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The escalating waste generation rates, driven by population growth, urbanization,
and consumption patterns, have made waste management a critical global
concern with significant environmental, social, and economic repercussions.
Among the various waste sources, lignocellulosic biomass represents a
significant proportion of agricultural, agro-industrial, and municipal wastes.
Biofuels are gaining attention as a promising substitute to fossil fuels, and
butanol is one such biofuel that has been identified as a potential candidate
due to its compatibility with existing fuel infrastructure, lower volatility, and higher
energy density. Sustainable management of lignocellulosic biomass waste and its
utilization in fermentation are viable alternatives to produce butanol via the
promising microbial catalyst clostridia. This review provides an overview of
lignocellulosic biomass waste management, focusing on recent advances in
strain development for butanol production from renewable biomass with an
emphasis on future perspectives.
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1 Introduction

With the world’s population increasing, there is a concurrent increase in waste
generation, prompting countries and organizations to intensify their efforts in waste
reduction. Recently, particular emphasis has been placed on waste treatment to curb
environmental pollution and address resource scarcity. Waste biorefinery is a promising
approach in this regard. It stands at the forefront of innovation, merging cutting-edge
biological conversion processes with advanced facilities to harness the immense potential of
lignocellulosic biomass as a sustainable feedstock. This ingenious approach enables the
generation of a diverse array of valuable products, ranging from value-added chemicals to
biofuels (Sharma et al., 2019; Queneau and Han, 2022; Velvizhi et al., 2022).

Biofuels have emerged as a compelling solution, championed for their cost-effectiveness
and environmentally friendly nature, especially in the face of rising petroleum prices and
mounting apprehensions about the impact of fossil fuels on global warming. A wealth of
studies has demonstrated remarkable yields of biofuels (ethanol and butanol) from diverse
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waste sources. Biobutanol has garnered significant attention due to
its exceptional compatibility with combustion engines, setting it
apart from bioethanol. Clostridia are known for their native butanol
production and ability to utilize various substrates present in waste
biomass hydrolysates (Guo et al., 2013; Du et al., 2021). However,
the production of butanol by clostridia from these hydrolysates has
some limitations. To overcome these limitations, the development of
effective clostridia is needed.

Specifically, the metabolic engineering of clostridia holds the
potential to significantly enhance the efficiency of bio-based butanol
production, making it a pivotal aspect of this field. Moreover, the
utilization of clostridia for butanol production from diverse
feedstocks is poised to bolster the economic viability of
biobutanol production. However, this mini-review does not delve
deeply into the intricate details of metabolic engineering of clostridia
for butanol production, as previous review articles discussed butanol
production by clostridia from different feedstocks and metabolic
engineering as a tool to enhance butanol production (Cheng et al.,
2019; Liberato et al., 2019; Bao et al., 2020; Linger et al., 2020; Vamsi
Krishna et al., 2022; Yang et al., 2022). In this mini-review, we aim to
offer a forward-looking perspective while succinctly emphasizing
key points, fostering a holistic comprehension of the subject. Thus,
this mini-review briefly discusses recent advances in butanol
production from lignocellulosic biomass waste using clostridia.
We have also provided a brief overview of the application of
metabolically engineered clostridial strains in the production of
lignocellulosic butanol. Finally, it addresses the challenges of using
clostridia for butanol production from lignocellulosic biomass waste
and suggests future research directions.

2 Butanol production from biomass
waste

The use of biomass waste is a cost-effective approach for biofuel
production. By breaking down this biomass waste, several
fermentable sugars like glucose and xylose are obtained, serving
as substrates for the butanol production process (Cascone, 2008).
Here, several biomass wastes including agricultural, agro-industrial,
and municipal solid waste are discussed. Lignocellulosic biomass
waste fermentations using Clostridium strains for butanol
production are addressed in Table 1. In pursuing sustainable
waste biomass utilization, it is crucial to develop high-yielding
engineered strains capable of efficiently utilizing the wide range
of sugars in biomass waste. This approach facilitates cost-effective
butanol production using affordable carbon sources and contributes
to environmental preservation by repurposing and harnessing waste
materials under waste management. Utilizing waste biomass can
minimize waste generation, reduce environmental impact, and
promote a more sustainable approach to butanol production.

