upper and lower
limb rehabilitation robot system, planning training trajectories for the
hip, knee, and shoulder joints. Therefore, it is necessary to design a robot
that coordinates upper and lower limb rehabilitation. This approach
aims to induce and reorganize abnormal coupling symptoms in the
motor nerves of stroke patients, thereby enhancing rehabilitation
treatment for the balance and coordination of the patient’s limbs.

Clinical rehabilitation research suggests that tailoring rehabilitation
training to the patient’s limbmovement patterns enhances rehabilitation
efficiency (Pichiorri et al., 2015; Song et al., 2023). sEMG signals, known
for their non-invasiveness and operational simplicity, serve as a common
tool to reflect human muscle activity, facilitating research in human
motion classification (Wu et al., 2016). employed a LLE model to
streamline algorithm complexity and utilized the ELM for the swift
classification of upper limb movements involving the shoulder, elbow,
and wrist (Shao et al., 2020). accurately identified movements of the

shoulder, elbow, and wrist joints using a combined SVD-WDBN
classification model (Hu et al., 2021). used a sEMG array sensor to
collect electrical signals from the muscles of the wrist and successfully
recognized discrete gestures and continuous movements. However, the
current stage of sEMG signal pattern recognition primarily focuses on
single areas such as the upper limbs or hands, lacking research on the
recognition of coordinated movement intentions between upper and
lower limbs. Therefore, there is a need to develop an algorithm formulti-
limbs movement intention recognition based on multi-channel sEMG
signals. This algorithmwould adapt to trainingmovements ofU-LLCRR,
to achieve the goal of human-machine interaction.

In this study, the research mainly focuses on developing a human
upper and lower limb coordinated movement intention recognition
method based on the developed U-LLCRR and sEMG signals. The
meachnical structure and hardware control system of the U-LLCRR are
designed. Based on the robot’s training mode, the study designs a
recognition scheme for continuous motion, specifically the movements
of ‘Marching in place with arm swinging’. The SBL classification model
is developed, integrating various classification models to enhance the
classification of the extracted features. This study establishes a
foundation for subsequent research in human-machine
interaction control.

2 Materials and methods

2.1 Mechanical structure design of U-LLCRR

Figure 1A depicts the structure and key components of the
proposed U-LLCRR, including lower limb rehabilitation module,
upper limb rehabilitation module, multi-postures support module. As
depicted in Figure 1B, the upper limb rehabilitation module, comprising
of the shoulder joint servomotor, linearmotor, and handle, transmits the
driving force from the shoulder joint motor to the patient’s whole upper
limbs. The screw slider in the upper limb rehabilitation module adjusts
the position of the shoulder joint servor motor to accommodate patients
of varying heights. The linear motor induces linear motion at the wrist
joint, enabling flexion and extension of bilateral shoulder-elbow-wrist
joints in the human sagittal plane. In Figure 1C, the lower limb
rehabilitation module adjusts the position of the ankle’s foot pedal by
modifying the linear motor, accommodating patients of varying heights.
The lower limb rehabilitation module connects to the patient’s thigh
using velcro. The hip joint servo motor, leg drive rod, and foot pedal
collaborate to transmit power from the servomotor to the patient’s thigh,
This enables flexion and extension of bilateral hip-knee-ankle joints in
the human sagittal plane. In Figure 1D, the multi-postures support
module enables rehabilitation training for bedridden patients in different
posture, including lying posture, inclined lying posture, and standing
posture. The omni-directional wheels offer mobility and stability to the
multi-postures U-LLCRR. The extension and retraction of the electric
push rod could raise and lower the movable support frame, thereby
altering the robot’s training postures’ height.

Based on the mechanism design of the proposed U-LLCRR, it can
achieve 8 types of inter-limb coordinated movements, including bilateral
upper limbs symmetry/asymmetry movement, bilateral lower limbs
symmetry/asymmetry movement, limbs symmetry/asymmetry in the
same direction movement, and limbs symmetry/asymmetry in the
opposite direction movement (Figure 2). Among these, the same
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direction denotes that the upper and lower limbs on the same side move
in the same direction, while symmetry implies that the left and right
limbs move in the same direction. The proposed U-LLCRR overcomes
the challenge of not being able to give patients synchronous upper and
lower limb movements with current rehabilitation robots.

