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Purpose: To construct a deep learning knowledge distillation framework
exploring the utilization of MRI alone or combing with distilled Arthroscopy
information for meniscus tear detection.

Methods: A database of 199 paired knee Arthroscopy-MRI exams was used to
develop a multimodal teacher network and an MRI-based student network,
which used residual neural networks architectures. A knowledge distillation
framework comprising the multimodal teacher network T and the monomodal
student network S was proposed. We optimized the loss functions of mean
squared error (MSE) and cross-entropy (CE) to enable the student network S to
learn arthroscopic information from the teacher network T through our deep
learning knowledge distillation framework, ultimately resulting in a distilled
student network ST. A coronal proton density (PD)-weighted fat-suppressed
MRI sequence was used in this study. Fivefold cross-validation was employed,
and the accuracy, sensitivity, specificity, F1-score, receiver operating
characteristic (ROC) curves and area under the receiver operating
characteristic curve (AUC) were used to evaluate the medial and lateral
meniscal tears detection performance of the models, including the
undistilled student model S, the distilled student model ST and the
teacher model T.

Results: The AUCs of the undistilled student model S, the distilled student model
ST, the teacher model T for medial meniscus (MM) tear detection and lateral
meniscus (LM) tear detection are 0.773/0.672, 0.792/0.751 and 0.834/0.746,
respectively. The distilled student model ST had higher AUCs than the
undistilled model S. After undergoing knowledge distillation processing, the
distilled student model demonstrated promising results, with accuracy (0.764/
0.734), sensitivity (0.838/0.661), and F1-score (0.680/0.754) for both medial and
lateral tear detection better than the undistilled one with accuracy (0.734/0.648),
sensitivity (0.733/0.607), and F1-score (0.620/0.673).
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Conclusion: Through the knowledge distillation framework, the student model S
based on MRI benefited from the multimodal teacher model T and achieved an
improved meniscus tear detection performance.
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1 Introduction

The menisci are two fibrocartilaginous discs located between
the femur and the tibia in each knee that work to stabilize the
knee joint and distribute the load. Meniscus tears are common
and severe since they can lead to articular cartilage degeneration
with the risk of progression to osteoarthritis (Kopf et al., 2020; Li
et al., 2020). Early diagnosis and treatment help in preventing
osteoarthritis (Martel-Pelletier et al., 2016). Arthroscopy with
high resolution is often considered the gold standard for
diagnosis and can directly observe the internal tissue of the
knee joint (Krakowski et al., 2019). Due to the high cost and
invasive operation, knee arthroscopic data are difficult to obtain.
Magnetic resonance imaging (MRI) is a noninvasive examination
that provides cross-sectional information to detect meniscus
tears and is more commonly utilized in the diagnosis and
treatment of meniscus injuries. However, compared to the
gold standard of arthroscopic examination, human
identification of medial meniscus tears using MRI shows a
sensitivity of 89% and specificity of 88%, while for lateral
meniscus tears, the sensitivity and specificity are 78% and 95%
(Phelan et al., 2016). Human identification of MRI images is
limited by subjectivity, variability among interpreters, cognitive
fatigue, processing constraints, experience sensitivity, and time
pressures. Therefore, the efficiency of manually detecting knee
joint MRI for diagnosing meniscus injury is still insufficient.

In recent years, deep learning has become a transformative tool
across various fields. Its ability to automatically learn hierarchical
representations from data has significantly impacted medical
image analysis, offering unprecedented insights and facilitating
the development of diagnostic methods. The application of deep
learning in medical imaging has made significant progress, and
convolutional neural networks have shown extraordinary abilities
in tasks such as image segmentation, disease detection, and
diagnostic decision support. The ability of deep neural networks
to distinguish complex patterns in medical images greatly
promotes our understanding and interpretation of complex
pathology and diseases. Deep learning has gained much
attention and could utilize medical imaging to diagnose the
knee joint abnormalities (Bien et al., 2018; Pedoia et al., 2019;
Rizk et al., 2021). Multimodal learning is an approach that
combines multiple sources of data to provide more information
and better performance (Kong et al., 2022). Integrating
morphological information from knee MRI exams and
arthroscopy provides a possibility for supplying more
comprehensive information and detecting more detailed
meniscus injuries. The significance lies in leveraging the
complementary information from both MRI and arthroscopic
imaging modalities to construct a deep learning network,

enhancing diagnostic accuracy and robustness in joint
pathology assessment. Considering that arthroscopic images are
commonly acquired during surgery, which is after disease
diagnosis, knee arthroscopic data can only be leveraged as
missing modality (Chevalier et al., 2018; Shaikh et al., 2020;
Ganaie and Tanveer, 2022) input for training but not for
testing in deep learning (Tung and Mori, 2019).