2.1 Agricultural waste

Agricultural wastes refer to the materials produced at different
stages of the agricultural process, including final products, by-
products, and raw materials, that are no longer useful and are
usually discarded (Ylä-Mella et al., 2022). To tackle the

environmental challenges posed by agricultural waste, it is
essential to adopt eco-friendly strategies that promote waste
reduction and recycling. Instead of simply discarding these
materials, they can be valorized and transformed into valuable
resources through waste conversion processes. This helps create a
more sustainable and circular economy and contributes to
socioeconomic development, energy security, and resource
conservation. By adopting these strategies, we can effectively
manage agricultural waste and promote a cleaner and more
prosperous future (Chilakamarry et al., 2022). Growing interest is
seen nowadays in producing butanol sustainably using agricultural
residues. This is in response to concerns about the competition
between fuel and food production, which could potentially drive up
food prices (Qureshi et al., 2014).

Waste generated from agricultural activities comprises cellulose,
hemicellulose, lignin, ash, and protein extractives, which are
complex molecular structures of lignocellulosic biomass.
Microorganisms can degrade these waste materials into simple
monomers, providing a potential renewable energy source (Ge
et al., 2021). The feedstocks mainly comprise agricultural residues
and crop wastes, including rice straw, wheat straw, corn cobs, and
rice husk.

Numerous research groups have recently shown how biobutanol
is produced from agricultural wastes (Marchal et al., 1992; Kapoor
et al., 2020; Mujtaba et al., 2023). Rice straw was employed in several
studies for biobutanol production (Moradi et al., 2013; Amiri et al.,
2014). The bacterial strain C. acetobutylicum MTCC 481 produced
12.7 g/L of butanol from rice straw (Ranjan et al., 2013). In another
study, prior to acetone-butanol-ethanol (ABE) fermentation, corn
cob bagasse (CCB) was pretreated with a NaOH solution to
remove lignin and improve cellulase accessibility. The bacterial
strain C. acetobutylicum ABE 1201 could produce 9.4 g/L of
butanol from CCB (Cai et al., 2016). In a study on biological
treatment, lignin, hemicellulose, and amorphous cellulose levels were
reduced, increasing wheat straw fermentability to produce butanol. The
treated wheat straw was fermented with a coculture of C. cellulovorans
35296 and C. beijerinckii 10132, resulting in butanol production of
14.2 g/L (Valdez-Vazquez et al., 2015). Wang et al. (2019) used the
pretreated switchgrass in simultaneous saccharification and
fermentation to produce butanol by C. saccharoperbutylacetonicum
N1-4, yielding 8.6 g/L butanol.

2.2 Agro-industrial waste

Agro-industrial wastes are generated every year in large quantities.
Only 20% of agro-industrial food waste is being repurposed for animal
feed, while the remaining amount is either landfilled, incinerated, or
composted. Pang et al. (2016) employed the strain C. acetobutylicum
GX01 to produce butanol from alkali-pretreated sugarcane bagasse. The
butanol production was 14.17 g/L. Maiti et al. (2016) obtained butanol
production of 9.3 g/L from apple pomace ultrafiltration sludge using the
bacterial strainC. beijerinckiiNRRLB-466.Clostridium sp. AS3 achieved
butanol production of 8.1 g/L using cassava waste residue hydrolysate
(Johnravindar et al., 2021).

Surplus starchy grains and agro-industrial process waste
effluents are frequently used as fermentation feedstock due to
their affordability. Using better farming practices, Southeast
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TABLE 1 Production of butanol from lignocellulosic biomass using clostridia.

