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Metal-organic frameworks (MOFs) are porousmaterials with huge specific surface
area and abundant active sites, which are composed of metal ions or clusters and
organic ligands in the form of coordination bonds. In recent years, MOFs have
been successfully applied in many fields due to their excellent physical, chemical,
and biological properties. Electrochemical sensors have advantages such as
economy, portability, and sensitivity, making them increasingly valued in the
field of sensors. Many studies have shown that the electrode materials will
affect the performance of electrochemical sensors. Therefore, the research on
electrode materials is still one of the hotspots. MOFs are also commonly used to
construct electrochemical sensors. However, electrochemical sensors prepared
from single MOFs have shortcomings such as insufficient conductivity, low
sensitivity, and poor electrochemical catalytic ability. In order to compensate
for these defects, a new type of nanocomposite material with very ideal
conductivity was formed by adding metal nanoparticles (MNPs) to MOFs. The
combination of the two is expected to bewidely applied in the field of sensors. This
review summarizes the applications of variousMNPs/MOFs composites in the field
of electrochemical sensors and provides some references for the development of
MNPs/MOFs composites-based electrochemical sensors in the future.
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1 Introduction

Coordination polymers are framework materials with a periodic spatial network
structure, consisting of metal ions (or metal clusters) assembled with multi-dentate
ligands through coordination bonds (Liu J.-Q. et al., 2020; Daniel et al., 2022). Metal-
organic frameworks (MOFs), a subset of coordination polymers, are a class of coordination

OPEN ACCESS

EDITED BY

Miaomiao Yuan,
Sun Yat-sen University, China

REVIEWED BY

Judun Zheng,
Southern Medical University, China
Qing Li,
Second Affiliated Hospital of Zhengzhou
University, China

*CORRESPONDENCE

Jun Liu,
liujun448153798@126.com

Xiaojun Fang,
fxjainll@163.com

Xiaofeng Lin,
linxf@gmu.edu.cn

RECEIVED 02 July 2023
ACCEPTED 28 July 2023
PUBLISHED 08 August 2023

CITATION

Jiang M, Liao J, Liu C, Liu J, Chen P,
Zhou J, Du Z, Liu Y, Luo Y, Liu Y, Chen F,
Fang X and Lin X (2023), Metal-organic
frameworks/metal nanoparticles as smart
nanosensing interfaces for
electrochemical sensors applications:
a mini-review.
Front. Bioeng. Biotechnol. 11:1251713.
doi: 10.3389/fbioe.2023.1251713

COPYRIGHT

© 2023 Jiang, Liao, Liu, Liu, Chen, Zhou,
Du, Liu, Luo, Liu, Chen, Fang and Lin. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Mini Review
PUBLISHED 08 August 2023
DOI 10.3389/fbioe.2023.1251713

https://www.frontiersin.org/articles/10.3389/fbioe.2023.1251713/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1251713/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1251713/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1251713/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1251713/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.1251713&domain=pdf&date_stamp=2023-08-08
mailto:liujun448153798@126.com
mailto:liujun448153798@126.com
mailto:fxjainll@163.com
mailto:fxjainll@163.com
mailto:linxf@gmu.edu.cn
mailto:linxf@gmu.edu.cn
https://doi.org/10.3389/fbioe.2023.1251713
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.1251713


networks with both organic ligands and potential pores (Falsafi et al.,
2021; Kajal et al., 2022). In comparison with other inorganic porous
materials, such as zeolites, porous silica, and carbon materials,
MOFs possess some unique structural advantages, including
structural diversity, huge specific surface area, and high porosity,
abundant unsaturated metal sites and good biocompatibility (Liu C.-
S. et al., 2020; Çorman et al., 2022; Zhang W. et al., 2023). Based on
these attractive structural and performance advantages, MOFs have
attracted many researchers to investigate the structural features and
functions of MOFs and explore their potential applications in gas
adsorption, multiphase catalysis, drug delivery, biomedical imaging,
and chemical sensing (Lu et al., 2018; Lin et al., 2020; Bag et al., 2021;
Kumari et al., 2022).

