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Bacterial prostatitis is a challenging condition to treat with traditional dosage
forms. Physicians often prescribe a variety of dosage forms with different
administration methods, which fail to provide an efficient and convenient
mode of drug delivery. The aim of this work was to develop a new type of
hybrid material incorporating both electrosprayed core-shell microparticles and
electrospun nanofibers. A traditional Chinese medicine (Ningmitai, NMT) and a
Western medicine (ciprofloxacin, CIP) were co-encapsulated within this material
and were designed to be released in a separately controlled manner. Utilizing
polyvinylpyrrolidone (PVP) as a hydrophilic filament-forming polymer and pH-
sensitive Eudragit

®
S100 (ES100) as the particulate polymeric matrix, a combined

electrohydrodynamic atomization (EHDA) method comprising coaxial
electrospraying and blending electrospinning, was used to create the hybrids in
a single-step and straightforward manner. A series of characterization methods
were conducted to analyze both the working process and its final products.
Scanning electron microscopy and transmission electron microscopy revealed
that the EHDA hybrids comprised of both CIP-PVP nanofibers and NMT-ES100
core-shell microparticles. Multiple methods confirmed the rapid release of CIP
and the sustained release of NMT. The antibacterial experiments indicated that the
hybrids exhibited a more potent antibacterial effect against Escherichia coli dh5α
and Bacillus subtilis Wb800 than either the separate nanofibers or microparticles.
The amalgamation of fibrous nanomedicine and particulate micromedicine can
expand the horizon of new types of medicines. The integration of electrospinning
and coaxial electrospraying provides a straightforward approach to fabrication. By
combining hydrophilic soluble polymers and pH-sensitive polymers in the hybrids,
we can ensure the separate sequential controlled release of CIP and NMT for a
potential synergistic and convenient therapy for bacterial prostatitis.
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1 Introduction

Nanomedicines, an emerging trend in healthcare, combine
traditional medicines, pathology, material science, and advanced
materials conversion methods to bring about effective treatments
(Yap et al., 2021; Cai et al., 2022; 2023; Meng et al., 2022; Tang et al.,
2022; Wu et al., 2022). Over the past 2 decades, medicated
nanofibers, a branch of nanomedicines, have rapidly grown, and
their potential applications cover various diseases (Chen et al., 2022;
Shen et al., 2022; Xie et al., 2022; Lang et al., 2023; Qian et al., 2023;
Tan et al., 2023). However, to our knowledge, no studies have
explored the treatment of prostatitis through electrospun
nanofibers to date.

The prostate, a deep-seated organ in the adult male pelvic cavity
(Murugesan and Raman, 2022), presents challenges for direct treatment
methods, such as infusion, when inflamed (Bertelli et al., 2022; Jiang
et al., 2022; Rubegeta et al., 2023). Consequently, prostatitis is often
challenging to treat fully. Over the years, various synthetic chemical
molecules (such as ciprofloxacin (CIP), norfloxacin, flomoxef, and
cilastatin) (Dan et al., 1987; Schaeffer and Darras, 1990; Kuiper
et al., 2020; Nakamura et al., 2020; Zheng J. et al., 2022) and herbal
medicines have been developed into oral dosage forms (Hu et al., 2022;
Xu et al., 2022; Gao et al., 2023; Zhong et al., 2023). In clinics, doctors
often combine traditional Chinese medicines with Western medicine
and antibiotics for improved therapeutic effects on patients with
chronic bacterial prostatitis. However, the complexity of medication
methods can cause inconvenience for patients (Alzahrani et al., 2022;
Bouiller et al., 2022; Kuiper et al., 2022;Marino et al., 2022).We propose
that these medicines could be integrated into a single medical material,
improving drug delivery effectiveness and functional performance
through controlled release profiles.

Electrospinning and electrospraying are two forms of
electrohydrodynamic atomization (EHDA) methods (He et al.,
2022; Ji et al., 2023; Xu et al., 2023; Yang et al., 2023; Yu and
Xu, 2023). The terminology derives from the material conversion
mechanism, in which electrostatic energy (electro) is utilized to
process working liquid (hydro) through a powerful interactive
process (dynamic). During this process, the atomization of the
liquids transfers the fluid into solid products (Bai et al., 2022;
Cao et al., 2022; He et al., 2022; Song et al., 2022; Wang H.
et al., 2023; Chen X. et al., 2023; Du et al., 2023; Ji et al., 2023;
Xu et al., 2023; Yang et al., 2023; Yao et al., 2023; Yu and Xu, 2023).
For electrospinning and electrospraying, nanofibers and
microparticles are the main products, respectively (Zhou et al.,
2023c; 2023a). These products have demonstrated significant
potential in clinical applications for treating a range of diseases
(Yao et al., 2018; Brimo et al., 2022; Wang et al., 2022), and their
related drug delivery applications extend from common wound
dressings (Yang et al., 2020; Jaberifard et al., 2023) to
transmembrane, transdermal and oral administration, implants,
and even injections (after the self-emulsification of the
electrospun nanofibers) (Pérez-González et al., 2019; Hou et al.,
2023).