Strainb Substrate Pretreatment Fermentation
process

Butanol
titer (g/L)

Butanol
yield (g/g)

References

C. tyrobutyricum ATCC 25755 Δack
+ adhE2-xylTBA

Soybean hull Acid Batch 15.7 0.24 Yu et al. (2015)

C. tyrobutyricum ATCC 25755 Δack
+ adhE2

Cassava baggase Hydrothermal Batch 15.0 0.30 Huang et al. (2019)

C. tyrobutyricum ATCC 25755
(KCTC5387) Δcat1::adhE2

Paper mill sludge - SHF 16.5 0.26 Cao et al. (2020)

C. cellulovorans DSM 743B ΔaraR
ΔxylR + ter-adhE1-CAT1-xylT

Corn cobs Alkali CBP 4.96 - Wen et al. (2020)

C. cellulovorans DSM 743B
Δspo0A*11 + adc-ctfAB-adhE1-
spo0A

Corn cobs Alkali CBP 3.47 - Wen et al. (2019)

C. tyrobutyricum ATCC 25755 Δack
+ adhE2

Sugarcane bagasse Acid Batch 11.76 0.22 Li et al. (2019)

C. tyrobutyricum ATCC 25755 Δack
+ adhE2

Soybean hull Acid Batch 14.0 0.29 Li et al. (2019)

C. tyrobutyricum ATCC 25755 Δack
+ adhE2

Cotton stalk Acid Batch 15.8 0.31 Li et al. (2019)

C. acetobutylicum L7 + GlcG Corn stover Acid and Alkali SSF 10.8 0.18 Wu et al. (2021)

C. acetobutylicum L7 + GlcG Corn stover Acid Batch 10.0 0.22 Wu et al. (2019)

C. acetobutylicum MTCC 481 Rice straw Acid Batch 12.7 0.38 Ranjan et al. (2013)

C. acetobutylicum ABE 1201 Corn cob bagasse Alkali Batch 9.4 0.13 Cai et al. (2016)

C. cellulovorans ATCC 35296 and C.
beijerinckii 10132

Wheat straw Biological CBP 14.2 - Valdez-Vazquez
et al. (2015)

C. beijerinckii NCIMB 8052 Rice straw Alkali Two-stage
fermentation

15.9 0.47 Chi et al. (2018)

C. saccharoperbutylacetonicum N1-4 Switchgrass Acid SSF 8.6 0.16 Wang et al. (2019)

C. acetobutylicum GX01 Sugarcane bagasse Alkali Batch 14.17 0.22 Pang et al. (2016)

C. beijerinckii NRRL B-466 Apple pomace
ultrafiltration sludge

Acid Batch 9.3 0.24 Maiti et al. (2016)

C. saccharoperbutylacetonicum N1-4
(ATCC 13564)

Palm oil mill effluents
sludge

- Batch 10.35 0.29 Hipolito et al.
(2008)

Clostridium sp. AS3 Cassava waste residue Acid Batch 8.01 0.25 Johnravindar et al.
(2021)

C. acetobutylicum NJ4 and
Thermoanaerobacterium
thermosaccharolyticum M5

Corn cobs - CBP 7.61 - Jiang et al. (2020)

C. acetobutylicum NRRL B-591 Organic fraction of
municipal solid waste

Organosolv Batch 8.57 - Farmanbordar et al.
(2018)

C. acetobutylicum NRRL B-591 and
Mucor indicus 22424 CCUG

Organic fraction of
municipal solid waste

Organosolv Batch 7.9 - Ebrahimian et al.
(2022)

C. acetobutylicum DSM 1731 Domestic organic
waste

Mansonite steam
explosion

Batch 1.5a - Claassen et al.
(2000)

C. beijerinckii B-592 Domestic organic
waste

Mansonite steam
explosion

Batch 0.9a - Claassen et al.
(2000)

aABE titer
bΔ gene deletion or inactivation, + gene overexpression.
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Asia’s oil and sago palms have been converted into sustainable
bioresources. Palm oil mill effluents (POME) and crude palm oil
(CPO) are products of the industrial processing of oil palm, with
CPO being an essential commodity in the international vegetable oil
market. POME disposal is still a problem. However, bioconversion
has been considered as a potential pollution-control measure. In
nations that produce palm oil, like Malaysia, where 15.2 million tons
of POME are produced annually, POME is aimed for ABE
fermentation which has the potential to be a cheap substrate
(Al-Shorgani et al., 2015). In the ABE fermentation of C.
saccharoperbutylacetonicum N1-4 (ATCC 13564), the growth
and butanol production were shown to be supported by the
hydrolysate of the separator sludge from POME. However, the lack
of fermentable sugars in separator sludge hydrolysate contributes to
the low product levels. C. saccharoperbutylacetonicum N1-4 (ATCC
13564) produced 10.35 g/L of butanol using separator sludge
hydrolysate from POME and sago starch hydrolysate without the
need for any extra nutrient supplementation (Hipolito et al., 2008).