2.2 Hardware control system design
of U-LLCRR

The hardware control system of U-LLCRR utilises a distributed
control structure, as seen in Figure 3. This hardware control system
features a high-level medical serial screen coupled with a low-level

STM32. The whole hardware control system comprises a serial screen,
an embedded microcontroller, drivers, servo motors, and
supplementary components. The STM32 development board
establishes communication with the upper-level medical serial screen
using a serial port operating at a baud rate of 115,200 bits per second.
Additionally, it communicates with the motor driver using CAN
protocol at a frequency of 1,000 Hz. Upon receiving inputs from the
higher echelons, the STM32 employs motion decoding to produce
control signals for the servomotors. This approach streamlines periodic
rehabilitation training by guiding the patient’s limbs in continuous
movements to predefined positions and velocities.

The study employs the BCIduino amplifier, developed by the
Navigation Biology Company, for collecting sEMG data from

FIGURE 1
Structural diagram of the U-LLCRR. (A) Virtual overall prototype model. (B) Upper limb rehabilitation module. (C) Lower limb rehabilitation module.
(D) Multi-posture support module.

FIGURE 2
Eight types of inter-limb coordinated movements.

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Feng et al. 10.3389/fbioe.2023.1349372

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1349372


specific muscle groups in the patient’s upper and lower limbs. The
hardware of BCIduino amplifier is composed of 16-channel wireless
sensors designed for the capture of sEMG signals. The system uses
OpenBCI software to carry out real-time filtering and visualisation of
the sEMGdata. During rehabilitation robot training, electromyographic
information is consistently collected from the patient and transmitted to
the PC (ISK, Lenovo Inc.) for real-time analysis.

2.3 Selection of classification movements

This study defines a six particular limb movements which includes
upper and lower limb movements of marching in place with arm
swinging. And the defined movements could be realized through the
proposedU-LLCRR. The activitiesmentioned relate tomovements in the
sagittal plane, specifically including the shoulder and elbow for the upper
limbs, and the hip, knee and ankle for the lower limbs. The six types of
limb movements consist of left arm shoulder joint flexion/extension (LS-
FLX), left arm elbow joint flexion/extension (LE-FLX), right arm shoulder
joint flexion/extension (RS-FLX), right arm elbow joint flexion/extension
(RE-FLX), left leg hip joint flexion/extension (LH-FLX), and right leg hip
joint flexion/extension (RH-FLX). Different limb motions are associated
with different muscle groups, necessitating precise sensor positioning to

capture signals. The process of associating various types of limb
movements with specific muscle groups, while considering factors like
ease of measurement, signals diversity, and accurate differentiation (Feng
et al., 2021), led to decision to specifically target certain muscles in the
upper and lower limbs as shown in Figure 4. The muscle groups
highlighted in red font represent the specific muscles targeted for
sEMG signal acquisition. For the upper limbs, the selected muscles
are the deltoid, biceps brachii, triceps brachii, and brachioradialis. For
the lower limbs, the chosen muscles are the biceps femoris,
semitendinosus, adductor magnus, and tensor fasciae latae.

2.4 Evaluation of feature separability

Feature extraction is necessary for the 16-channel sEMG signals
once they have been collected and preprocessed. The chosen features
consist of four time-domainmeasures, likemean absolute value (MAV),
root mean square (RMS), variance (VAR), and integrated EMG
(iEMG), as well as two frequency-domain measures, like mean
frequency (MF) and median power frequency (MPF). The
prolonged and detrimental use of sEMG characteristics, which
includes extraneous noise and interference from sensor cables, can
result in reduced in computational speed and accuracy (Hu et al., 2021).

FIGURE 3
Electrical control and sEMG signal acquisition diagram for U-LLCRR.
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This diminishes the system’s ability to recognise intentions in real-time.
This study introduces a novel approach to selecting features in sEMG
differing from existing methods. It presents a method for evaluating
feature discriminability based on dispersion calculation.

For various limb movement classes, the separability of intra-class
and inter-class distances is evaluated using the Fisher function as a
discriminant criterion (Zhang et al., 2012). This method calculates the
average separations between different feature vectors across various
combinations. Initially, samples from various categories are projected
onto a single dimension. Subsequently, the average separations between
samples inside and between classes are computed. Following this, the
ideal projection direction of the function is determined. The underlying
concept is to maximize the average distance between classes while
minimizing the average distance within them. This serves as the
separability discriminant for different limb movement categories. In
this study, the approach is further expanded to provide average
distances between multiple classes.

