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Training with “Extended Reality” or X-Reality (XR) systems can undoubtedly
enhance the control of the myoelectric prostheses. However, there is no
consensus on which factors improve the efficiency of skill transfer from virtual
training to actual prosthesis abilities. This review examines the current status and
clinical applications of XR in the field of myoelectric prosthesis training and
analyses possible influences on skill migration. We have conducted a thorough
search on databases in the field of prostheses using keywords such as extended
reality, virtual reality and serious gaming. Our scoping review encompassed
relevant applications, control methods, performance evaluation and
assessment metrics. Our findings indicate that the implementation of XR
technology for myoelectric rehabilitative training on prostheses provides
considerable benefits. Additionally, there are numerous standardised methods
available for evaluating training effectiveness. Recently, there has been a surge in
the number of XR-based training tools for myoelectric prostheses, with an
emphasis on user engagement and virtual training evaluation. Insufficient
attention has been paid to significant limitations in the behaviour, functionality,
and usage patterns of XR and myoelectric prostheses, potentially obstructing the
transfer of skills and prospects for clinical application. Improvements are
recommended in four critical areas: activities of daily living, training strategies,
feedback, and the alignment of the virtual environment with the physical devices.
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1 Introduction

The loss of the upper extremity is one of the most significant and destructive injuries
after central nervous system damage, including spinal cord injury, stroke, and traumatic
brain injury, which would cause a drastic sensory-motor deficiency, serious physical
disorders, and limited daily life. Myoelectric prostheses are valuable tools for meeting
the demand for functional recovery improvement of amputees, and the establishment of
advanced rehabilitation techniques for upper extremity loss holds great promise for
improving the quality of life of patients (Pasquina et al., 2015). However, using
myoelectric prostheses in daily activities necessitates the user’s ability to produce precise
and synchronized electromyography (EMG) signals, which requires extensive training and
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prolonged practice to achieve even minimum levels of dexterity
(Resnik et al., 2012; Johnson and Mansfield, 2014). Although these
prostheses have begun to implement sophisticated artificial
intelligence algorithms and control schemes, the lack of
appropriate training and limited integration into the activities of
daily living (ADL) has contributed to high rejection rates (19%–
61%) (Biddiss and Chau, 2007a; Biddiss and Chau, 2007c; Østlie
et al., 2012; Salminger et al., 2022). Consequently, the efficiency of
myoelectric prostheses remains a challenging problem (Biddiss and
Chau, 2007b). The average waiting period from amputation to the
initial prosthesis fitting is around 6 months, with no associated
training provided during this time (Pezzin et al., 2004; Østlie et al.,
2012; Salminger et al., 2022). Research has shown that fitting the
prosthesis earlier improves compliance (Roeschlein and Domholdt,
1989). Delaying fitting would only exacerbate the user’s feelings of
discomfort and hassle, highlighting the necessity for advanced pre-
prosthetic training tools (McFarland et al., 2010).

Neural plasticity plays a crucial role in the utilization of
myoelectric prostheses, facilitating a novel mode of coordination,
which reduces phantom limb pain caused by amputation, whilst
supporting long-term skill retention and transfer (Rogers et al.,
2016; Preißler et al., 2017; Snow et al., 2017; Akbulut et al., 2019;
Kulkarni et al., 2020). Nonetheless, it necessitates intensive muscle
training to achieve control. Conventional physical therapy (CPT) is
a highly repetitive exercise rehabilitation training under the
supervision of doctors or therapists, which stimulates the motor
nerve paths through mobilization, stretching and strengthening to
enhances the control ability of the muscles of the stump (O’Keeffe,
2011; Cerritelli et al., 2021; Cao et al., 2023). This training method
lacks accurate quantitative evaluation criteria for amputees. And the
whole process is very arduous and monotonous. Many participants
become fatigued and lose motivation, and some even completely
abandon myoelectric prostheses (Resnik et al., 2012). Consequently,
traditional rehabilitation training methods are difficult to help
amputees to complete the target task (Stucki, 2021). There is an
urgent need for a personalized, high-quality and attractive prosthetic
rehabilitation training program to constantly improve equipment
control, both prior to use and during the operation of the prostheses.
Better training results will stem from more comprehensive, more
clinical, more rewarding and entertaining myoelectric training for
amputees, making rehabilitation feel less like rehabilitation. Previous
studies indicate that “Extended Reality” or X-Reality (XR) systems,
utilizing gamification and edutainment, can provide superior
outcomes in comparison to CPT exercises. XR is a virtual
environment capable of generating precise control over numerous
physical factors and has been widely used in education, brain-
computer interfaces and human-computer collaboration and
other fields. For the training of myoelectric prostheses, XR
systems have become popular tools for physical rehabilitation
and motor learning, as XR helps to increase amputees’
willingness and motivation to participate in training, while also
allowing for improved assessment and evaluation of progress
(Radianti et al., 2020). It is a valuable resource for those seeking
prostheses training, and its impact on the field is significant.

In this paper, the term XR in prostheses training refers to a very
broad concept, which encompasses all reproduced real
environments and generated virtual digital environments by
computer technology and wearable devices, along with novel

methods of human-computer interaction, which includes virtual
reality (VR), augmented reality (AR), andmixed reality system (MR)
(Figure 1). The major feature of this technology is immersion, which
refers to any solution capable of delivering more immersive and
captivating training experiences to patients. Apart from visual
stimulus conveyed by images or videos, it may also entail other
sensory stimuli, such as touch and sound. Among these
technologies, VR system utilizes computer simulation to create a
three-dimensional space and create a sense illusion for users,
increasing the user’s sense of presence, allowing for greater
interactivity within the virtual world. However, the VR system
necessitates users to wear a head-mounted display with a
binocular omni-orientation monitor to completely occlude the
natural physical space of the surroundings, which may induce a
series of problems, such as dizziness, motion sickness and other
health issues. The AR system uses computer simulation to create
virtual information based on physical data that is challenging to
experience in real-world conditions. This virtual information is then
superimposed onto the real space to generate a new picture or space
that enhances the user’s visual experience and provides a sense of
interaction that extends beyond reality (Hugues et al., 2011). The
MR can mix virtual object information in the real space, and realize
the interaction between users and virtual objects. It establishes an
interactive feedback information loop between the real world, virtual
space and users, enhancing realism and creating a richer experience
(Flavián et al., 2019). The distinction between AR and MR is
opaquer; both mix real and virtual elements and augment reality
with virtual elements. The only essential difference between VR and
AR (MR) is that while the former confronts the user solely in the
digitally created world, the latter mixes digital with the real world
(where the real world can be given either directly through
transparent lenses (e.g., Microsoft HoloLens) or indirectly,
through displays that stream the camera feed (e.g., Apple XR)).
The XR prosthesis system refers to a virtual version of a prosthesis,
built in XR environment, which does not necessarily have a control
object as the prosthesis, but rather is programmed and calibrated in
a manner similar to a physical prosthesis and uses simulated objects
to map control commands of the EMG, allowing amputees to
practice the control scheme in a well-practiced environment. XR-
based rehabilitation has been proved to have some positive effects on
behavior and physiology, and is very popular with elderly, Stroke,
and Parkinson’s disease patients (Murray et al., 2007; Saposnik and
Levin, 2011; Cao et al., 2022; Wu et al., 2022). This technology has
gradually become a popular tool for clinical prostheses training,
rehabilitation, and motor learning.