After 3 decades of development, both electrospinning and
electrospraying have evolved into various subbranches. The most
common single-fluid electrospinning differentiates into 2-fluid
coaxial (Xing et al., 2018; Shen et al., 2020; Huang et al., 2022; Li
et al., 2022; Yao et al., 2022) and side-by-side processes (Lv et al.,

2023a; 2023b), 3-fluid triaxial (Wang et al., 2020; Wang et al.,
2023 M.; Guler et al., 2023), tri-layer side-by-side (Liu et al.,
2022; Feng et al., 2023), and the combination of coaxial and side-
by-side processes (Song et al., 2023a). Consequently, a range of
complex electrospun fibrous structures have been successfully
fabricated for extraordinary applications (Han et al., 2022;
Tabakoglu et al., 2023). Simultaneously, electrospraying has also
shifted to multifluid processes for producing functional particulate
structures (Zheng S. et al., 2022; Li et al., 2023). However, there have
been limited reports exploring the combination of electrospinning
and electrospraying, and the corresponding amalgamation of
electrospun nanofibers and electrosprayed particles.

In light of the aforementioned development status of EHDA and
prostatitis treatments, this study investigated the combination of coaxial
electrospraying and single-fluid electrospinning. Through this
approach, we successfully fabricated a novel type of hybrid material
composed of electrosprayed core-shell microparticles and electrospun
nanofibers in a single-step and straightforward manner. The hybrids
were designed to leverage the advantages of electrospun nanofibers
(such as small diameter, large surface area, and high porosity) and the
excellent solubility of the hydrophilic polymer polyvinylpyrrolidone
(PVP) (Uhljar et al., 2021; Shi et al., 2023) for a pulsatile release of the
loaded CIP. This release mechanism has the potential to quickly
alleviate patient pain and discomfort. Simultaneously, the hybrids
were designed to utilize the electrosprayed core-shell microparticles
and the pH-sensitive polymeric excipients Eudragit® S100 (ES100)
(Miranda-Calderon et al., 2022; Yu et al., 2022; Abdi et al., 2023; Ao
et al., 2023) to provide a colon-targeted sustained release profile of a
commercial herbal medicine for continuous therapeutic effects. The
separately controlled sequential release of two types of medicines
demonstrated synergistic antibacterial activity, suggesting promise for
potential clinical applications in treating chronic and acute bacterial
prostatitis.

2 Materials and methods

2.1 Materials

The filament-forming soluble polymer PVP K60 (molecular
weight 360,000) was sourced from BASF Co., Ltd. (Shanghai,
China). ES100 (average molecular weight approximately 135,000)
was provided by Rohm GmbH & Co. KG (Darmstadt, Germany).
CIP was procured from China National Pharmaceutical Group
Corporation (Shanghai, China). Ningmitai (NMT) (Approval
number of China Food and Drug Administration: 20025442) was
purchased from Lao-Bai-Xing Big Pharmacy (Shanghai, China).
Anhydrous ethanol, sodium hydroxide, and hydrochloric acid
were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). All water used was double distilled. All other
chemicals and reagents were of analytical grade.

2.2 The EHDA processes for the fabrications

The concentric spraying head and the entire EHDA apparatus were
custom-made for this study. Three fluid drivers (KDS100 or KDS200,
Kole-parmer, United States) were employed to accurately deliver the
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working fluids to the electrical fields. Two separate high voltage
generators (2000 ZGF/6 mA, Wuhan Huatian Co., Ltd., Wuhan,
China) supplied the electrostatic energy to initiate and maintain the
electrospinning and coaxial electrospraying processes. A custom-made
rotating (axial fixed) plate was used for uniform collection of nanofibers
and core-shell microparticles into a homogeneous hybrid film. Table 1
includes the working fluids and operational parameters for creating
Sample 1 (S1, electrospun polyvinylpyrrolidone-ciprofloxacin (PVP-
CIP) nanofibers), Sample 2 (S2, electrosprayed ES-NMT core-shell
microparticles), and Sample 3 (S3, EHDA hybrids composed of both
PVP-CIP nanofibers and ES-NMT core-shell microparticles),
determined through pre-experiments.

2.3 Characterization

2.3.1 Morphology and inner structure
A scanning electron microscope (FEI Quanta G450 FEG, Inc.,

Hillsboro, OR, United States) was used to evaluate the surface
morphologies of the EHDA products (S1, S2, and S3). Before
evaluation, samples were gold sputter-coated under argon to render
them electrically conductive, and images were taken at an excitation
voltage of 10 keV. The inner structures were assessed using a
transmission electron microscope (TEM, JEM2100F, JEOL, Tokyo,
Japan). The samples were prepared by fixing a lacy carbon-coated
copper grid on the rotation collector for approximately 2 min.