Meanwhile, knowledge distillation has become a focal point in
the evolution of deep learning models. Originally conceived as a
technique for model compression, knowledge distillation has
transcended its initial purpose. It serves not only as a means to
reduce model complexity but also as a mechanism for transferring
the acquired knowledge from a teacher model to a more
lightweight student model. This pedagogical approach not only
facilitates the deployment of models in resource-constrained
environments but also contributes to model generalization and
interpretability. Knowledge distillation-based methods can be
utilized to address the absence of modalities in medical image
analysis (Chen et al., 2022). However, whether knowledge
distillation can be used to teach missing arthroscopic
information to mono-modality MRI model to improve network
performance remains to be verified.

Thus, the purpose of this study was to investigate whether the
mono-modal student model S with only MRI input could learn the
knowledge of knee arthroscopy from the multimodal teacher model
T through a knowledge distillation learning framework and improve
the performance in meniscus tear detection.

2 Materials and methods

2.1 Study population

This retrospective study included a total of 202 patients who had knee
MRI examinations and their paired arthroscopic images at Shanghai Sixth
People’s Hospital Affiliated with Shanghai Jiao TongUniversity School of
Medicine between January 2021 and December 2022. Patients who had a
previous knee surgery history or an interval between the MRI
examination and subsequent surgery of more than 3months were
excluded (8 patients). The included population consisted of 87
(44.8%) men and 107 (55.2%) women with a mean age of 40.5 years
and a standard deviation (SD) of 15.3 years. Five of them had surgical
images andMRI exams on both knees (194 patients, 199 cases). The data
composition and utilization of our research are shown in Figure 1. There
were 169 injury cases with 60 (30.2%) medial meniscal tears and 125
(62.8%) lateral meniscal tears in the paired knee Arthroscopy-MRI
dataset. The report of the knee surgery served as the standard of
reference of this study. Study population information from our
databases is detailed in Table 1.
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2.2 Image data acquisition and
preprocessing

All MRI scans were collected on a 3.0-T MRI Scanner
(Achieva; Philips Healthcare, Netherlands). Our study used
the coronal proton density (PD)-weighted fat-suppression
sequence with the following scanning settings: repetition time,
2,100 ms; echo time, 38.4 ms and slice thickness, 3.2 mm. The
MRI images were labelled medial intact, medial injury, lateral
intact or lateral injury, and the region of interest (ROI) was
cropped based on the manual segmentation results.

The knee arthroscopic surgical videos of the study, saved in
720*576 resolution with MPG format, were collected by a
660HD Image Management System (Smith and Nephew,

United States) using an HD Autoclavable Camera System
(Smith and Nephew, United States). The surgical videos were
then converted into 720*576 resolution images with JPEG
format at 10 frames per second. The arthroscopic images
containing the meniscus were selected as input data for
training of the teacher model T.

The cropped MR images and the selected arthroscopic images,
resized to unified sizes separately, were applied with Min-Max
normalization to eliminate the impact of data dimensionality on
modelling and promote algorithm convergence (Jain et al., 2005).
Considering the robustness of the models and the requirement of a
large amount of data in deep learning, a data augmentation strategy was
applied with random rotation, random contrast adjustment and
random addition of Gaussian noise to the images.

FIGURE 1
Schematic diagram of knee MRI and arthroscopy data utilization process.

TABLE 1 Summary statistics of the study population from our datasets.