Jd x( ) � ∑c
i�1
Pi

1
ni
∑ni
k�1

x i( )
k −mi( )T x i( )

k −mi( ) + mi −m( )T mi −m( )⎡⎣ ⎤⎦

mi � 1
ni
∑ni
k�1

x i( )
k

m � ∑c
i�1
Pimi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

In Eq. 1, Jd(x) represents the distance between the
D-dimensional sample of class i and samples from other classes.
A larger value indicates better separability of the feature (Liu et al.,
2013). mi is the mean vector of the i − th class sample set, m is the
overall mean vector of all class sample sets, xk

(i) is the
D-dimensional feature vector within class i, and Pi is the prior
probability of class i.

The Fisher fitness function, used in conjunction with the genetic
algorithm, identifies the optimal combination of feature values. The
algorithm iteratively determines the feature with the greatest
dispersion among all features. The selected features form the
input feature vector for the classification model.

2.5 Movement intention classification model

2.5.1 Least Squares Support Vector
Machine (LSSVM)

The LSSVM classification model is employed to classify the
features that were extracted. LSSVM, an enhanced SVM algorithm
(Mellit et al., 2012), is known for its rapid convergence, accuracy,
and solution speed. To prevent the classifier from getting trapped in
a local optimum and to enhance the predicted performance of the
classification model, adjusting the parameters ‘gam’ and ‘sig2′ in
LSSVM is crucial. Traditional methods for determining LSSVM
settings often depend on historical performance data (Ahmad et al.,

FIGURE 4
Six types of movements and the selected muscles. (A) Shoulder joint flexion/extension. (B) Elbow joint flexion/extension. (C) Hip joint
flexion/extension.
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2014). This study enhances the classification performance of LSSVM
by fine-tuning the parameters ‘gam’ and ‘sig2′ within predefined
ranges using intelligent optimization algorithms (Xue and
Shen, 2020).

2.5.2 Improved BWOA based on sine
chaotic mapping

Inspired by the hunting behavior of black widow spiders,
characterized by both linear and spiral movements within their
webs, the BWOA offers advantages in both local exploitation and
global exploration (Hayyolalam and Pourhaji Kazem, 2019; Peña-
Delgado et al., 2020). Population initialization, reproduction,
intraspecific predation, mutation, and population update are its five
stages. The remaining four stages, apart from the initial population
stage, involve iteration until the termination criteria are met. This

method employs LSSVM for classifying limb movements and
determines the most fit “black widow” in the process.

The mathematical model is represented by Eq. 2:

�xi t + 1( ) � �x* t( ) −m �xr1 t( ), if   rand()≤ 0.3
�x* t( ) − cos 2πβ( ) �xi t( ), in other  case{ (2)

In Eq. 2, �xi(t + 1) denotes the updated individual position, �x*(t)
represents the current optimal individual position, m is a random
floating-point number generated between [0.4, 0.9], β is a random
floating-point number within the range [-1, 1], r1 is a random
integer 1~npop, �xr1(t) signifies the randomly selected position at
index r1, where i ≠ r1, and �xi(t) is the current individual’s position.

The pheromone has a significant impact on the courtship behavior of
blackwidow spiders. The pheromone deposition rate is defined as follows:

FIGURE 5
The SBL classification algorithm flow.

TABLE 1 Details of experimental protocol.

Experiment Movement Subject Assistance Data

I. Discrete test Six types of limb movements 9 No Online collection

II. Continuous decoding ‘Marching in place with arm swinging’ task 2 U-LLCRR Online collection
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pheromone i( ) � fitnessmax − fitness i( )
fitnessmax − fitnessmin

(3)

where, fitnessmax and fitnessmin denote the worst and best fitness
values in the current population, respectively. fitness(i) represents
the fitness value of the i − th individual. And the pheromone vector
contains fitness values normalized within [0,1].

Black widow spiders with low pheromone levels often resort to
cannibalizing the female spiders of the same species. These
individuals face collective rejection by the population and may be

abandoned by the group (Houssein et al., 2020). During the iterative
process, when an individual with low pheromone is abandoned, it
becomes imperative to promptly replenish the population count.
When pheromone is less than or equal to 0.3, the individual’s
position is updated using Eq. 4:

�xi t( ) � �x* t( ) + 1
2

�xr1 t( ) − −1( )σ �xr2 t( )[ ] (4)
where, �xi(t) represents the position of the black widow with low
pheromone levels within the female’s body. r1 and r2 are random

TABLE 2 Movement sequences in the ‘Marching in place with arm swinging’ task.