Compared to CPT, the XR prosthesis training have precise
control over various physical factors in the environment and
positively impacts the user’s physiological, psychological, and
rehabilitation outcomes, thereby increasing patient motivation
during therapy. Systematic data analysis can effectively record the
training process and effect, provide more accurate performance
evaluation methods and reduce human interpretation errors. This
training approach will decrease expenses and enhance the patient’s
innate drive, thus augmenting their commitment towards
neuromuscular rehabilitation training. (Garske et al., 2021).
shows that there are a large number of prosthetic training
software based on serious games, which focus more on
improving engagement and muscle training, without paying
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attention to the importance of skill transfer. (Gaballa et al., 2022).
introduces the existing virtual prosthetic training technology and the
user evaluation procedure to ensure the practicability in the clinical
environment, and identify obstacles in technology, human factors,
clinical and management levels, economy, and suggest possible
pathways to deployment for successful clinical adoption in the
future. (Toledo-Peral et al., 2022). analyzed the application of
VR/AR in motor neurorehabilitation after stroke/amputation,
including the scope of application, characteristics, target
anatomical region, how to use, signal processing methods and
hardware. Prosthesis training using XR techniques for upper limb
amputees has the potential to enhance competency or speed up the
learning process for acquiring the skill; however, there is no
consensus on which factors are crucial in the transfer of skills
from virtual training to actual prosthetic competence. In light of
the above, the current review focus on four critical areas:

• Components and available cases of the XR prosthetic system,
• Training methods and evaluation metrics of the XR Prosthetic
System compared to other rehabilitation protocols,

• What are the technical limitations and barriers in the process
of skills transfer?

• Possible deployment pathways for future successful clinical
applications.

We surveyed papers dealing with upper limb prosthesis training
or assessment with the assistance of the XR environment and using
EMG signals as input. Relevant papers were identified during the
literature survey and enhanced by systematic searches using
PubMed, Web of Science, Science Direct, IEEE Xplore, Google
Scholar and SCOPUS databases. Based on a summary of existing
XR prosthetic systems, with associated control methods, assessment
methods and evaluation metrics, and comparing the application of
prosthetic hands, this review analyses the characteristics and
shortcomings of the existing systems in the process of skill

transfer from virtual training to actual prosthetic ability in four
aspects: ADL, training methods, feedback, the relationship between
the virtual environment and the physical device.

2 The existing XR systems for upper
extremity prostheses

The two most important aspects of XR for myoelectric
prosthetic hand are the user interface and myoelectric control.

2.1 User interface

The XR prosthesis system offers an interactive environment that
enables users to repeat various actions. Most of the time, this type of
interface works to immerse users in a virtual environment and
perform virtual actions using electromyography control, which gives
users the sensation of experiencing a similar movement in reality
(Woodward et al., 2017). According to the immersion level applied
to XR, it can be categorized as nonimmersive XR and immersive XR
(Sveistrup, 2004). Nonimmersive XR involves interactions between
an environment and players via a computer monitor or non-HMD
display, maintaining a safe distance between participants and the
game (Bevilacqua et al., 2019). Immersive refers to the utilization of
various head-mounted displays (such as Occulus Rift Headset, HTC
VIVE Pro, Google Glass, Meta Glass, and Microsoft Hololens),
which are connected to the human body to interact with the game
(Narayanasamy et al., 2006; Lu et al., 2012) clarify that the user
interface of XR systems can be categorized into two types: serious
games and simulation tasks. Serious games replace prostheses with
gamification elements in fictional scenarios, maps EMG control
commands with specific game goals, which is able to provide a
variety of challenges, increase the enjoyment of training, and
optimize the learning process. Conversely, simulation tasks

FIGURE 1
Illustrations showing the relationships and definitions between the most common realities (extended reality, virtual reality, augmented reality and
mixed reality).
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generally involve recreating a prosthetic-like control object and
duplicate the controls in real-world scenarios, requiring standard
operating procedures and lacking in entertainment.

Since the early 1990s, serious games have been researched for
prostheses control training (Lovely et al., 1990), which is a video

game with an explicit and carefully thought-out educational purpose
and intended to impart certain knowledge or skills to users
(Graafland et al., 2012; Laamarti et al., 2014). As a virtual
training system, serious games can increase patients’ motivation,
improve muscle coordination, and ultimately augment

TABLE 1 Detailed categorization of the serious game.

Program (Genre) Task Feedback
mechanism

Control
strategy

Performance metrics Skill
transfer

Myoboy Abstact task Traditional Media DC No

Air-Guitar Hero (rhythm game) Abstact task Traditional Media ML score No

WiiEMG (sports game) Abstact task Traditional Media ML Time, accuracy No

Sonic Racing (racing game) Abstact task Traditional Media DC Time No

MyoBox (dexterity game) Abstact task Traditional Media ML Separability, consistency, variability Yes

MyoBeatz (rhythm game) Abstact task Traditional Media DC SUS, proportional muscle activation No

Falling of Momo (vertical
scroller)

Abstact task Traditional Media DC UES, IMI, SUS No

Volcanic Crush (reaction game) Abstact task Traditional Media DC UES, IMI, SUS No