2.3 Municipal solid waste

Municipal solid waste (MSW) is a heterogeneous blend of non-
biomass combustible materials, plant and animal products, and
other garbage. It can be used as a renewable biomass source to
make chemicals and fuels (Vuppaladadiyam et al., 2022). Using
municipal solid waste instead of gasoline might drastically reduce
greenhouse gas emissions by between 29.2% and 86.1% (Shi et al.,
2009).

From the biodegradable portion of MSW treated with ethanol
organosolv, the strain C. acetobutylicum NRRL B-591 generated
8.57 g/L of butanol (Farmanbordar et al., 2018). To completely use
the energy potential of the MSW organic fraction, co-cultivation of
the fungal strainMucor indicus 22424 CCUGwith C. acetobutylicum
NRRL B-591 was performed, yielding 7.9 g/L of butanol
(Ebrahimian et al., 2022). Domestic organic waste (DOW) has
been the subject of numerous studies looking at it as a substrate
for butanol production (Kartik et al., 2022). ABE was generated from
DOW hydrolysate by C. beijerinckii B-592 and C. acetobutylicum
DSM 1731 at rates of 0.9 and 1.5 g/L, respectively (Claassen et al.,
2000).

3 Bioprocess to overcome the
complicated nature of feedstocks

Various fermentation techniques have been used after
pretreatment to overcome the challenges posed by the complicated
nature of feedstocks and feedback inhibition in the production of
waste lignocellulosic butanol. These techniques include separate
hydrolysis and fermentation (SHF), simultaneous saccharification
and fermentation (SSF), simultaneous saccharification and co-
fermentation (SSCF), and consolidated bioprocessing (CBP)
(Parisutham et al., 2014; Haldar and Purkait, 2020). By developing
strains with maximum butanol yield and ensuring efficient utilization
of sugars from waste biomass, integrating the bioprocess with these
advancements unlocks their full potential for waste management. In
SSF, enzymes break down lignocellulosic material waste into simple

sugars, and then butanol is produced using those sugars.
Saccharification is carried out simultaneously with fermentation,
reducing production cost and overall time (Islam et al., 2021).
However, one major limitation of SSF is that the sugars released
during hydrolysis can inhibit the activity of the cellulase enzymes,
which are responsible for breaking down the lignocellulosic waste.
This reduces butanol yield (Haldar and Purkait, 2020). In the SSF
process, it is hard to achieve high cellulase activity, total sugar yield,
and butanol generation with this temperature matching (He et al.,
2017; Li et al., 2018).

A new process with a modification of SSF resulted in
simultaneous co-saccharification and fermentation (SCSF). It
is an alternative to increase the cellulosic butanol production in
C. acetobutylicum using a soluble oligomer and regenerated cellulose
(Seifollahi and Amiri, 2020). Continuous ABE fermentation has
been made possible to meet expectations using a continuous
bioreactor that employs immobilized cells and multi-stage
fermentation SCSF. In continuous fermentation, solvent
concentrations and productivity are increased because two-stage
and multi-stage fermentation systems absorb acids, convert them
efficiently into solvents, and utilize the available substrates
completely (Chang et al., 2016). Using alkaline-pretreated rice
straw, a novel two-stage fermentation process was developed to
maximize sugar utilization. Butanol production of 15.9 g/L was
attained using the bacterial strain C. beijerinckii NCIMB 8052
(Chi et al., 2018).