Order Sub-movements Time(s) Order Sub-movements Time(s)

Phase 1 Phase 3

1 LS-FLX 1–3 12 LE-FLX 34–36

2 LE-FLX 4–6 13 RS-FLX 37–39

3 RS-FLX 7–9 14 RE-FLX 40–42

4 RE-FLX 10–12 15 LH-FLX 43–45

5 LH-FLX 13–15 16 RH-FLX 46–48

6 RH-FLX 16–18 Phase 4

Phase 2 17 LH-FLX 49–51

7 LH-FLX 19–21 18 RE-FLX 52–54

8 RE-FLX 22–24 19 RS-FLX 55–57

9 RS-FLX 25–27

10 LE-FLX 28–30

11 LS-FLX 31–33

FIGURE 6
Actual upper and lower limbs coordinated movement process for subjects.
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integers between 1~npop, with r1 ≠ r2 �xr1 and �xr2 denote the
positions of the black widow spiders at indices r1 and r2, and
σ ∈ 0, 1{ } is a random binary number.

Given that the initial positions of the black widow population are
randomly generated, the study employs chaotic initialization using the
Sine function from the chaos mapping strategy (Wu et al., 2021). This
improves the quality of initial solutions, ensuring a more uniform
distribution of the population within the search space. The expression is
as follows:

xk+1 � a

n
sin πxk( ), a ∈ (0, n] (5)

Where k is the iteration count, xk is the k − th chaotic number,
and a is a random number.

2.5.3 Sine-BWOA-LSSVM classification model
Each prediction model has its own set of advantages and

disadvantages. By logically combining multiple single models, the
shortcomings of each individual prediction model can be
significantly mitigated, thereby enhancing forecast accuracy. To
optimize the LSSVM classification method in Figure 5, this
research presents a hybrid classification recognition model based

on the improved BWOA with chaotic mapping, namely, the SBL
classification model. The following are the precise steps:

• Step 1, Initialize basic parameters for BWOA, including the
maximum number of iterations, procreating rate (PP),
cannibalism rate (CR), and mutation rate (PM).

• Step 2, Initialize the positions of the black widow population
using Sine chaotic mapping. The initial population is selected
from fitness-sorted black widow individuals.

• Step 3, Use Sine-BWOA to optimize ‘gam’ and ‘sig2’ in
LSSVM. Optimal parameters ‘gam’ and ‘sig2’ for LSSVM
are obtained by iteratively updating the positions of black
widow spiders.

• Step 4, Update LSSVM model, and conduct training and
testing to obtain recognition results for feature output.

3 Experiments and results

Discrete limb combination experiments without robot
assistance, and online decoding experiments based on the
U-LLCRR are conducted as detailed in Table 1.

FIGURE 7
Frequency and time domain features for 16 channels.
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3.1 Training and discrete testing of the
SBL classifier

In this experiment, discrete data on six types of limb movements
were collected from 9 healthy participants using a 16-channel sEMG
signal capture device. Preprocessing procedures, such as noise
reduction and bias removal, were applied to the collected sEMG
signals. A D (96) feature vector, comprising six different types of
features, was created from the extracted sEMG signal. In the feature
selection process, a genetic algorithm and a discreteness
computation were employed, resulting in d (48) feature vector.
The data was split into a 30% test set and a 70% training set.
Subsequently, the SBL classification model was trained offline using
the training set. The trained model was subsequently applied for the
recognition of online movements. To validate the robustness of the
proposed categorization model, its experimental findings were
compared with those from other models.

The subjects executed the aforementioned six types of limb
movement combinations, performing each in 3 experimental sets.
Each set consisted of 10 repetitions, with completion of each

combination movement lasting approximately 4–5 s. The time
interval between successive collections of the same combination
movement was 6–8 s, and there was a 1–5 min interval between
each set of experiments. Before each subsequent sEMG data
collection session, it was confirmed that each subject was free
from muscle fatigue. During the data collection process, the
sensors continuously transmitted the acquired sEMG signals in
real-time to a computer. This process yielded 180 data points for
each type of limb movement per subject, resulting in a total of
2,880 data samples.

3.2 Continuous motion decoding

In order to verify the classification model’s ability to make
accurate generalizations, a continuous motion recognition
experiment is conducted, with the “Marching in place with arm
swinging” assignment from the ADL training (Kwakkel et al., 2004).
The experiment consists of four phases and fully includes the six
types of selected limb movements mentioned above. The movement

FIGURE 8
Optimal feature vector combinations. (A) Dissimilarity iteration curves across various dimensions and features. (B) The selection of optimal
feature vectors.
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FIGURE 9
Training results of the SBL model. (A) Sine-BWOA fitness curve. (B) the ROC curve of the SBL model.