Statistic MRI pretraining dataset Arthroscopy-MRI dataset

Number of exams 486 199

Training set 388 159/160

Testing set 98 40/39

Number of patients 486 194

Number of female patients (%) — 107 (55.2)

Age, mean (SD) 44.4 (16.1) 40.5 (15.3)

Number with medial meniscal tear (%) 151 (31.1) 60 (30.2)

Number with lateral meniscal tear (%) 84 (17.3) 125 (62.8)
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2.3 Knee MRI network pretraining dataset

Pre-training is a common strategy in machine learning and
deep learning, where a model is initially trained on a broad dataset
to acquire general knowledge and patterns. The model is first
trained on a diverse dataset to learn general features and patterns.
Once this pre-training phase is completed, the model can be fine-
tuned on a smaller, task-specific dataset to improve its
performance on the target task. To mitigate the risk of

overfitting and address data scarcity, we pre-trained a meniscus
injury detection network. The knee MRI network pretraining
dataset contained 486 cases of patients who had knee MRI
examinations that were collected and deidentified from the
same institution as previously described. This dataset was used
mainly to develop a pretrained residual neural network for knee
MRI feature extraction and further transfer learning. The
pretrained weights were preserved for the training of the
student model and the teacher model’s MRI network.

FIGURE 2
Flow chart of our knowledge distillation framework. Knee MRI examinations and Arthroscopic images were preprocessed and input for developing
the multimodal teacher model Ta, and MRI examinations were additionally utilized to develop the mono-modal student model Sm. The student modal Sm

distilled knowledge from the teacher modal Ta by optimizing the loss of mean square error LMSE and the loss of cross-entropy LsCE.
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2.4 Development of the
algorithm framework

We developed a deep learning knowledge distillation
framework for medial and lateral meniscus tear detection,
where the learning performance of the distilled student model
ST relied on distillation strategy, as well as the teacher-student
architecture and knowledge type in a knowledge distillation
framework (Gou et al., 2021).

In this study, our knowledge distillation method was
performed offline. The teacher model T output the logits and
produced the soft targets to guide the training of the student model
S during distillation. In this way, even without arthroscopic image
input, the student model S that only accessed MR images could still
learn valuable information from the teacher model T, thus
improving the performance of meniscus tear detection.
Arthroscopic knee images as missing modality could be
transferred from the teacher model into the student model
through knowledge distillation. Our algorithm framework
flowchart is presented in Figure 2.

All network architectures in this study used ResNet-18 as the
backbone, which is a representative deep convolutional neural
network that includes convolutional layers, pooling layers, fully
connected layers, and residual connections (He et al., 2016).
ResNet-18 excelled with a balanced trade-off between model
complexity and efficiency, offering advantages in faster training,
lower memory requirements, and well-suited performance for
various deep learning tasks. To demonstrate the results in a
more intuitive and universally applicable way, we chose to use
ResNet-18 to construct a knowledge extraction framework. We
also constructed knowledge distillation frameworks that composed
of other residual neural network architectures, and the results are
presented in Supplementary Table S1. The student model S was
based on the pretrained residual neural network with only MR
image input. The teacher model T consisted of two feature
extractors with the same architecture based on residual
network, one for MR image analysis and another for
arthroscopic feature extraction. To utilize the valuable
multimodal information, in the construction of the teacher
model, we utilized two individual streams to process data of
each modality and then integrated the multimodal knowledge at
the intermediate feature level by bilinear fusion, which was widely
used to combine imaging features from two different sources (Peng
et al., 2020; Ni et al., 2022). During training, the Adam optimizer
was utilized with an initial learning rate of 0.0001 and a weight
decay of 0.0001 to control overfitting and improve generalization
performance. An early stopping strategy was adopted, in which
training was stopped if the loss metric did not improve within
100 iterations.

We adopted the response-based knowledge distillation
method, which transferred the knowledge captured by soft
targets of the teacher model (Hinton et al., 2015). To adaptively
absorb valuable knowledge from the teacher model, the algorithm
framework employed the optimization of two loss functions as
supervision: the mean squared error (MSE) loss and the cross-
entropy (CE) loss.

Our algorithm framework employed 5-fold cross-validation to
assess the detection performance of the models, which helped in

understanding the models’ ability to correctly classify instances
and the overall effectiveness. Heatmaps for the distilled student
model were generated to show the highlighted regions
within images.

2.5 Implementation details

Our training process was performed in a Linux environment on
anNVIDIAA100 SXM4 graphics processing unit (GPU) with 80 GB
random access memory (RAM). The whole knowledge
distillation framework was implemented with Python 3.9.16 and
Torch 1.8.1 + cu111.