2.3.2 Physical state and compatibility
X-ray diffraction (XRD) analysis was conducted on a Bruker

D8 ADVANCE diffractometer (Bruker, Bremen, Germany). The
XRD pattern was recorded from 10° to 60° in continuous mode with
a step size of 0.02° and a scanning speed of 5°/min. ATR-FTIR
spectra were recorded by a Spectrum 100 spectrometer (Perkin-
Elmer, Waltham, MA, United States). The scanning range was from
500 cm-1 to 4,000 cm−1 with a resolution of 2 cm−1.

2.4 Drug release profiles

2.4.1 Homemade methods for assessing the fast
release of CIP

The rapid dissolution of nanofibers in the S3 hybrids was
assessed using two homemade methods. One approach is the

artificial tongue method, where a circular sheet of the S3 hybrids
was placed on the surface of a damp piece of paper. The alternative
method involved dripping a drop of water onto the hybrids, which
were collected on a glass slide. All procedures were recorded using a
digital camera (Canon PowerShot SX50HS, Tokyo, Japan).

2.4.2 In vitro dissolution tests and quantitative
measurements of CIP and NMT release from the
EHDA products

In vitro dissolution tests were conducted in accordance with the
Chinese Pharmacopoeia (2020 Ed.). The paddle method was
performed using an RCZ-8A dissolution apparatus (Tianjin
University Radio Factory, China) with seven vessels. The test
conditions involved a rotation speed of 50 rpm and a dissolution
media temperature of 37°C ± 1°C. For the electrospun nanofiber S1, the
dissolution medium (600 mL) was 0.01 N HCl (pH = 2.0). For the
electrosprayed microparticles S2, the dissolution medium (600 mL)
was 0.01 N HCl (pH = 2.0) for the first 2 h to imitate the artificial
gastric juice, and subsequently, an equivalent volume of sodium
hydroxide was added to the dissolution medium to adjust the
pH value to 7.0, simulating artificial intestinal fluid. For the EHDA
hybrids S3, the dissolution medium (600 mL) was 0.01 N HCl (pH =
2.0) for 2 min. Later, themicroparticles in the S3 hybrids were obtained
via centrifugal treatments and redispersed into 600 mL of fresh
pH 2.0 HCL. This step was performed to eliminate the possible
influence of dissolved CIP on the quantitative measurements of
NMT release from the microparticles for 118 min. Finally, an
equivalent volume of sodium hydroxide was added to the
dissolution medium to adjust the pH value to 7.0, again imitating
the artificial intestinal fluid.

At predetermined time intervals, a 5.0 mL volume of dissolution
media was withdrawn for sampling, and an equal volume of fresh
media was added to maintain a constant volume. The absorbance of
the samples was measured using a UV‒vis spectrophotometer
(Unico Instrument Co., Ltd., Shanghai, China). The amount of
CIP and NMT present in the samples could then be calculated using
their calibration curves.

2.5 Antibacterial performances

The antibacterial efficacy of the EHDA products S1, S2, and S3,
along with the raw NMT powders, was evaluated using the plate

TABLE 1 The fabrication parameters optimized in the EHDA processes.

No. Working process Working fluid/flow rate Conditionsd Drug contents Morphology

V (kV) D (cm)

S1 Electrospinning a Fluid 1/1.0 mL/h 0.8 15 12.5% CIP Nanofibers

S2 Coaxial electrospraying b Fluid 2/0.4 mL/h;c Fluid 3/1.0 mL/h 18 20 29.4% NMT Micro-particles

S3 Combined EHDA Electrospinning Fluid 1/1.0 mL/h 0.8 15 6.8% CIP; 13.5% NMT Hybrids

Coaxial electrospraying Fluid 2/0.4 mL/h; Fluid 3/1.0 mL/h 18 20

aFluid 1: A total of 1.0 g CIP, and 7.0 g PVP, were co-dissolved in 100 mL anhydrous ethanol.
bFluid 2: An amount of 2.0 g ES100 was dissolved into 100 mL anhydrous ethanol as the shell working fluid.
cFluid 3: An amount of 2.0 g NMT, powders and 4.0 g ES100 were co-dissolved into 100 mL 75% (v/v) ethanol aqueous solution.
dV and D represent the applied voltage (kV) and the working distance between the nozzle of spinneret and the collector, respectively.
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count method. Escherichia coli dh5α (Escherichia coli dh5α) and
Bacillus subtilis (Wb800) were selected as representative Gram-
negative and Gram-positive microorganisms, respectively. The
procedure, based on previous literature (Zhou et al., 2023b), is
outlined as follows:

1) 5.0 mL of sterilized Luria–Bertani (LB) broth was added to an
Erlenmeyer flask.

2) 50.0 mg of the EHDA products were introduced to the LB broth,
which contained approximately 1.5×105 colony-forming units
(CFU) of both E. coli dh5α and Wb800.