Consolidated bioprocessing (CBP) is created by employing a
single microbe or microbial consortium in a single continuous
process through the fermentation of a mixture of sugars obtained
after cellulase synthesis and lignocellulose hydrolysis (Olson et al., 2012;
Jiang et al., 2019). Waste lignocellulosic butanol fermentation has been
subjected to several CBP processes, either through the genetic
modification of strains (Lin et al., 2015; Bao et al., 2019;Tian et al.,
2019) or by co-cultivating saccharolytic strains like C. cellulolyticum
(Salimi and Mahadevan, 2013) and C. thermocellum (Nakayama
et al., 2011) for biofuel production. A microbial consortium of
Thermoanaerobacterium thermosaccharolyticum M5 and C.
acetobutylicum NJ4 could produce butanol from untreated corn
cobs through CBP. The butanol production was 7.61 g/L (Jiang et al.,
2020).

4 Clostridia development strategies to
overcome the challenges of butanol
production from lignocellulosic
biomass waste

Based on advances in metabolic engineering and synthetic
biology tools, strain development in butanol production is
improved. Strain development has been accelerated for butanol
production by developing tolerance to toxic compounds,
improving substrate utilization and butanol selectivity and
productivity in lignocellulosic biomass waste (Birgen et al., 2019).
There are different cases of strain developments considering waste
biomass treatment and bioprocessing (Figure 1).

Different physical, chemical, and biological approaches are
devised for detoxifying harmful inhibitors. However, these
methods still face challenges in generating wastewater, raising
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energy expenses, and losing sugar, which hinders their economic
and environmental feasibility at the industrial level (Xue et al., 2017).
Mutagenesis, genetic engineering, and metabolic alterations create
inhibitor-resistant strains capable of carrying out butanol
fermentation from waste lignocellulosic materials, which
eliminates the need for detoxification processes (Cho et al.,
2019). One such example is the overexpression of the glucose-
specific phosphotransferase system (glcG) gene in the bacterial
strain C. acetobutylicum L7, which enabled the strain to utilize
the hydrolysate of corn stover without detoxification and produce
10 g/L butanol. This achievement represents a substantial increase of
300% and 400% in butanol production compared to the control and
glcG-lacking strains, respectively (Wu et al., 2019). To test the
thermotolerance of the engineered strain, it was employed in SSF
at 42 °C for butanol production using corn stover pretreated with
H2SO4 and NH4OH. It could grow and produce 10.8 g/L of butanol
under these conditions (Wu et al., 2021).

Different strategies were employed to modify the bacterium
C. cellulovoransDSM 743B to enhance butanol production. It was
engineered via integrated metabolic and evolutionary engineering by
overexpressing the alcohol/aldehyde dehydrogenase (adhE1), CoA
transferase (ctfAB), and acetoacetate decarboxylase (adc) genes from
C. acetobutylicum ATCC 824, overexpressing the sporulation
regulator (spo0A) gene, and eliminating the sporulation regulator
(spo0A*11) gene along with adaptive laboratory evolution. This

approach resulted in butanol production of 3.47 g/L from alkali-
extracted corn cobs (Wen et al., 2019). In another study, the CoA
transferase (cat1) gene from C. tyrobutyricumDSM 2637, and trans-
enoyl-coenzyme A reductase (ter) gene from Treponema denticola
were overexpressed in C. cellulovorans DSM 743B-adhE1. Also, the
xylose metabolism was engineered by inactivating araR (Clocel_
1253) and xylR (Clocel_0594) along with overexpressing xylT (CA_
C1345). The resulting strain could produce 4.96 g/L of butanol from
alkali-extracted corn cobs (Wen et al., 2020).