The electrochemical sensor is a kind of special analysis and
detection platform, which applies electrochemical detection
technology to the sensor. It consists of three parts: an
identification probe, a power converter, and a data analyzer. It
works by first modifying the identification materials on the electrode
surface by chemical or physical methods. And then the target
molecules on the surface of the electrode are captured through
intermolecular-specific recognition. Finally, their concentration
signals are converted into recognizable electrical signals, such as
current, voltage and impedance, etc. Due to their simple operation,
economy, convenient detection, high sensitivity, and fast response,
electrochemical biosensors have been widely used in biomedicine,
food engineering, environmental monitoring, and other fields (Chen
et al., 2018; Huang et al., 2020; Lin et al., 2021a; Lin et al., 2021b; Mei
et al., 2022a; Mei et al., 2022b; Huang et al., 2022). It is well known
that the sensor interface materials of electrochemical sensors play an
important role in the efficient and sensitive detection of different
target molecules. Accordingly, the reasonable choice of sensing
interface materials will determine the performance of
electrochemical sensors.

At present, some MOFs meet the requirements of
electrochemical sensing that can be directly used to construct
sensing interfaces. For example, MOFs with electroactivity can be
used as electrocatalysts to detect small molecule compounds such as
H2O2(Li et al., 2022), glucose (Adeel et al., 2021), ascorbic acid
(Wang H. et al., 2021), nitrite (Yang et al., 2022), dopamine (Ma
J. et al., 2021), etc. Nevertheless, MOFs have some drawbacks that
cannot be ignored. For instance, their physical and chemical stability
tends to be poorer than that of conventional inorganic porous
materials, which limits the application scope of MOFs to a
certain extent. As a result, the frameworks of MOFs have been
functionally modified to form composites to obtain specific
functions and make up for some shortcomings of MOFs. For the
practical application of MOFs-modified electrodes, the performance
of MOFs can be improved in two ways by improving the electrical
conductivity of MOF-based materials and designing MOF-based
materials with redox activity (Zhou et al., 2022). The porous nature
of MOFs enables them to be integrated with a variety of functional
materials such as metal nanoparticles, carbon nanomaterials,
polymers, biomolecules, etc., to form composites that combine
the advantages of MOFs with other active materials and exhibit
superior electrocatalytic/electrochemical sensing properties than
MOFs alone.

Metal nanoparticles (MNPs) have become a hot topic of current
research (Mourdikoudis et al., 2018; Yi et al., 2022; Zhang et al.,

2022; Zhang Z. et al., 2023). MNPs have outstanding optical and
conductive properties (Wang et al., 2020), which have been
extensively applied in the sensing field in recent years. The large
surface area and ordered porous structure of MOFs enable
functionalized metal nanoparticles (MNPs) to be anchored on
the surface of MOFs or encapsulated in cavities/pores to form
MNPs/MOFs composites (Liu C.-S. et al., 2020). The
combination of large specific surface area and size-limiting effect
of MOFs and catalytic activity and conductivity of MNPs provides
more catalytic active sites and a good microenvironment, making
MNPs/MOFs composites excellent in both catalytic and sensing
properties (Wu and Zhao, 2017; Jiao et al., 2018; Zhong et al., 2019;
Zhang W. et al., 2020; Hao et al., 2021; Zhang et al., 2021; Guo M.
et al., 2022; Guo T. et al., 2022; Xu et al., 2023). Here, this review
summarizes the relevant literature that has been reported on the
preparation of MNPs/MOFs composites for electrochemical sensors
(Table 1).

This paper has reviewed the research progress of electrochemical
sensors based on MNPs/MOFs in recent years. Meanwhile, the
future challenges and opportunities for the preparation of
electrochemical sensors based on MNPs/MOFs are briefly
discussed. In conclusion, we aim to provide some new ideas for
opening up MNPs/MOFs’ high-performance electrochemical
sensors.