3) The mixtures were cultured in a shaking incubator for 12 h at
37°C ± 1°C.

4) A volume of 100 μL of each cell solution was seeded onto LB agar
using a surface spread plate method.

5) The plates were incubated at 37°C for 8 h. The numbers of CFUs
were subsequently counted.

The blank control for comparison was pure phosphate-buffered
saline, and the third and fifth steps were repeated for this control.
The antibacterial efficacy (ABE, %) of the samples was calculated
using the following equation:

ABE %( ) � Np –Nt( )/Np× 100%

where Np and Nt represent the numbers of viable bacterial colonies
in the blank control (with pure phosphate-buffered saline buffer
added) and the tested samples, respectively. All experiments were
performed in triplicate.

3 Results and discussion

3.1 The combination of a coaxial
electrospraying and a blending
electrospinning

The combined EHDA method consists of coaxial electrospraying
and single-fluid blending electrospinning, as shown in Figure 1. As with

the traditional EHDA apparatus, this system has four main elements:
spinnerets to guide the working fluids into the electrical fields, pumps to
quantitatively deliver the working fluids, power supplies to provide high
voltages, and a collector for the deposition of hybrids. The differences lie
in the following aspects:

FIGURE 1
A schematic showing a new EHDA process, which is a combination of coaxial electrospraying and single-fluid blended electrospinning for
fabricating hybrids containing bothmonolithic CIP-PVP fibrous nanocomposites and core-shell ES-NMTmicroparticles with a blank shell ES100 coating.

FIGURE 2
Digital observations of the EHDAworking processes. (a1–a3) The
coaxial electrospraying processes for creating the microparticles S2:
(a1) an overview of the coaxial electrospraying apparatus; (a2) the
convergence of two working fluids and high power supply on the
spinneret; (a3) a typical electrospraying process, the upleft and
downleft insets show the non-charged core-shell droplet and
charged compound Taylor cone, respectively. (b1–b5) The combined
EHDA process comprising both coaxial electrospraying and blended
electrospinning: (b1) an overview of the apparatus for implementing
the combined EHDA processes; (b2) the fluids and energy
transportation to the electric field and the collections of hybrids; (b3)
the simultaneous coaxial electrospraying; (b4) the compound Taylor
cone initiating the coaxial spraying; (b5) the simultaneous single-fluid
blending electrospinning, the upper left inset shows a typical Taylor
cone.
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1) Two different spinnerets are needed: a concentric one for coaxial
electrospraying, and a stainless steel capillary for single-fluid
blending electrospinning.

2) Two power supplies are required to provide varying high voltage
values for the simultaneous implementation of electrospraying
and electrospinning.

3) For uniform collection of nanofibers and core-shell
particles, the collector should be rotated during the
collection process.

The resulting core-shell particles are primarily on the
microscale. The shell sections are composed of the blank,
pH-sensitive polymer ES100, while the core sections consist
of a composite of ES100 and the Chinese herbal medicine NMT.
These arrangements should benefit the sustained release of
the herbal medicine in the colon region after oral
administration. The PVP-drug nanofibers, produced from the
electrospinning process, are homogenous polymer-based
nanocomposites, as demonstrated in previous studies (Uhljar
et al., 2021).

The coaxial electrospraying process observations are shown in
Figures 2a1–2a3. In Figure 2a1, the homemade electrospraying
system consists of two syringe pumps, a collector, a power
supply, and a concentric spinneret. The connections of the
concentric spinneret with the two working fluids and power
supply are evident in Figure 2a2. The syringe containing the shell
ES solution is directly inserted into the concentric spinneret
downward, securing the spinneret in the apparatus. The core
ES100-NMT solution is driven to the spinneret via a highly
elastic silicone tube. An alligator clip is used to transfer the
electrostatic energy to the working fluids. In Figure 2a3, a typical
electrospraying process is captured, involving three typical stages:
Taylor cone formation, straight fluid jet, and Coulomb explosion.
Before the application of high voltage, the shell and core fluids form
a core-shell round droplet under the nozzle of the spinneret (the top-
left inset of Figure 2a3). After the high voltage is applied, reaching
18 kV, a stable Taylor cone is formed, as shown by the bottom-left
inset of Figure 2a3, ensuring a continuous and robust spraying
process.

The digital images showcasing the combined EHDA
processes are shown in Figures 2b1–2b5. An overview of the
EHDA apparatus used to generate the hybrids is given in
Figure 2b1, which includes three pumps, two high voltage
generators, and an axially fixed rotating collector. The
simultaneous operation of electrospinning and coaxial
electrospraying is displayed in Figure 2b2. Here, the two
spinnerets are separated by a horizontal distance of 18 cm
and a vertical distance of 5 cm. At these distances, the two
electric fields have minimal influence on each other, as
confirmed by the images in Figure 2b3 (the spraying
process), Figure 2b4 (the compound Taylor cone and the
straight fluid jet), and Figure 2b5 (the blended
electrospinning). In these images, the straight fluid jets
continue the working processes vertically, with few
deviations due to charge repulsion. The top-left inset in
Figure 2b5 shows an angled Taylor cone formed by the
synergistic actions of electrical forces, the surface tension of
the PVP-CIP working fluid, and the fluid’s gravity.