The bacterium C. tyrobutyricum ATCC 25755 was engineered
by overexpressing the aldehyde/alcohol dehydrogenase 2 (adhE2)
gene from C. acetobutylicum ATCC 824 and inactivating the
acetate kinase (ack) gene to improve butanol production. The
engineered strain could produce 10 g/L of butanol from glucose
(Yu et al., 2011). The performance of this engineered strain was
better when it was employed for butanol production from the
hydrolysates of cotton stalk, soybean hull, and sugarcane bagasse,
as the butanol titers were 15.8, 14.0, and 11.76 g/L, respectively
(Li et al., 2019). Also, its performance was better when it was used
for butanol production from the hydrolysate of cassava baggase,
as it produced about 15.0 g/L of butanol (Huang et al., 2019). To
overcome the glucose catabolite repression and improve xylose
utilization, the xylose metabolism genes xylTBA (xylT, xylA, and
xylB) from C. acetobutylicum ATCC 824 were co-overexpressed
along with the adhE2 gene in C. tyrobutyricum ATCC 25755

FIGURE 1
Some notable instances ofmetabolically engineered clostridial strains employed in the production of lignocellulosic butanol. Pathways shown in red
color are absent in thewild-type strain. The red triangle and green arrow indicate gene deletion (inactivation) and overexpression, respectively. The genes
are displayed in italics, and their corresponding enzymes are as follows: glcG: enzyme II of phosphotransferase system, cat1: CoA transferase, adhE1 and
adhE2: bifunctional aldehyde/alcohol dehydrogenase, ack: acetate kinase, pta: phosphotransacetylase, xylT: xylose proton symporter, xylB:
xylulokinase, xylA: xylose acetate kinase, xylR: xylose utilization negative regulator, araE: arabinose proton symporter, araR: arabinose utilization negative
regulator, araA: arabinose isomerase, araB: ribulokinase, thl: thiolase, ter: trans-enoyl-coenzyme A reductase, adc: acetoacetate decarboxylase, buk:
butyrate kinase, ptb: phosphotransbutyrylase, ctfAB: CoA transferase, bcd: butyryl-CoA dehydrogenase, etf: electron transfer flavoprotein, and bdhABC:
NADPH-dependent butanol dehydrogenase.
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(Δack). The resulting strain could utilize glucose and xylose
present in the hydrolysate of soybean hull and produce 15.7 g/
L butanol (Yu et al., 2015). Zhang et al. (2018) replaced the
butyryl-CoA/acetate CoA transferase (cat1) gene with the adhE2
gene in C. tyrobutyricum ATCC 25755 (KCTC5387). The
engineered strain was used for butanol production from the
hydrolysate of paper mill sludge supplemented with corn steep
liquor, leading to butanol production of 16.5 g/L (Cao et al.,
2020).

5 Conclusion and perspectives

Lignocellulosic biomass is a promising feedstock for sustainable
butanol production. Clostridia are known for their native butanol
production and ability to utilize various substrates present in
lignocellulosic biomass hydrolysates (Guo et al., 2013; Du et al.,
2021). As a result, several research studies have focused on
enhancing the performance of clostridial strains for butanol
production and harnessing lignocellulosic biomass waste. The
enhanced strains by metabolic engineering have only seen limited
application in the context of lignocellulosic biomass utilization for
butanol production. While they have primarily been utilized with
pure glucose for butanol production (Formanek et al., 1997; Nair
et al., 1999; Harris et al., 2000; Harris et al., 2001; Tomas et al., 2003;
Jang et al., 2012; Xu et al., 2015; Du et al., 2021; Jang et al., 2023).
Several engineered strains are yet to be harnessed for butanol
production using lignocellulosic biomass waste. The convergence
of these research strands is poised to expedite the development of
economically feasible butanol production technologies.

On the other hand, the production of butanol by clostridia
from hydrolysates of lignocellulosic biomass has some limitations,
including strain inability to tolerate inhibitors present in biomass
hydrolysates, strain intolerance to high concentrations of butanol,
and low titer. To overcome these limitations, further engineering
of clostridia is needed to enhance strain tolerance to inhibitors and
butanol, increase strain efficiency in metabolizing the wide range
of sugars present in biomass hydrolysates, and redirect the carbon
flow toward butanol synthesis for attaining the maximum
butanol production capacity from lignocellulosic biomass waste.

Identification of the cheapest carbon sources through the
exploration of waste lignocellulosic biomass and its
pretreatment methods is required. The fermentation process
should also be optimized. Combining these areas to produce
butanol from the cheapest carbon source with sustainable waste
biomass could result in the maximum utilization of waste
resources towards effective waste management with the fullest
productivity.
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