2 MOFs/MNPs-based electrochemical
sensors

In recent years, MOFs are often used as a carrier to encapsulate
MNPs, which not only effectively prevent MNPs agglomeration but
also have the following functions: 1) as a protective layer, they
effectively prevent the aggregation and migration of MNPs. 2) Their
inherent large surface area and porosity can facilitate the migration
of reactants on the MNPs’ surface. 3) Maintaining the catalytic
activity of MNPs in multiple catalytic cycles. Compared with pure
MOFs, MNPs@MOFs composites with core-shell heterogeneous
structures have better catalytic and adsorption properties, and are
beneficial for improving selectivity due to their size-screening effect.
There are three general methods for the synthesis of MNPs@MOFs
composites (Li et al., 2018). The first method is to confine the MNPs
to the cavity or pore of the MOFs in the form of a ship-in-a-bottle,
and the common methods include impregnation, coprecipitation,
and deposition-precipitation. Unfortunately, some precursors may
be deposited on the outer surface of MOFs to form aggregates,
making them difficult to precisely control the MNPs at the loading
position of MOFs. The second and third methods are more
commonly used to encapsulate the MNPs in a bottle-around-ship
form by MOFs. In the second method, MNPs with a well-defined
structure are first synthesized and then mixed with the precursor
solution of MOFs to obtain an encapsulated structure. Thus, the
most important point to obtain a well-defined structure is to avoid
agglomeration of MNPs and self-core of MOFs, The third method,
in which the MNPs are embedded in the MOFs framework by one-
pot synthesis, is considered the preferred method due to their low
production cost/time and ease of scale-up. Commonly used metal
nanoparticles in electrochemical sensors are gold nanoparticles,
silver nanoparticles, copper nanoparticles, nickel nanoparticles, etc.
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TABLE 1 Electrochemical sensors based on MNPs/MOFs composites.

Materials Targets Electrochemical
methods

Linear range Detection limit Ref

PtNi@Cu-TCPP(Fe) calprotectin CV, EIS 200 fg/mL-50 ng/mL 137.7 fg/mL Dong et al. (2020)

AuNPs/Co-MOF/
MWCNT

nitrite CV, EIS 1-1,000 μmol/L 0.4 μmol/L Lei et al. (2021)

CoNi-MOF miRNA-126 EIS 1.0 fmol/L-10.0 nmol/L 0.14 fmol/L Hu et al. (2021)

Ce-Zn-MOF/MWCNT bisphenol A CV, EIS, DPV 0.1–100 μmol/L 7.2 nmol/L Huang et al. (2021a)

Co-MOFs glucose CV 10–1,200 μmol/L 3.2 μmol/L Ma et al. (2021b)

Au NPs/UiO-66 H2O2 CV, EIS 0.2–23 mmol/L 0.045 μmol/L Wang et al. (2021b)

Pd@UiO-66 microRNA-21 DPV 20 fmol/L-600 pmol/L 0.713 fmol/L Meng et al. (2020a)

Ag@MOF Cu(II) CV — 0.68 μmol/L Kwon and Kim (2021)

Ag@MOF Pb(II) CV — 0.64 μmol/L Kwon and Kim (2021)

USAuNPs@AuZn-MOF estrone CV, EIS, DPV 0.05 µmol/L-5 µmol/L 12.3 nmol/L Chai et al. (2021)

Ag-ZIF-67p Acetaminophen CV, DPV — 0.2 μmol/L Tang et al. (2020)

Ag-ZIF-67p dopamine CV, DPV — 0.05 μmol/L Tang et al. (2020)

Ag-CoNi-MOF luteolin CV, DPV 0.002–1.0 μmol/L 0.4 nmol/L Tang et al. (2022)

CoxNi3-x (HITP)2 enrofloxacin CV, EIS 0.001–1 pg/mL 0.2 fg/mL Song et al. (2021)

Cu@C@ZIF-8 nitrite CV, EIS, DPV 0.1–300.0 μmol/L 0.033 μmol/L Gao et al. (2022)

CoP@C/NCS/GCE dopamine SWV 5.0–400.0 μmol/L 0.03 μmol/L Xiao et al. (2021)

NiCu-MOF-6 glucose CV 0.02-4.93 mmol/L 15 μmol/L Pan et al. (2021)

Ni@Cu-MOF glucose CV 5–2,500 μmol/L 1.67 μmol/L Xue et al. (2020)

Au@ZIF-8 dopamine CV, DPV 0.1–50 μmol/L 0.01 μmol/L Lu et al. (2020)

Ni-MOF dopamine DPV 0.2–100 μmol/L 60 nmol/L Huang et al. (2021b)