3.2 The SEM and TEM images of the EHDA
hybrids

The scanning electron microscopy (SEM) images of three
EHDA products from different working processes are presented
in Figure 3. Figure 3A shows the electrospun PVP-CIP nanofibers
(S1) with a fine linear morphology. The upper-right inset of
Figure 3A illustrates that these nanofibers have a smooth surface,
devoid of discernible particles. The electrosprayed microparticles
(S2) appear round with few satellites, likely due to the easy
splitting of the dilute shell ES solution. Both Figures 3C, D
display SEM images of the EHDA hybrids at varying
magnifications. The hybrids are evidently comprised of both
electrospun nanofibers and electrosprayed core-shell
microparticles. However, the nanofibers demonstrate a less
uniform diameter distribution than S1 and exhibit
concessional spindles, likely resulting from the influence of the
dual electrical fields. Although the choice of filament-forming
polymers for electrospinning is limited, there are no constraints
on developing polymer-based functional nanofibers (Wang et al.,
2017; Song et al., 2023b; Wang and Feng, 2023; Yu and Zhou,
2023) The current creation of hybrids—with a combination of
outer shape, inner structure, multiple components, and their
designed spatial distribution—represents a successful
manifestation of this approach.

The TEM images of three EHDA products from different
working processes are presented in Figure 4. Figure 4A shows the
electrospun PVP-CIP nanofibers (S1) as homogeneous entities with
a uniform gray level, implying no discernible phase separation. The
electrosprayed microparticles (S2) display clear core-shell
structures; the core sections exhibit a deeper gray level than the
shell sections. Darker particles sporadically appear in the core
sections of microparticles S2, likely due to re-crystallization of

FIGURE 3
SEM images of EHDA products from different working processes:
(A) nanofibers S1 from the blended electrospinning process; the upper
right inset shows an enlarged SEM image; (B) microparticles S2 from
the coaxial electrospraying process; (C,D) the hybrids containing
both microparticles and nanofibers under different magnifications.
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NMT components. Figures 4C, D present images of the EHDA
hybrids, indicating that the hybrids are a composite of electrospun
nanofibers and electrosprayed core-shell microparticles.

3.3 The physical state of the active
ingredients and their compatibility

XRD characterization analyses were conducted on the raw
materials, particles, and fibers, as shown in Figure 5A. The XRD

spectra of ES100 and PVP show broad peaks in the range of
10°–35°, indicating their amorphous polymeric nature. The XRD
curve of the Chinese herbal medicine features several sharp
peaks, suggesting the presence of crystalline ingredients in raw
NMT. As expected, characteristic Bragg peaks were observed in
the XRD curve of the crystalline drug CIP, with peak positions at
13.6°, 14.6°, 16.7°, 21.0°, 22.8°, and 25.6°. Interestingly, when CIP
was co-electrospun with PVP, these characteristic peaks vanished
in the PVP-CIP curve of nanofibers (S1). Furthermore,
microparticles S2, obtained from the coaxial electrospraying of
Chinese herb medicine NMT and ES100, exhibited no
characteristic NMT peaks, indicating that all the crystalline
drugs were transformed into an amorphous state within the
polymeric matrices. The XRD patterns of the hybrids also
appeared amorphous.

To further explore the compatibility and interactions among
the materials, ATR-FTIR measurements were performed on the
raw materials (ES100, PVP, NMT, and CIP) and their respective
EHDA products S1, S2, and S3 from different processes. As
shown in Figure 5B, the characteristic peaks in the CIP
spectra—1,614, 1,587, and 1,498 cm−1—can be attributed to
the vibrations of benzene rings. The NMT spectra displayed
several characteristic peaks at 1,671, 1,616, and 1,055 cm−1,
reflecting the presence of -C=O groups in their molecules.
However, the FTIR spectra of nanofibers (S1) and
microparticles (S2)—prepared through electrospinning or
electrospraying CIP and NMT with PVP and ES100,
respectively—did not show the corresponding drug
characteristic peaks. These observations suggest extensive
secondary interactions between the drug molecules and
polymer matrices. The S3 spectra showed two characteristic
peaks at 1,691 cm-1 and 1,434 cm−1, likely representing
compound peaks from the absorbance of both PVP-CIP and
ES100-NMT—a testament to the new types of hybrids containing
both microparticles and nanofibers.

FIGURE 4
TEM images of EHDA products from different working processes:
(A) nanofibers S1 from the blended electrospinning process; (B)
microparticles S2 from the coaxial electrospraying process; (C,D)
hybrids containing both microparticles and nanofibers.