Dino Sprint (endless runner) Abstact task Traditional Media DC UES, IMI, SUS No

ino Feast (dexterity game) Abstact task Traditional Media DC UES, IMI, SUS No

Breakout-EMG (arcade game) Abstact task Traditional Media DC Accuracy Yes

Crossbow Game Posture
reproduction

VR ML Postures completed score No

UpBeat (rhythm game) Posture
reproduction

AR ML Gesture completion, muscle
activation

No

MyoTrain Posture
reproduction

Traditional Media ML Accuracy No

FIGURE 2
Serious game: (A) MyoBoy; (B) Sushi Slap; (C) Air Guitar Hero; and (D) Dino-Feast.
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electromyography control ability (see Table 1) (Clingman and
Pidcoe, 2014). MyoBoy (Figure 2A) and PAULA or Virtu Limb™
are mature computer-based electromyography training systems.
These systems use the subject’s flexor and extensor muscles to
improve electromyography control. Patient feedback has
indicated that the current commercial method, which depends on
basic graphic representations of EMG, is less motivating and
satisfying than the training system that is reliant on serious
games (Prahm et al., 2017a). Several serious games based on
traditional game design, such as Pong (de la Rosa et al., 2008),
Flappy Bird (Radhakrishnan et al., 2019), Space Invaders
(Radhakrishnan et al., 2019), SuperTuxKart (Prahm et al.,
2017b), Sushi Slap (Smith et al., 2018b; Smith et al., 2018a)
(Figure 2B), Crazy Meteor (Smith et al., 2018b; Smith et al.,
2018a), Dog Jump/Beeline Border Collie (Smith et al., 2018b;
Smith et al., 2018a), Crate Whacke (Hashim et al., 2021a), Race
the Sun (Hashim et al., 2021a), Fruit Ninja (Hashim et al., 2021a),
and Kaiju Carnag (Hashim et al., 2021a), employ a method similar to
the user’s control of a physical prosthetic hand, which not only
repeatedly activates the flexor and extensor muscles, but also
instigates the random training of joint or continuous muscle
contraction. This approach provides an ideal training method for
direct control (DC), while also enhancing the motivation and
adherence of the amputation rehabilitation plan. Rhythm games
and car racing games, such as Air Guitar Hero (Armiger and
Vogelstein, 2008) (Figure 2C), MyoBeatz (Prahm et al., 2019a,8),
UpBeat(Melero et al., 2019), and Sonic Racing (Martinez-Luna et al.,
2020), incorporate sound feedback into traditional gameplay, which
are valuable for early-stage rehabilitation and provide solid starting
points for the inclusion of feedback (Prahm et al., 2018). Mobile
phone games, such as such as Volcanic Crush incorporate based
dual-site muscle activation, Dino Spirit and Dino Feast (Figure 2D)
involving sequential and proportional movement control, and Dino
Claw with 3-D movement control, create more opportunities for
myoelectric training outside the clinical environment, which
overcome logistical, financial and geographical barriers to users,
and increase training motivation (Winslow et al., 2018). For
improving the training performance, serious games have the
following characteristics: 1) The subjects focus on the screen and
can find the best training scheme to the challenge through implicit
learning without clear prompts (Kristoffersen et al., 2021); 2) Tasks
of varying difficulty levels can be provided to enhance the interest
and motivation of the subjects as well as extend their training time
(Rahmani and Boren, 2012); 3) Remote personalized guidance can
be provided by therapists or doctors (Holden, 2005); 4) Real-time
feedback can be incorporated to optimize the training effect (van
Diest et al., 2013). Serious games offer a simplified myoelectric
control interface displayed on a computer screen. While unable to
display quantitative results, it provides direct control of a limited set
of muscles with intuitive functionality. Its usefulness is limited to
early-stage rehabilitation and does not induce changes in muscle
performance.

Simulation tasks are typically presented in either the third-
person perspective or the first-person perspective. The former
aids the user’s spatial perception, while the latter can enhance the
user’s sense of interaction with the virtual object. Both perspectives
offer distinct benefits, and align with the desired functionality of
myoelectric rehabilitation systems. Generally, simulation tasks

involve posture reproduction tasks, which necessitate following
typical operating procedures and assessment indicators but lack
entertainment value (see Table 2). XR systems based on simple
simulation tasks, such as UVa-NTS platform (de la Rosa et al., 2009),
Virtual training environment (Cavalcante et al., 2021), VRd testing
environment (Blana et al., 2016) (Figure 3A), Training environment
(Al-Jumaily and Olivares, 2009), and Virtual model (Muri et al.,
2013), provide a solid research foundation for making virtual
prosthetic systems and training amputees. Simulation tasks
combined with standard training schemes, such as Virtual box
and beans test (Prahm et al., 2019b), Virtual box and blocks test
(Hashim et al., 2021b), Virtual rehabilitation training tool (Dhawan
et al., 2019,8), Virtual Therapy Arm (VITA) (Nissler et al., 2019), AR
prostheses simulator (Kenedy Lopes, 2012), Virtual training system
(Nakamura et al., 2017), Performance assessment (Hargrove et al.,
2007), Prostheses simulator (Lambrecht et al., 2011) (Figure 3B),
and Virtual reality environment System (Resnik et al., 2011), have
shown promise as a tool for developing and evaluating control
methods by enhancing and refining particular skills. XR systems
based on complex environment, such as Exploration (Phelan et al.,
2015) (Figure 3C), Virtual simulation (Soares et al., 2003), and
HoloPHAM (Sharma et al., 2019), have created virtual
environments that are more suitable for daily life, which can
satisfy users’ sense of immersiveness. These systems are being
studied how to best assess the impact and accuracy of such
environment. Open source systems, such as VIE (Perry et al.,
2018) (Figure 3D) and Musculoskeletal Modelling Software
(MSMS) (Davoodi and Loeb, 2012), prove that amputees can
effectively learn the EMG contraction mode, provide effective
training platforms based on machine learning (ML) control, and
make it possible for different research groups to develop effective
and unified training methods. Systems based on virtual prosthetics,
including Catching simulator (van Dijk et al., 2016b), Catching
simulator Prostheses Gripper (Kristoffersen et al., 2021) (Figure 3E),
and MSMS, have demonstrated the transfer effect and existing
deficiencies from virtual prosthetics to physical prosthetics.
Imitation-oriented XR exercises can produce lower practice
variability, and assist with movement learning by promoting
consistent movements through accurate repetition. ADL-oriented
XR could elicite stronger muscle activity and movement variations.
The combined design appears to yield superior training outcomes.
Several XR prosthetic systems, such as ARlimb (Boschmann et al.,
2016; Boschmann et al., 2021), AR prostheses simulator, and Mixed
reality training (Sharma et al., 2018) (Figure 3F), illustrate the
differences between AR/MR and VR. However, the systems are
not compared to one another.

2.2 Myoelectric control

Currently, the mainstream myoelectric control methods ARE
DC and ML. The DC primarily employs EMG signals from two
muscle groups to control all possible grasping modes, including on/
off control, sequence control, and mode switching control. This
control requires users to actively switch among multiple degrees of
freedom (DoFs). Due to its ease and implementation, DC is the most
cfrequently utilized control approach in commercial prostheses and
XR systems. Unlike DC, ML uses electrodes with more than two to
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measure EMG on multiple muscles in the stump, and calculates
EMG features that can be mapped to the input of the learning
algorithm for prosthetic control commands. This in turn enables
users to generate a potentially larger range of control commands.