2.6 Statistical analysis

The following statistical analyses were performed by using
SPSS (Version 26, IBM Cooperation, United States). For
continuous values, data are shown as the mean with standard
deviation. By employing 5-fold cross-validation, the paired
Arthroscopy-MRI dataset was randomly shuffled and split into
five subsets in which four of the subsets contained 40 cases and
the remaining subset contained 39 cases. In each iteration, our
models selected a fold as the validation set and the remaining four
folds together as the training set. Each fold serves as the
validation set one time, and our models were evaluated across
five iterations to obtain an overall assessment. We compared the
performance in medial and lateral meniscus tear detection of the
undistilled student model S, the distilled student model ST and the
teacher model T with the metrics of accuracy, sensitivity,
specificity, F1-score and area under the receiver operating
characteristic curve (AUC). We chose the threshold that
maximized the Youden index for analysis. The performance of
the above three models was also evaluated with receiver operating
characteristic (ROC) analysis.

3 Results

For medial meniscus (MM) tear detection and lateral meniscus
(LM) tear detection, the student model S achieved AUCs of
0.773 and 0.672, respectively. The teacher model T achieved
AUCs of 0.834 in MM and 0.746 in LM. The student model after
knowledge distillation ST achieved an AUC of 0.792 in MM and
0.751 in LM, which were higher than the undistilled student model S.
The results of our three models for each fold with the overall AUC in
medial and lateral meniscus tear detection are presented in Table 2.

The threshold that optimized the Youden index was chosen.
For the student model S, the accuracy, sensitivity, specificity, F1-
score and AUC values in medial/lateral meniscal tear detection
were 0.734/0.648, 0.733/0.607, 0.735/0.741, 0.620/0.673 and 0.773/
0.672, respectively. For the teacher model T, the accuracy,
sensitivity, specificity, F1-score and AUC values in medial/
lateral meniscal tear detection were 0.779/0.744, 0.967/0.700,
0.697/0.826, 0.721/0.766 and 0.834/0.746, respectively. The
performance of the teacher model T was superior to that of the
student model S, except for the specificity in detecting medial
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meniscus tears. For the distilled student model ST, the accuracy,
sensitivity, specificity, F1-score and AUC values in medial/lateral
meniscal tear detection were 0.764/0.734, 0.838/0.661, 0.722/0.851,
0.680/0.754 and 0.792/0.751, respectively. Thus, the performance
of the student model after knowledge distillation ST was close to
that of the teacher model T and better than the undistilled student

model S. The performance summary metrics of our student model,
distilled student model and teacher model can be found in Table 3.
The receiver operating characteristic curves (ROCs) of our three
models are shown in Figure 3.

Heatmaps were generated to better discern which areas of the
image were the most focused on. The generated highlight region

TABLE 2 Overall AUC results of the threemodels: studentmodel, distilled student (teacher-student)model and teachermodel on each fold inmeniscus tear
detection.

Overall AUC Fold1 Fold2 Fold3 Fold4 Fold5 Averaged

Student 0.729 0.695 0.727 0.722 0.745 0.724

Teacher-Student 0.766 0.749 0.781 0.767 0.789 0.770

Teacher 0.793 0.755 0.807 0.796 0.801 0.790

TABLE 3 Diagnostic performance of our three models to detect medial and lateral meniscus tears.

Accuracy Sensitivity Specificity F1-score AUC

Student

Medial 0.734 0.733 0.735 0.620 0.773

Lateral 0.648 0.607 0.741 0.673 0.672

Teacher-student

Medial 0.764 0.838 0.722 0.680 0.792

Lateral 0.734 0.661 0.851 0.754 0.751

Teacher

Medial 0.779 0.967 0.697 0.721 0.834

Lateral 0.744 0.700 0.826 0.766 0.746

The bold results represent the metrics of the distilled student network, which are better than those of the undistilled student network.

FIGURE 3
Receiver operating characteristic curve of the three models in medial (A) and lateral (B) meniscus tear detection.
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focused on the medial and lateral meniscus of the cropped MR
images. (Supplementary Figure S1).

4 Discussion

These results indicated that the distilled student model ST, which
learned arthroscopic knowledge from the teacher model T,
outperformed the undistilled student model S. In this paper, we
present the study to integrate knee arthroscopic knowledge intoMRI
diagnostic model for more accurate meniscus tear detection.