FIGURE 5
Compatibility and physical state of the rawmaterials (ES100, PVP, NMT, and CIP) and their EHDA products S1, S2 and S3 from different processes: (A)
XRD; and (B) ATR-FTIR.
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3.4 In vitro drug release profiles

To verify the rapid dissolution of the PVP-CIP nanofibers within
the hybrids, an artificial tongue was simply prepared using wet
paper. A sheet of hybrids with a circular diameter of 10 cm was
placed on wet paper, and the processes were recorded with a camera.
The successive results are depicted in Figure 6, with the entire
sequential dissolution process from (a) to (f) taking 21 s. After
dissolution, an indistinct mark remains on the wet paper (as

indicated by the red arrow in Figure 6F), likely due to the
microparticles loaded in the hybrids, since PVP becomes
transparent after dissolution.

To further elucidate the rapid dissolution of the PVP-CIP
nanofibers in the hybrids, a glass slide was used to collect some
hybrids, as shown in Figure 7A. After a drop of water was placed on
the collected hybrids S3, a dissolution circle rapidly expanded, as
indicated from Figures 7B–F, taking approximately 7 s. Although
the dissolved PVP-CIP should be transparent, the red circle

FIGURE 6
An artificial tongue (a layer of wet paper) was exploited to exhibit the fast dissolution of the nanofibers. The time cost of the sequential dissolution
processes from (A–F) is 21 s, and the red arrow in (F) indicates the residue circle due to the microparticles.

FIGURE 7
The phenomena when a drop of water was dripped on the collected fibrous films, the time cost from (A–F) is 7 s; (G) is a diagram of turtle similar to
the shape in (F); and (H) is the optical image of microparticles left in the center of turtle in (F).
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appeared somewhat obscure, likely due to the loaded microparticles.
Interestingly, the circle did not expand uniformly, forming a shape
akin to a soft-shelled turtle, as illustrated in Figure 7G. The
microparticles in hybrids S3 likely caused this phenomenon.
When examined under an optical microscope, many particles
could be discerned at the center of the “turtle,” as shown in
Figure 7H.

NMT contains several active ingredients, and the UV-scanning
curves of different concentrations are included in Figure 8A. Based
on the absorbance at various concentrations, a linear standard
equation can be constructed for quantitative analysis of the NMT
released from both microparticles S2 and the hybrids S3. The
equation is A � 0.0038 C + 0.0102(R � 0.9997) within the range
from 20 to 100 μg/mL, where A represents the absorbance and C
represents the concentration of NMT in the tested samples.
Concurrently, the in vitro rapid release profiles of CIP from
PVP-CIP nanofibers S1 and hybrids S3 were also quantitatively
detected using UV‒vis spectroscopy.

Fast dissolution of poorly water-soluble drugs is common for
many active ingredients in traditional dosage forms (Ejeta et al.,
2022; Köse et al., 2022; Assi et al., 2023; Yu and Huang, 2023).
Figure 8B displays the CIP release profile from S1. As anticipated,
the CIP-PVP nanofibers S1 released the loaded CIP instantaneously.
Within 1 minute, the nanofibers S1 completely dissolved, releasing
the encapsulated CIP into the dissolution medium. This result arises
from several factors, including the solubility of PVP, the extensive
surface area and small diameter of nanofibers, the porosity of PVP
fibrous mats, the amorphous state of CIP, and its enhanced solubility
in acidic conditions. Figure 8C shows the NMT released from
microparticles S2. Initially, in the artificial gastric juice with a
pH of 2, the cumulative NMT release was 3.7%, likely due to
incomplete encapsulation in the ES100 shell coating during
coaxial electrospraying. Later, in simulated intestinal fluid with a
pH of 7.0, NMT release occurred in a sustained manner. The
pulsatile release of CIP and the sustained release of NMT from
hybrids S3 are displayed in Figures 8D, E, respectively, with release
curves similar to those in Figures 8B, C. This evidence suggests that

hybrids S3 demonstrates a combined release profile of electrospun
nanofibers S1 and electrosprayed microparticles S2.

The NMT release profiles from microparticles S2 and hybrids
S3 were further analyzed by regressing their in vitro drug release data
according to the Peppas equation (Peppas, 1985). The drug-
controlled release mechanisms for S2 and S3 are presented in
Figures 8F,G, respectively. Their equations,
i.e., Q2� 8.98t1.04(R � 0.9644) for S2 and
Q3� 7.67t1.11(R � 0.9658) for S3, have drug release exponents of
1.04 and 1.11, respectively. These values, being greater than the
critical value of 0.9, indicate that the drug NMT release was
controlled by the erosion mechanism. In other words, the
sustained release of NMT was regulated by the gradual
dissolution or erosion of the shell ES100 and the core ES100 matrix.