ML can realize simultaneous control of multiple DoFs by using
muscle contraction mode, which aligns more closely with the neural
pathway of natural human control and can also minimize
compensatory movements of the trunk and shoulder. ML control

TABLE 2 Detailed categorization of the simulation tasks.

Program (Genre) Task Feedback
mechanism

Control
strategy

Evaluation
procedure

Performance metrics Skill
transfer

UVa-NTS platform Abstact task Traditional Media DC Success rate, time No

PAULA Abstact task Traditional Media DC Velocity, error No

Virtual training
environment

ADL VR ML BBT Score No

Mixed reality training ADL MR ML PHAM time No

Virtual box and blocks
test

ADL VR DC BBT Score Yes

Virtual box and beans
test

ADL Traditional Media ML BBT IMI No

Virtual Therapy Arm ADL VR ML BBT Score No

Exploration ADL VR ML Score No

Catching simulator ADL Traditional Media DC, ML Score Yes

Performance
assessment

ADL Traditional Media ML CRT Accuracy, pin time,
Classification errors

No

VR evaluation
environment

Posture
reproduction

VR ML Accuracy No

ARlimb Posture
reproduction

AR ML CRT Accuracy Yes

Training platform Posture
reproduction

Traditional Media ML Accuracy Yes

HoloPHAM ADL MR CRT, PHAM No

FIGURE 3
Simulation tasks: (A) VRd testing environment; (B) Prostheses simulator; (C) Exploration; (D) VIE; (E) Catching simulator Prostheses Gripper; and (F)
Mixed reality training.
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can reveal the full potential of prostheses, potentially improving
prosthesis function and reducing the burden on upper
extremity amputees.

Unlike the DC based XR system, games using ML control, like
Crossbow Game, are not designed specifically for training users. In
these systems, users cannot distinguish which type of muscle
contraction corresponds to which type of motion. Thus, they can
explore every possible muscle contraction that can be performed
throughout training, resulting in both muscle contraction and
algorithm adapting to one another to achieve better myoelectric
control (Kristoffersen et al., 2021; P, 2016). The Rehabilitation
Institute of Chicago proposed that the XR system based on ML
entails a sophisticated training process comprising of four distinct
stages: Conceptual Training (teaching the principle of system and
determining which movements would be used to achieve better
control), Control training (providing guidance when learning to use
the system), Function use training (testing prostheses used in daily
life activities), Prostheses recalibration training (teaching how to
maintain system performance in daily use) (Simon et al., 2012).
Systems based on adaptive algorithms, such as VR evaluation
environment and Virtual box and blocks test, can successfully
prevent XR system performance decline during extended training
session (Lambrecht et al., 2011). Most papers surprisingly lack
detailed descriptions of processing algorithms. Presently, the
utilization and processing of EMG signals in the realm of upper
extremity prostheses remain scattered and heterogeneous, lacking
consensus on the selection methods of signal processing,
classification algorithms, and performance evaluation. We suggest
it is crucial to elucidate these concepts as one of the technical
guidelines for fostering consistency within the proposed protocols.

3 Clinical outcome assessments and
performance metrics

Effective evaluation methods can enhance the assessment of
muscle control ability and the efficacy of the XR prosthetic system,
thereby facilitating amputee rehabilitation training. The clinical
assessment of prosthetic user outcomes are typically assessed
through subjective patient-report outcome measures and
objective performance-based outcome tests (Wang et al., 2018).
The use of subjective patient-report outcome measures allows for
the disclosure of subjective details regarding improvements in daily
activities, an assessment of user satisfaction with the device, and the
evaluation of impacts on life quality. This measurement is preferred
because it provides insight into the subjective information regarding
the training effect’s improvement and the evaluation of the user’s
satisfaction with the system. Meanwhile, the objective performance
based measurement utilizing standardized procedures is able to
evaluate system performance, provide quantitative results that are
objective, unbiased, and repeatable, and effectively aid both the
therapist and user in improving training. While the subjective
patient-report test offers a detailed understanding of the patient’s
experience with the device, it may be biased and influenced by their
memory of past events and perspectives. An objective, performance-
based measure accounts for these issues but does not address the
user’s attitude towards the device. In other words, a testing
methodology that relies solely on performance-based measures

disregards the patient experience, potentially overlooking long-
term concerns. Therefore, to ensure effectiveness and suitability
upon deployment, clinical rehabilitation tools must undergo
comprehensive testing using both objective performance-based
measures and subjective patient reports.

3.1 Subjective patient-report
outcome measures

Intrinsic Motivation Inventory (IMI), System Usability Scale
(SUS), User Evaluation Survey (UES), and NASA Task Load Index
are four prominent measures in subjective patient-report outcome
measures. IMI is composed of several subscales, which mainly rate
the enjoyment, perceived choice, perceived competence and
immersion of XR system to evaluate the experience of playing
video games (Anderson and Bischof, 2014; Hashim et al., 2021a).
SUS is a questionnaire with 10 items, involving the stations, overall
game experience, virtual reality experience and all session
experience, which is used for quick usability evaluation across
multiple domains (Bangor et al., 2008; Dawson et al., 2012). UES
mainly scores the game input, control, motivation and fun,
including 1) rating the game, 2) rating the input 3) rating the
control methods, 4) rating the EMG assessment, and 5) determining
the attractive elements (Prahm et al., 2017b; Prahm et al., 2017c).
The NASA Task Load Index has been utilized multiple times with
upper extremity prostheses, which contains various questions to
evaluate mental and physical demand, temporal demand, task
performance, effort, and frustration (Osborn et al., 2021;
Chappell et al., 2022; Parr et al., 2023).

3.2 Objective performance-based
outcome measures

In the designing of XR prostheses training system, therapists
utilize various training tools to restore control of the residual limb
during daily activities. Some of these tools have undergone clinical
verification while others are mentioned in literature (Lindner et al.,
2010). Clinical outcome assessments (COAs) are employed to assess
the progress of individual rehabilitation or training through XR
system. Research has demonstrated that motor control learning is
highly specific. Effective evaluation methods can provide more
accurate assessments of muscle control ability and the
effectiveness of XR system, and can promote the rehabilitation
training for amputees (Giboin et al., 2015; van Dijk et al., 2016b).
Consequently, selecting appropriate training activities to assist
prosthetic users in returning to their regular routines is critical.
While physical prosthetic devices form the basis of most of these
methods, training in virtual environments has emerged as an
effective means of assessing patients’ performance during daily
living tasks. After reviewing the available literature, this paper
outlines 14 frequently utilized clinical outcome measures for the
performance-based assessment of residual limb training (Table 3).