Most studies for knee meniscus tear detection in deep learning
were formulated using MR images. Bien et al. (2018) developed
MRNet, a convolutional neural network, based on three MRI
series for detecting meniscus tears and anterior cruciate ligament
(ACL) injuries. Key et al. (2022) created three different MRI
corpora for automatic meniscus tear diagnosis model
development. While multimodal data can provide
comprehensive and complementary information for disease
diagnosis and treatment planning (Fan et al., 2022; Gao et al.,
2022). MRI is a non-invasive technique providing excellent soft
tissue contrast and allowing for multi-planar imaging, while it has
limitations in detecting degenerative tears or small tears that are
not clear on the images. Arthroscopy is considered the gold
standard for diagnosing certain joint abnormalities, providing
high-resolution images, but it is an invasive, expensive and time-
consuming procedure. Therefore, arthroscopy data are rarely
collected for preoperative diagnosis studies, and studies based
on arthroscopy have mostly focused on integrating arthroscopy
with other radiological examinations to enhance intraoperative
navigation and improve surgical outcomes (Kotheeranurak et al.,
2019; Shigi et al., 2019; Chen et al., 2021). Both detection methods
have their own advantages and can complement each other. There
is currently no research using knee MR images and corresponding
arthroscopic images as input for meniscus tear detection model
development. Thus, we propose to leverage the advantages of the
knee MRI and arthroscopy data to conduct multimodal fusion
learning for enhanced meniscus injury detection.

Multimodal learning typically involves leveraging multiple
modalities during both training and inference stages to achieve
optimal performance (Venugopalan et al., 2021; Zhang et al., 2021).
In many scenarios, multiple modalities of high-quality training data
can be well prepared, but during real-world evaluation, only one
modality can be accessible (Wang et al., 2022; Xiong et al., 2023).
This is a common challenge in that decisions and evaluations often
need to be made based on limited information. A knowledge
distillation framework with a ‘Teacher-Student’ architecture is
proposed, in which the missing modality information available in
the training data can be transferred from a multimodal teacher
model to a mono-modal student model. Guan et al. (2021) proposed
a multi-instance distillation programme that distilled the knowledge
learned from multimodal data into an MRI-based model to address
the task of mild cognitive impairment conversion prediction. Gao
et al. (2020) employed knowledge distillation to support network
learning with the target modality alone for vessel border detection.
To our knowledge, we proposed the first work that distilled knee
arthroscopic information to an MRI-based student model. By
leveraging the arthroscopic information during training and

distilling its knowledge to the student model, our study enabled
the MRI modality to benefit from the additional information
contained in the knee arthroscopy modality.

Several limitations of this research should be acknowledged.
First, all patients have undergone arthroscopy confirmation, so
our single-center dataset has a small sample size, which may lead
to bias. Due to the small size of the dataset, it may not fully reflect
the diversity and complexity of the entire patient population. Such
training datasets may not represent the characteristics of different
medical centers, regions, or populations well, leading to bias in the
trained deep learning models when generalized to other
environments or populations. Second, arthroscopic images have
characteristics such as low contrast, interference of fat droplets,
and intra-articular tissue reflection caused by light sources, which
results in poor feature extraction performance. Further research is
needed on the network for image processing and feature extraction
of knee arthroscopic images to address the above issues. Third, due
to the small sample size, the model classification is only divided
into “intact” or “injury” categories. According to the results of
knee arthroscopy surgery, we only define the level III (linear high
signal shadow reaches the upper or lower surfaces of the meniscus
in MRI) meniscus injury as “injury,” but our models are difficult to
distinguish the level I (Clustered low brightness shadow in MRI)
and level II (linear high signal shadow, but not reaches the upper
or lower surfaces of the meniscus in MRI) meniscus injury from
the level III meniscus injury, resulting in only two classification
labels being presented in the final classification result. Last, the
clinical significance of the meniscus injury diagnosis model
constructed using the knowledge distillation framework needs
further research. Multiple radiologists with different levels of
experience needed to be invited to diagnosis knee meniscus
tears with or without the assistance of artificial intelligence
models, and compare the results for validating if the models
add value in real clinical practice.

5 Conclusion

It was demonstrated that the distilled student model ST achieved
more competitive performance compared with the student model S
after learning arthroscopic information from the teacher model T
through knowledge distillation. Further studies using larger datasets
and exploring various knowledge distillation frameworks are needed
to validate the effectiveness of knowledge distillation and
consolidate our findings.
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