FIGURE 10
Accuracy of motion recognition (A) Subject body movements. (B) Discrete movements.

FIGURE 11
Recognition accuracy based on different classifiers.
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sequence is outlined in Table 2. Using the U-LLCRR, 2 subjects are
selected to participate in the experiment. They perform the
“Marching in place with arm swinging” continuously on the

U-LLCRR, ensuring consistent and uninterrupted movement.
Figure 6 illustrates the real-time identification of
subjects’ sEMG data.

FIGURE 12
Experimental results of subject No. I in continuous movement. (A) Signal acquisition and feature value results (B) Continuous movement
classification results.
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Each limb movement lasts for 3 s. Every subject performs four
sets of continuous movements, following a specific motion sequence.
Each set consists of 5 repetitions, totaling 20 repetitions per subject.
The sEMG signals collected from subjects undergo the previously
mentioned feature selection and SBL classification model method
training. The training data is then input into the optimization
algorithm for continuous limbs movement intention recognition,
maintaining a 3:1 ratio for training and testing datasets, respectively.
This process aims to validate the model’s accuracy in recognizing
continuous movements and establishes a foundation for future
research into the application of rehabilitation robots in
active training.

3.3 Result of discrete test of the sine-BWOA-
LSSVM classifier

3.3.1 Feature processing
After preprocessing the sEMG data obtained from 16 channels

across 9 subjects, feature analysis was conducted in both the time
and frequency domains. Figure 7 depicts the mean values of the six
types of limb movements. The four time-domain features (MAV,
RMS, VAR, iEMG) are somewhat effective in distinguishing
between the movements. Some aspects demonstrated noticeable
overlap, especially in movements involving the shoulder joint.
Frequency-domain signals (MPF, MF) showed reduced variability
and greater stability compared to the time-domain signals.

Constructing larger-dimensional feature vectors by utilizing
disparities among features enables more effective information
extraction and improves movements differentiation. The
calculated features were combined to form a 16 × 6 dimensional
feature matrix encompassing various categories. To select a suitable
multi-dimensional feature dimension, designated as d (n),
dissimilarity was estimated using inter-class evaluation metrics
from the above. Figure 8A illustrates the variations in
dissimilarity across different dimensions and features after
100 cycles. Dissimilarity peaked at a feature dimension of 48,
reaching a value of 0.75. Consequently, a total of 48 dimensions
were selected. The 96-dimensional feature values were consolidated
into d (48) composite feature vectors, and GA were repeatedly
employed to assess dissimilarity using the Fisher function. Figure 8B

displays the most favorable feature combinations of for the
9 subjects following iterative combination. The blue marks in
Figure 8B represent the topic numbers, while the yellow on the
right side indicates the layout. The red squares indicate a value of 1,
representing the selected feature vectors, while the blue squares with
a value of 0, represent the non-selected feature vectors.

3.3.2 SBL classification model validation
In applying the classificationmodel for recognizing limbmovement

intentions, the BWOA parameters were initialized with a population
size (Pop = 20), the iteration index (i = [0:100]), PP = 0.8, PM = 0.4, and
an infinitesimally small constant (ε � 10E − 8).

The first 15 instances of each movement, collected from the
9 subjects and totaling 1,440 instances, were used as the training
dataset. The SBL classifier was trained using the optimal feature
vectors obtained from the feature vector selection process (Figure 9),
denoted as d (48) for each subject. Figure 9A shows the Sine-BWOA
fitness variation curve, indicating that the population fitness
gradually stabilizes after 35 iterations. The iterative results
indicated that the optimal parameters for the LSSVM are gam =
616.9974 and sig2 = 5.5353. Figure 9B presents the ROC (receiver
operating characteristic) curve for the model, with an AUC (area
under curve) of 0.8927. Given that 1 > AUC > 0.5, it indicates that
the SBL classification model exhibits good classification
performance.