For Motion Test (Figure 4A), participants received instructions
to follow the motion prompts while observing the virtual prostheses
that decoded their movements. This test aimed to investigate
changes in EMG levels, but it oversimplified the study by not
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examining changes in muscle function levels (Kuiken, 2009;
Kristoffersen et al., 2020; Portnova-Fahreeva et al., 2023).

Unlike the Motion Test, the Target Achievement Control (TAC)
(Figure 4B) test enables subjects to move the virtual prostheses at a
slow or fast pace based on their muscle contraction intensity (Simon
et al., 2011). Assessment criteria consist of Test Complexity,
Movement Distance, Target Width, Dwell Time and Trial
Timeout. Misclassification may aid in completing the motion
gradually. One limitation of TAC testing is the absence of
interaction between the subjects and the virtual environment
(Boschmann et al., 2016; Hargrove et al., 2018; Woodward and
Hargrove, 2019).

The Box And Block Test (BBT) (Figure 4C) instructs subjects
to move blocks from one compartment of the box to another as
much as possible within 60 s (Mathiowetz et al., 1985a). This
assessment evaluates the user’s capability to perform
fundamental actions using a prosthetic device. However, there
is not an evaluation test for proportional force control (Hebert
and Lewicke, 2012; Kontson et al., 2017). To enhance the system’s
modular features, the BBT incorporates everyday virtual daily-
living activities scenes, such as the living room and kitchen
(Nissler et al., 2019). In this setting, it can cause alterations in

other areas of the participant’s body and handle items of varying
elevations.

Similar to BBT, the Nine-Hole Peg Test (NHPT) (Figure 4E)
requires subjects to insert and remove wooden pegs into and out of
holes on a board, with scoring based on the time and speed required
to complete the task (Mathiowetz et al., 1985b; Oxford Grice et al.,
2003; Kristoffersen et al., 2021).

The Clothespin-Relocation Test (CRT) (Figure 4D) is an
established tool for testing upper limb flexibility, by assessing
the time required to reposition the three pins of the Rolyan
Graded Pinch Exerciser system from the horizontal bar to the
vertical bar (Hussaini and Kyberd, 2017; Kyberd et al., 2018;
Hussaini et al., 2019). It realizes precise myoelectric control and
coordinated movement of the upper limb joint through repeated
coordinated reaching and grasping movements, and
repositioning the clothespin in space.

Task Tests refers to task-specific tests such as grasping,
interception, tracking, matching, and object recognition
(Bouwsema et al., 2014; van Dijk et al., 2016b; Manero et al.,
2019). This test can enhance the information related to ADL in a
game-relevant way, and improve the performance of XR transfer
to the prostheses. The limitation of this test lies in the design of

TABLE 3 Commonly used clinical outcome indicators.

Performance
metrics

Procedure Properties Deficiencies

Motion test Execute the appropriate movement following
the virtual prostheses

Investigated changes in EMG levels Oversimplified

TAC test Control the virtual prostheses to move to the
target posture

Adjust the speed of the virtual prostheses
according to the muscle contraction

Interaction space is a virtual environment
rather than a physical environment

BBT Move the block from one side of the box to
the other

Allows continuous estimation of single-finger
activation and incremental learning

Focus on a limited number of DoFs only

NHPT Pick up the pegs, put them into the hole on
the board, and remove it

Ability to perform flexibility testing Relatively simple and short

CRT Move the clothespins from the horizontal bar
to the vertical bar

Perform repetitive coordinated stretching and
grasping movements

Results scoring without corresponding
compensatory movement

Task tests Simulation of prosthetic gripping tasks Improved performance of transfer from virtual
space to prostheses

Differences between virtual space and actual
tasks lead to errors

JHFT 7 ADL tasks Simulate ADL corresponding to prostheses use in
daily life

Training differences between the virtual and
real environment

AM-ULA 18 ADL tasks that can be divided into
subtasks

Assessment of awkwardness and compensatory
exercise

Training differences between the virtual and
real environment

CAPPFUL 11 ADL tasks Assesses the ability, time and quality to complete
activities

Training differences between the virtual and
real environment

ACMC 30 functional hand movements that can be
categorized into 4 hand use

Measuring the ability to operate prostheses while
performing ordinary life activities

Influenced by a relatively large subjective
component

ARAT 19 arm function assessment tasks Objects to be moved to shelves of different heights Influenced by subjective components

SHAP 14 ADLs and 12 additional object transfer
tasks

Assesses ability to execute specific grips lengthy and tiring

AHAP 26 grasping tasks Replicability using publicly available Yale-CMU-
Berkeley objects

Converts complex tasks into simple grasping
tasks

PHAM Manipulate a group of objects by grasping
them and changing their position

Ability to monitor gesture completion rates and
consider compensatory movements

Lack of comprehensive quantitative
assessment methods
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virtual tasks, and it is impossible to calculate the error amount
and solution space related to each goal.

The Jebsen-Taylor Test of Hand Function (JHFT) (Davis Sears
and Chung, 2010; Wang et al., 2018), the Activities Measure for
Upper Limb Amputees (AM-ULA) (Resnik et al., 2013) and the
Capacity Assessment of Prosthetic Performance for the Upper Limb
(CAPPFUL) (Kearns et al., 2018) are designed to train or assess
various unimanual hand functions required for ADLs with
corresponding objects. These three COAs consist of 7, 18, and
11 ADLs, respectively, which are used to assess the ability to
perform activities, completion time and movement quality. JHFT
is a series of standardized activities, including writing a sentence,
page turning, stacking checkers, simulated feeding, picking up/
lifting large objects, picking up/lifting heavy objects and picking
up/lifting small objects. During training, the completion of these
activities is graded by time, with a maximum time limit of 120 s.
AM-ULA tasks include combing hair, putting on and taking off
clothes, buttoning a shirt, zipping a jacket, tying socks, tying shoes,
pouring soda, turning a doorknob, hammering, folding a towel,
using a cup, fork, spoon, scissors, and telephone, writing a word,
reaching overhead, etc. Each task is further divided into subtasks
according to the steps required to complete the task. Task scoring is
based on the extent of subtask completion, speed of completion,
quality of movement, grip control and prosthetic skills, and
independence.