3.5 The antibacterial performances of the
hybrids

Prostatitis is primarily caused by E. coli infection, but other
pathogenic bacteria such as anaerobes, Proteus, Pseudomonas
aeruginosa, Enterococcus, Mycobacterium tuberculosis, Neisseria
gonorrhea, fungi, trichomonas, mycoplasma, and chlamydia, can
also contribute to the disease. CIP hydrochloride is a broad-
spectrum antibiotic capable of inhibiting the growth and
reproduction of a variety of bacteria, including Gram-negative
and Gram-positive bacteria and anaerobes. Consequently, in this
study, E. coli and Staphylococcus aureus were chosen as models of
Gram-negative and Gram-positive bacteria to assess the
antibacterial effects of electrospun nanofibers S1, microparticles
S2, and hybrids S3.

Three time points (0.5, 4, and 8 h) were predetermined to
perform the bacterial count and antibacterial rate experiments in
the culture medium. All results are included in Table 2. The raw
NMT powders exhibited a certain antibacterial effect. The NMT-
loaded ES100 microparticles S2 also demonstrated antibacterial
performance. As the incubation time increased, the antibacterial

FIGURE 8
The in vitro dissolution profiles of the different EHDA products: (A) the scanning curves of NMT solutions from 250 to 600 nm, the upright inset
shows the achieved NMT standard line; (B) the CIP release profile from nanofibers S1; (C) the NMT release profiles from nanofibers S2; (D,E) the CIP and
NMT release profiles from hybrids S3, respectively; (F) and (G) the drug NMT sustained releasemechanisms from electrosprayed S2 and the EHDA hybrids
S3, respectively.

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Sun et al. 10.3389/fbioe.2023.1308004

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1308004


performance progressively improved, indicating the sustained
release of NMT active ingredients. For E. coli dh5α and Bacillus
subtilis Wb800, the increases ranged from 33.3% to 85.2% and from
31.6% to 84.1% after 0.5 and 8 h, respectively.

CIP has robust sterilizing performance. The electrospun
nanofibers S1 and fibrous sections in the hybrids S3 were able to
release CIP molecules instantaneously. Therefore, it is unsurprising
that the ABE reached values larger than 99% after 0.5 h of
incubation. As a combination of nanofibers S1 and microparticles
S2, the hybrids S3 demonstrated both a rapid initiation of
antibacterial effect and a sustained antibacterial performance due
to the continued release of NMT. Furthermore, NMT powders,
which have several active ingredients and additional functions for
treating prostatitis, demonstrate antibacterial properties that are
relatively weaker than their other functional performances, such as
clearing heat, detoxifying, promoting diuresis, and relieving
gonorrhea. Hence, the co-loading of CIP in the EHDA hybrids
S3 significantly improves the therapeutic effect of NMT for curing
prostatitis. Systematic animal experiments and clinical trials will be
further conducted.

3.6 Perspectives of the combined EHDA
processes for structural nanomedicines

The focus of nanomedicine should be on exploring the new
properties of medical materials that emerge when structures are
manipulated at the molecular level (Muldoon et al., 2023). The
future of nanomedicines increasingly relies on the development of
novel structures and the associated fabrication techniques for
potential clinical applications and commercial products.

Electrospinning has shown potential in advancing
nanomedicine, particularly through the creation of multichamber
nanofibers using multiple-fluid electrospinning processes. However,
electrospraying and its multichamber structures have received
comparatively less attention. This study pioneers the combination
of electrospinning and electrospraying for fabrication. It combines

nanofibers and two-chamber core-shell microparticles, soluble and
pH-sensitive polymers for controlling separate sequential release
profiles of multiple active pharmaceutical ingredients, and a
traditional Chinese herbal medicine (NMT) with a traditional
western medicine (CIP) for synergistic therapeutic effects.

Although the results indicate that the combination of various
EHDA techniques is powerful for tailoring components,
compositions, and organizational formats to further the
development of novel nanomedicines, scaling up the production
of EHDA nanomedicines and addressing related issues, such as
energy conservation, toxic solvent usage, and safety measures,
remain substantial challenges for researchers in the field (Kang
et al., 2020; Brimo et al., 2022; Yu and Zhao, 2022). Several examples
are illustrated in Figure 9. In Figure 9A, a procedure for preparing
tri-layer fibrous mats via successive depositions of nanofibers,
beads-on-a-string fibers, and nanofibers is displayed. Similarly,
Figure 9B shows a procedure for preparing another type of tri-
layer fibrous mat via successive depositions of nanofibers,
electrosprayed beads, and nanofibers. The manipulation of
EHDA product internal structures, external organizational
formats, and the combination of electrospun nanofibers and
electrosprayed particles would significantly enrich the design and
fabrication of nanomedicine-based products.