The SBL classification model was tested using the most recent
15 instances of each activity from 9 subjects, yielding a total of
1,440 instances. The outcomes of this test are illustrated in
Figure 10A. The graph shows minor fluctuations in
identification rates across the participants, but the overall
results are quite consistent, with an average recognition rate
of 91.413%. Subject No.8 has the lowest percentage of limb
movement intention recognition rate at 90.21%, while the
highest rate is 92.33% in Subject No.2. Figure 10B shows the
results of the categorization test for the six types of limb
movements, with an average recognition rate of 92.87%.
Among the movements, LH-FLX has the highest recognition
rate at 95.33%, while RS-FLX has the lowest recognition rate
at 90.22%. The primary factor contributing to this variance is the
susceptibility of sEMG signals from various muscle groups to
interference during these specific actions.

TABLE 3 Confusion matrix of recognition results.

movements to be recognized Movements Recognition Results Accuracy

LS-FLX LE-FLX RS-FLX RE-FLX LH-FLX RH-FLX NM

LS-FLX 2 3 80.7%

LE-FLX 1 20 95.2%

RS-FLX 25 2 90.6%

RE-FLX 1 1 17 1 89.47%

LH-FLX 21 1 95.45%

RH-FLX 1 26 95.29%

NM 1 3 1 10 76.92%

Accuracy 87.5% 80% 94.6% 100% 87.5% 95.3% 90.9% 89.25%
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To confirm the reliability of the developed the SBL classifier, the
data were tested using five widely utilized classification algorithms,
namely, SVM, BPNN (backpropagation neural network), KNN
(k-nearest neighbor), RF (random forest), and DT (decision tree).
Figure 11 provides a comparative analysis of the categorization
performance. This figure clearly shows that the SBL classifier
outperforms other classifiers in motion intention recognition,
using the same sample data.

3.4 Result of continuous movement
intentions decoding

During a specific instance of continuous movement, raw sEMG
signals, normalized sEMG data, and an overlaid graph displaying
characteristic values were gathered from subject No. I, as depicted in
Figure 12A. The figure shows preprocessed data graphs derived from
16 channels of sEMG data, collected from both the upper and lower
limbs. The data underwent denoising and normalization procedures.
The overlaid graphs illustrate the extent of six characteristics measured
from the processed data. The feature combination vectors were then
inputted into the SBL classificationmodel, and the resulting classification
outcome is depicted in Figure 12B. In this depiction, ‘NM’ denotes the
condition of no movement, grayscale squares represent accurate
classifications, and red squares represent incorrect classifications.

Following the test findings, the confusion matrix for
continuous limb movement recognition was derived, which
was displayed in Table 3. In the table, the blue area indicates
the count of accurate classifications, while the orange section
indicates the count of incorrect classifications. This matrix
presents the results of 240 consecutive movements performed
by a single individual, detected using the SBL classifier. Subject
No. I’s continuous movements achieved an average recognition
rate of 89.25%. The recognition rates for the six types of limb
movements RS-FLX, RE-FLX, and RH-FLX actions, are the
highest, at 94.6%, 100%, and 95.29% respectively, all exceeding
90%. Conversely, LS-FLX, LE-FLX, and LH-FLX have
recognition rates of 87.5%, 80%, and 87.5%, respectively.
These rates fall within the 80%–90% range. The primary
challenge contributing to this issue is the overlapping of
movement processes, causing significant interference across
muscle groups in different channels. Although continuous
movement recognition may show reduced accuracy compared
to individual movement intention recognition, the overall
findings are still sufficiently reliable and suitable for
subsequent active rehabilitation training using the U-LLCRR.

4 Conclusion

A novel multi-postures upper and lower limb cooperative
rehabilitation robot has been proposed, enabling the realization of
eight distinct coordinated limbmovements. This innovation establishes
a physical platform for the identification of upper and lower limb
coordinated movement intentions based on sEMG signals. Multi-
dimensional sEMG signal classification and continuous movement
recognition methods have been explored, leading to the proposal of
a SBL classification model. It has been demonstrated through

experimental results that the model excels in recognizing limb
motion intentions, especially in differentiating between various limb
movements, with some movement achieving recognition rates above
90%. Although a slight reduction in accuracy for continuousmovement
recognition has been observed, the overall results have been found to be
reliable, rendering the model suitable for active rehabilitation training
using the U-LLCRR. This outcome is significant for the development of
more effective and personalized rehabilitation training programs. The
effectiveness of the SBLmodel in continuousmovement recognition has
been validated, providing valuable insights for future advancements in
rehabilitation technology. Future research will be directed towards
enhancing the model’s robustness and exploring a broader range of
movement patterns, with the aim of expanding the application scope of
rehabilitation robot technology.
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