The Assessment for Capacity of Myoelectric Control (ACMC) is
an observational assessment designed to measure prosthetic control

of ADLs (Hermansson et al., 2004). It consists of 32 functional hand
movements, which are divided into 4 categories of hand use:
gripping, holding, releasing, and coordinating. In addition, it uses
a 4-category scale to identify and evaluate hand movements and
judge the ability of subjects to perform spontaneous movements. In
all evaluations, only ACMC has been clinically shown to have good
test-retest reliability for upper extremity prostheses (Hermansson
et al., 2006).

The Action Research Arm Test (ARAT) consists of 19 tasks,
which are divided into 4 categories: grasp, grip, pinch, and gross
movement (Fitts, 1954). Meanwhile, the test requires the subjects to
move objects to different heights of shelves, manipulate common
objects, such as washers and blocks, and perform ADLs, such as
pouring water into a glass. Some tasks also assess the arm
range of motion.

Southampton Hand Assessment Protocol (SHAP) (Figure 4F)
is one of the most detailed hand function assessment tools
available. It consists of 26 separate tasks, including six grip
types (spherical, tripod, tip, power, lateral, and extension),
which can be divided into abstract object processing (light/
heavy sphere, tripod, power, lateral, tip and extension) and
ADLs (pick up coins, undo buttons, food cutting, page
turning, remove jar lid, pour water from jug and carton, move
a full jar, an empty tin, and a tray, rotate a key, screw, and door
handle, open/close a zip) (Bouwsema et al., 2012; Burgerhof et al.,
2017). It mainly quantifies the time required to perform the task,
regardless of how the task is performed. It is tedious and

FIGURE 4
Objective performance-based outcome tests: (A) Motion Test; (B) TAC; (C) BBT; (D) CRT; (E) NHPT; (F) SHAP; and (G) PHAM.
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exhausting for amputees with limited abilities (Vasluian et al.,
2014; Kyberd, 2017; Kristoffersen et al., 2021).

The Anthropomorphic Hand Assessment Protocol (AHAP) is a
digital standard to quantify the ability of prostheses to perform daily
grasping, which is divided into 26 tasks (Llop-Harillo et al., 2019).
According to the kinematic structure of the hand and grasp
frequency of ADLs, these tasks are divided into eight grasp types
[pulp pinch (PP), lateral pinch (LP), diagonal volar grip (DVG),
cylindrical grip (CG), extension grip (EG), tripod pinch (TP),
spherical grip (SG) and hook grip (H)] and two non-grasping
postures [platform (P) and index pointing/pressing (IP)]. To
account for changes in object size, shape, weight, texture, and
stiffness during human-environment interaction, each grip type
selects three different objects from the YCB suite to achieve
reproducibility (Llop-Harillo et al., 2022).

Prosthetic Hand Assessment Measure (PHAM) (Figure 4G) is a
standard for upper limb amputees to quantitatively evaluate a series
of operational tasks related to object manipulation (e.g., water,
pencil, coin, and power), focusing on monitoring gesture
completion rates and compensatory movements (Hunt et al.,
2017; Sharma et al., 2019). In PHAM protocol, users need to
grasp objects with specific gestures and change their position in
the frame to manipulate a group of objects within the physical frame
(Melero et al., 2019).

3.3 Performance metrics

For DC, the training focuses on two muscles that are
independent of each other in terms of contraction function, as
well as execution of the mode switching command. For ML, the key
point is to adapt several muscle groups to produce EMG patterns
that can separate different actions and repeat the same action.
Myoelectric control depends on each muscle playing its role
during training, so using XR system for EMG training should
enable subjects to produce consistent and distinguishable muscle
patterns. It is not possible to design a long-term ML algorithm for
each subject because it requires a lot of time and resources.
Therefore, if users do not perform tests in the laboratory, they
may encounter limitations in control flexibility or incorrect
movements, which is also considered a common reason for
abandoning the use of prostheses (Biddiss and Chau, 2007c;
Scheme and Englehart, 2011; Chadwell et al., 2016). If users can
understand that their training program may lead to poor actual use,
they can immediately adjust the training system to reduce
unnecessary frustration and help achieve better
electromyographic control. Some studies have established more
comprehensive offline training metrics before real-time
experiments, including classification measures, variability
measures, separability measures, complexity measures, and
neighborhood measures (Ortiz-Catalan et al., 2014; Franzke et al.,
2021; Nawfel et al., 2021). The classification index is a measure that
describes the correctly computed prediction score of the system. The
variability metrics is a measure of the reproducibility of EMG
patterns between repetitions, which quantifies intra-class
characteristics and feedback on the consistency of EMG patterns.
The separability metrics is a measure of the reproducibility of EMG
patterns between classes, which assesses inter-class characteristics.

To more comprehensively measure training effect and task
difficulty in real-time testing, previous research has proposed
many online performance metrics. Most clinical assessments test
the ability to perform specific movements using time-related
parameters (Joyner et al., 2021), as illustrated in Figure 5. Motion
completion time is defined as the time from movement initiation to
task completion, which includes the full range of motion of each
movement. Motion selection time is the time required to correctly
select the target motion, which is used to quantitatively measure the
speed at which the motion command is converted into a correct
motion prediction. Motion completion rate is the percentage of the
total motion attempts that are successfully completed within the
time limit. Task attempt is defined as the number of times the subject
initiates interaction with the object and moves toward task
completion (Bangor et al., 2008). Motion quality is defined as the
number of awkward and compensatory movements used by the
subject in the process of completing the task.

Based on the fact that users must respond to and correct the
system’s misclassifications to successfully complete the task, Fitts’
law, which can be used to demonstrate that any movement task
exhibits a trade-off between speed and accuracy, has also been
widely used to evaluate online myoelectric control (Fitts, 1954).
Fitts’ Law typically uses completion rate, path efficiency, overshoot
or throughput, and other parameters to evaluate the online
performance of XR systems (Park et al., 2008; Scheme and
Englehart, 2013; Gusman et al., 2017; Nawfel et al., 2021). The
completion rate was mentioned above. Throughput (TP) is the most
important metric in Fitts’ law, which is defined as the transfer of
information in the results of repeated tests over different target
distances and widths. Path efficiency is defined as the ratio of the
shortest path to the actual path to the target. Overshoot is used to
count the number of times the target is lost before reaching the stop
position during each movement, and to measure the stability of the
users’ task performance. The TAC test is very similar to a test based
on Fitts’ law, which uses the virtual prostheses on the screen to
evaluate the control and positioning ability of the prostheses.

4 Existing challenges and future
development

The positive results of the XR prosthetic system involve many
aspects of the virtual environment. In this section, we will analyze
the current status and possible trends of the system in terms of ADL,
training modalities, feedback and the relationship between the
virtual environment and the physical device to support the
implementation of future systems with more effective training
capabilities.