Certainly, there are no limitations to improving the EHDA
apparatus. As an example, replacing the current axial-fixed rotating
plate collector with a similar axial rotation collector (Figure 9C) can
allow for the separate and simultaneous collection of different
EHDA products, a feature commonly seen in many reports
(Sivan et al., 2022a; 2022b; Chen K. et al., 2023; Zhou et al.,
2023d). In addition, the traditional belt transportation method
can be integrated into the EHDA process for potential large-scale
production, as indicated in Figure 9D. Above the collection and
transportation belt, multiple needles for electrospinning and
electrospraying can be arranged in parallel for the designed
fabrications.

In this study, only CIP and NMT were encapsulated into the
EHDA hybrids S3 to test the concept of combining coaxial

TABLE 2 The antibacterial results against Escherichia coli dh5α and Bacillus subtilis Wb800 (n = 6).

Bacteria Samples Initial CFU CFU after 0.5 h CFU after 4 h CFU after 8 h

CFU (ABE%) CFU (ABE%) CFU (ABE%)

Escherichia coli dh5α NMT 1.5 × 105 6.7 × 104 (62.8%) 7.8 × 104 (88.4%) 2.2 × 105 (89.5%)

S1 1.5 × 105 1.3 × 103 (99.3%) 5.7 × 102 (>99.9%) 4.1 × 102 (>99.9%)

S2 1.5 × 105 1.2 × 105 (33.3%) 1.2 × 105 (82.1%) 3.1 × 105 (85.2%)

S3 1.5 × 105 8.4 × 102 (99.5%) 4.2 × 102 (>99.9%) 1.4 × 102 (>99.9%)

Blank 1.5 × 105 1.8 × 105 6.7 × 105 2.1 × 106

Bacillus subtilis Wb800 NMT 1.5 × 105 5.3 × 104 (72.1%) 1.3 × 105 (84.0%) 3.1 × 105 (90.9%)

S1 1.5 × 105 7.7 × 102 (99.6%) 4.1 × 102 (>99.9%) 3.5 × 102 (>99.9%)

S2 1.5 × 105 1.3 × 105 (31.6%) 1.5 × 105 (81.5%) 5.4 × 105 (84.1%)

S3 1.5 × 105 5.6 × 102 (99.7%) 2.8 × 102 (>99.9%) 2.4 × 102 (>99.9%)

Blank 1.5 × 105 1.9 × 105 8.1 × 105 3.4 × 106

a Abbreviations: NMT, Ningmitai powders (10 mg, an equal amount loaded in microparticles S2); CFU, colony-forming units; ABE, antibacterial efficacy.
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electrospraying and electrospinning for fabricating hybrids that
can sequentially release drugs to treat bacterial prostatitis. Future
studies may consider loading other additives into the hybrids. For
example, the blood-prostate barrier, a non-static physical barrier
between the prostate stroma and the lumen of the prostate gland
tube, strictly controls the mass exchange between the blood and
the prostate, limiting drug penetration into the prostate (Naber
et al., 1993; Liu et al., 2021). Therefore, pharmaceutical excipients
that enhance drug penetration across the blood-prostate barrier
could be loaded into the shell coating of ES100 to improve drug
delivery. By the way, the fate of drug molecules is influenced by
many factors (Wu and Li, 2022; Dong et al., 2023; Man et al.,
2023; Zhang et al., 2023), the in vivo/in vitro drug delivery
relationships and the final clinic results would be the most
useful demonstrations for the applications of new methods
of creating medicated materials, which will be further
investigated.

4 Conclusion

In this study, we demonstrated a proof-of-concept that a
combination of a Chinese medicine and a Western medicine
could be used to treat prostatitis, each with its own accurately
controlled release profile. We developed a combined EHDA
process, which involves coaxial electrospraying and traditional
single-fluid blending electrospinning, to create a new type of
micro/nano hybrids for encapsulating these two medicines. The
resultant hybrids comprise electrospun PVP-CIP nanofibers and
electrosprayed core-shell microparticles, as verified by SEM and
TEM assessments. XRD and FTIR experiments indicated that the
drugs were present in an amorphous state with excellent
compatibility.

Several in-house experiments demonstrated that the Western
drug CIP, loaded into the electrospun nanofibers, could be released
in a pulsatile manner upon exposure to water. In vitro dissolution

FIGURE 9
Perspectives of future studies: (A) the preparation of tri-layer fibrous mats through depositions of nanofibers/beads-on-a-string fibers/nanofibers;
(B) the preparation of tri-layer fibrous mats through depositions of nanofibers/beads/nanofibers; (C) a diagram showing the preparation of several kinds
of structural films through a fixed axis rotation collector; (D) the potential production on a large scale of multiple-layer fibrous products using belt
transportation and collection.
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tests verified that the hybrids were capable of providing colon-
targeted sustained release of the Chinese medicine NMT, which was
manipulated by the pH-sensitive polymer ES100 and a blank coating
on the drug-ES100 composites. Furthermore, in vitro antibacterial
experiments showed that the hybrids had superior performance to
both the electrospun nanofibers and the electrosprayed
microparticles in terms of quick antibacterial action and
prolonged antibacterial effect over a relatively extended time period.
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