4.1 ADL

XR prostheses training should focus on two core themes: user
engagement and skill transfer from virtual prosthetics to physical
prosthetics. A critical element in using XR as a training and
rehabilitation tool is the authenticity of the virtual space created.
Obviously, XR system can effectively enhance user participation, but
for skill transfer, most studies only verify the performance
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improvement or abstract control in XR system. It seems to be tacitly
assumed that the XR system, which uses the same muscle tissue and
corresponding EMG signal as the prosthetic task, which can easily be
translated into the improvement of prosthetic control. However,
previous studies have shown that the emergence of migration
phenomenon requires virtual space to be as close as possible to
the target of physical prosthetic tasks, that is, more ADL training
(Belter et al., 2013; Woodward and Hargrove, 2019).

Virtual space has many potential benefits, including task
automation, movement scalability, exercise gamification,
environmental security and performance tracking. XR prosthesis

system is a powerful tool that can generate or present the properties
of all virtual models in interactive tasks, including shape, texture,
compliance, and interactive features. Using virtual space to simulate
ADL-oriented training is a natural extension of the “real world.”
(van Dijk et al., 2016b; van Dijk et al., 2016a). have developed a game
to simulate grasping tasks, which augments ADL-relevant
information and incorporates the proportional relationship
between EMG amplitude and end-effector. This study proved for
the first time the transfer effect of using ADL-related information on
tasks from XR to myoelectric prostheses, but only when the game
was designed to encourage behaviors specific to controlling

FIGURE 5
Definition of the real-time performance metrics. The mean absolute values of the sEMG signals used to generate control commands are shown at
the (B). The (A) present the control decisions generated in response to the sEMG signal classifier and corresponding performancemetrics. The blue boxes
indicate the target motion. The control decisions are represented by three circles, with black circles indicating decisions with no motion, blue circles
indicating decisions with correct classification, and red circles indicating decisions with incorrect classification. The performance metrics shown
include motion selection time and motion completion time.
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prostheses. The design of XR prostheses system should pay attention
to the balance between game motivation and task functionality
(Kristoffersen et al., 2021).

The research on ADL-oriented virtual prosthetic training to
improve the daily life performance of amputees has begun to appear.
Next, ADL-oriented interventions in virtual space should be close to
the real world, including a home-like scenario. Specifically, when
designing a virtual system, it is necessary to establish the relationship
between ADL tasks and virtual tasks, to specify the information
about the relationship between ADL goals and user actions that
allows adaptive coordination of these actions, because virtual tasks
cannot completely simulate ADL in daily life. It seems that the
transfer effect is best evaluated by measuring the performance of
ADL tasks, such as the timing of closing or opening the hand, which
is also a direction to be improved. The ADL-related training based
on actual activities raises an interesting point. In this case, the user
would be naturally induced to move and manipulate objects at
different heights. This exercise and training performed/exerted by
muscles other than the missing ones could form a new physical
therapy, which is more conducive to the rehabilitation of users.

4.2 Train modalities

The feature of EMG signal are easily affected by external factors,
such as muscle fatigue, electrode displacement, limb position
change, contraction force change and individual differences. This
type of influence cannot be suppressed, and it is also unpredictable.
However, it is impractical to account for all the confounding factors
in a single training session. Therefore, when myoelectric control is
introduced into clinical practice, it is very necessary to have an
effective, unified and easy-to-implement training protocol. Putting
users’ daily life in the center of research and formulating research
objectives, and improving the clinical application performance of
the system with clinically relevant results as the goal. The existing
research shows that the XR prostheses training system is far behind
the new dexterous prosthetic hand and the advanced functional
evaluation model. The XR prosthetic training system should be
designed by integrating the prosthetic hand control mechanism,
such as switch, threshold, proportion, pattern switch and pattern
recognition. At the same time, it can integrate multiple functional
elements, including training intensity, training times and training
level, and even the training level and program required by users
(Winslow et al., 2018; Prahm et al., 2019a,8; Prahm et al., 2017c).

Due to technical limitations, XR prostheses system usually only
describes the virtual hand on the screen or in a two-dimensional
environment, excluding multi-DOF depth of field control and the
joint environment with joint drive as the goal, and has no
connection with the user’s body. We believe that the future XR
prosthetic system should adopt the AR/MR technology combined
with IMU, where virtual reconstruction is carried out with the help
of IMU tags attached to the user’s body, so the virtual hand or virtual
prosthetic will cover the user’s residual limb. The system predicts or
tracks the trajectory of the virtual hand through IMU, and controls
the virtual hand through the user’s muscle contraction. More
realistic virtual hand models, interactive objects and rich scenes
would not only provide a unique personalized training interface, but
also create a more attractive, more immersive and realistic user

experience. Adding game function design, task type, scoring
mechanism, type of control scheme used by the program, and
feedback can effectively attract users to focus on the results of
the game (external focus of attention) rather than on muscle
changes (internal focus of attention) during training, which can
improve cognitive effort and lead to faster, more accurate, and more
effective virtual hand movements.

The game elements are alternated to adapt to the specific needs
and development of users at different times or training stages. The
virtual system should have a built-in logging capabilities to record
the movement status of each component in the virtual space during
training and to evaluate the overall rehabilitation performance. The
XR prostheses system with rich elements can be used by users to
create or select more specific training scenarios. In addition, when
combined with accurate rehabilitation methods, it can also provide a
higher level of personalized training programs. A better training
effect for users would result from a more comprehensive, more
clinical and more entertaining virtual prosthesis training.

4.3 Feedback

To improve user participation, the existing XR prosthetic system
tends to pay more attention to aesthetic design, but ignores
functionality. The virtual hand is usually represented by a game
element or visualisation. Interacting with objects in the XR
environment typically involves attaching them to the hand
through programming, rather than controlling the virtual hand
using a myoelectric controller that mimics the functionality of
the prosthetic hand (Hargrove et al., 2018; Nissler et al., 2019;
Phelan et al., 2021) compared the virtual TAC test with a set of
outcome measures for physical prostheses, including SHAP, JTHF,
BBT, and CRT. Their findings showed a correlation between virtual
test measurement and physical performance, but no causal
relationship was found. (Boschmann et al., 2021). proposed an
AR system that enables users to practice pattern classification
control, modulate grasping force with feedback, and adjust wrist
rotation via a tilted bar. Through testing, the system can transfer the
skills needed to control actual prosthetics. Judging the effectiveness
of the training is primarily based on the subjective feedback from the
therapist and user, which poses challenges to the objective
assessment of the outcomes. The study indicates that the
provision of force feedback can enhance the level of realism in
the virtual environment and the user’s sensation of embodiment
with the virtual hand. Additionally, it can augment the performance
of the virtual system and effectively enhance the user’s training
outcome (Dosen et al., 2015).

In the straightforward task of grasping, the objective is to lift a
cylindrical object with uncertain measurements of diameter,
hardness, and friction. The prosthetic hand user must regulate
the aperture of the prosthetic hand to correspond with the size
of the object, which is essential for skillful utilization of the
prosthetic hand. To prevent any breakage of the object, the user
must also have the capability to adjust the virtual hand’s force in
response to the object’s hardness. Force feedback is essential in
virtual environments because users are unable to sense grip force
directly. To assist users, a virtual strength can be applied to the
object, enabling them to proficiently regulate the force the virtual
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hand exerts after numerous training sessions. Additionally, friction
feedback can be incorporated to simulate objects slipping, providing
users with an opportunity to practice all feasible object manipulation
strategies.

The development of XR systems would not eradicate work, but
rather redistribute and reshape existing activities. Although XR has
several advantages over CPT, physiotherapists still play an
important role (Almeida and Nunes, 2020). We consider the
suggestions of physiotherapists to be a special kind of feedback.
The XR prosthetic system and CPT have a mutually advantageous
relationship and the program promotes patient engagement while
ensuring scientifically-sound training methods. The physical
therapist creates a training plan that encompasses a preliminary
diagnosis and follow-up assessments. The therapist informs the
patient about their condition, adjusts the system, recommends
exercises, and assesses the outcomes to attain the anticipated
advantages of participation and intervention. Additionally,
physical therapists can aid individuals in choosing suitable
training methods, difficulty and intensity levels, and tools based
on individual traits and interests, creating a personalized training
experience. Even when training at home, physical therapists can
monitor an individual’s progress through the Internet of Things and
take part in their training. Furthermore, it is crucial for physical
therapists to be part of the design process of XR systems to ensure
their optimization.

4.4 Virtual environment and physical devices

The XR prostheses system serves two primary purposes:
neuromotor rehabilitation and prosthetic control training.
However, the system currently prioritizes neuromotor
rehabilitation and virtual prostheses training, disregarding the
crucial process of amputees adapting to new prostheses devices
(P, 2016). It is necessary to consider these variances when
implementing and interpreting results. During clinical practice,
XR is mainly used for EMG signal control training to restore
muscle function and encourage voluntary muscle contraction.
During this time frame, participants practiced grasping objects of
different shapes and sizes and performing daily tasks. Subsequently,
they received training on how to perform these tasks using a
myoelectric prosthetic hand. However, amputees who have
achieved voluntary control of EMG signals could potentially face
challenges while performing tasks as intended. The impact of
prosthetic weight and arm posture on EMG signals, the
inconsistencies between XR tasks and actual grasping tasks, and
differences in virtual versus real prosthetic hand models contribute
to these findings. While some studies suggest that training with
virtual prostheses is equivalent to training with physical ones, the
extent to which skills acquired in the simulated environment are
transferable to the actual task remains unclear.

The virtual prostheses can be programmed and calibrated to
replicate the physical prosthetic system, allowing users to practice
controlling the system using virtual objects (Lambrecht et al., 2011;
Kluger et al., 2019; Elor and Kurniawan, 2020; Chappell et al., 2022)
proposed a pre-prosthetic hand training system that integrates
virtual reality with a robot arm. This system employs the robot
arm to simulate the actions and forces of the virtual arm through

precise physical simulation. The study reveals that implementation
of robot arms can significantly improve training outcomes.
However, a gap between the real and virtual environment
increases user frustration. Migrating XR prosthetic systems
effectively requires consistency and similarity in their function
and training with physical prosthetic systems. While relevant
guidelines have been proposed for training, scoring, and clinical
interpretation, differences still exist in the selection and completion
time of movements, task attempts, task quality, and tolerance
required to achieve the target posture.

The use of the XR prostheses system in neuromotor
rehabilitation training could lead to more complex and
distinguishable EMG patterns compared to movements typically
used in activating a prosthetic hand. To optimize training
effectiveness, it may be beneficial to limit movements that mimic
prosthetic control (Na et al., 2017; Kristoffersen et al., 2020). The
virtual reality programming engines, such as Unity and Unreal
Engine, have precise physics calculation engines that simulate
prosthetic hand movements, mechatronic models, delays, and
limitations. This enables the implementation of the same model
for virtual space control and physical prosthetics. Thus, virtual
prosthetics training can lead to direct transfer for physical
prosthetics control. During training, advanced prosthetic
technology is utilized to create an intuitive and easily manageable
system that combines both virtual and real simulations of prosthetic
hands. Furthermore, the XR prostheses system and desktop
prosthetic hand or prostheses simulators are combined in order
to optimize the training process. The user has the ability to adjust the
level of control required for training, thereby facilitating gradual
improvement in rehabilitation progress. The system design would
provide users with a realistic simulation of a future prostheses,
enabling them to perform rehabilitation tasks quickly, similar to
their experience with physical prosthetics during the early stages of
amputation. Additionally, this feature would empower developers to
test and assess the structural design and control performance of the
prosthetic hand based on personalized user problems, thereby
improving the hands’ adaptability.

5 Conclusion

This review presents recent advances in XR systems applied to
myoelectric prostheses, including existing XR prosthetic systems, virtual
control methods, performance evaluation methods, and performance
metrics. Our analysis of XR prosthetic systems indicates that serious
games can increase user engagement, while simulated tasks improve
training outcomes. Existing systems have achieved satisfactory training
outcomes, while performance evaluation methods and metrics are
continually undergoing refinement. In addition to enhancing user
engagement, the XR prosthetic system can serve as a pre-training
tool during the wait for a new prosthesis. There are limited direct
strategies for transferring performance from virtual environments to
physical devices in current systems. However, the emergence of AR/MR
technology seems to address this issue. To achieve this objective, this
paper compares prosthetic applications, identifies gaps in virtual control
methods, performance assessment methods, and physical prosthetic
systems, and analyzes the limitations of existing systems while
examining proposed development prospects in four areas: ADL,
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training modalities, feedback, and the relationship between the virtual
environment and the physical device. The application of XR technology
formyoelectric prosthetic hand training and rehabilitation undoubtedly
holds great promise. Establishing a patient-centered XR prosthetic
system that is aimed at and inspired by real-world use cases is
essential for surmounting hurdles to adoption.
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