CuCo-MOFs/NF glucose CV — 0.23 mmol/L Du et al. (2022)

Au/Co-BDC/MoS2 Cardiac troponin I EIS 10 fg/mL–100 ng/mL 3.02 fg/mL Zhao et al. (2021)

Au@MOFs Neuron-specific enolase DPV, EIS 10 fg/mL–100 ng/mL 4.17 fg/mL Ma et al. (2020)

Au NPs@ZIF-8 carcinoembryonic
antigen

DPV, EIS 5 pg/mL-400 ng/mL 1.3 pg/mL Ye et al. (2020)

Au@UiO-66(NH2) HBsAg CV, DPV 1.13–fg/mL-100 ng/mL 1.13 fg/mL Bajpai et al. (2021)

Au/UiO-66-NH2 streptomycin CV, DPV 0.005-150 ng/mL 2.6 pg/mL Meng et al. (2020b)

MIP/Pt-UiO-66/CPME phosalone CV, DPV 0.50–nmol/L-20 μmol/L 0.078 nmol/L Xu et al. (2020)

AgNPs/PCN-224 telomerase CV, EIS, DPV 1.0 × 10-7-1.0 × 10−1 IU/L 5.4 × 10−8 IU/L Wang et al. (2021c)

Fe-Cu-BTC bisphenol A CV, DPV 0.1-1.0 μM 18 nM Nguyen et al. (2022)

Fe-rich FeCoNi-MOF imidaclopri CV, DPV 1 pmol/L–120 μmol/L 0.04 pmol/L Shu et al. (2023)

Mn3O4@ZIF-67 glucose Amperometric method 0.0008–6.0 mM 0.24 μM Dong et al. (2022)

Fe@YAU-101 Cd2+ CV, EIS, DPV 0.003–42 μM 1 nM Liang et al. (2023)

Fe@YAU-101 Pb2+ CV, EIS, DPV 0.004–80 μM 1.33 nM Liang et al. (2023)

Fe@YAU-101 Hg2+ CV, EIS, DPV 0.045–66 μM 15 nM Liang et al. (2023)

Au-CH@MOF-5 topotecan (TPT) CV, EIS, DPV 0.4–70.0 nM 0.298 nM Mehmandoust et al.
(2023)

NiMn-LDH-MOF glucose CV 4.9 μM–2.2 mM 0.87 μM Wei et al. (2023)

(Continued on following page)
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2.1 MOFs/Au NPs-based electrochemical
sensors

To the best of our knowledge, there have been a large number
of literature reports on the application of Au@MOFs in
electrochemical sensors for the detection of different targets
(Chen et al., 2019; Meng X. et al., 2020; Bajpai et al., 2021; Lei
et al., 2021). At the same time, the introduction of carbon materials
can efficiently improve the conductivity of pristine MOFs and limit
their growth and aggregation. Consequently, the hybridization of
MNPs@MOFs with carbon materials will also produce sensors
with excellent stability and conductivity and give MNPs@MOFs
template effect. For example, Zhang and his colleagues used Au
nanoparticles to modify ZIF-8 as a basis for building a sensing
platform to detect carcinoembryonic antigens (CEA). The Au@
ZIF-8 that was successfully synthesized helped to increase the
loading of the antibody. Ordered mesoporous carbon, a novel

carbon nanomaterial with ordered pores, which was then attached
to the electrode surface to enhance the conductivity of this sensor
(Zhang Y. et al., 2020). Furthermore, Lei and his teams prepared
ternary composites consisting of multi-walled carbon nanotubes
(MWCNT) as a substrate, cobalt-based metal-organic backbone
(Co-MOF), and gold nanoparticles (AuNPs/Co-MOF/MWCNT)
(Figure 1A), which exhibited efficient catalytic activity and highly
sensitive response to nitrite (Lei et al., 2021). Small Co-MOF
nanoplates were first grown in situ on the surface of conducting
multi-walled carbon nanotubes, which could absorb a large
amount of Au+. The reduced AuNPs can be uniformly
restricted to Co-MOF/MWCNT. On the one hand, the binding
of multi-walled carbon nanotubes to Co-MOF can markedly
enhance the electron transport capacity of Co-MOF. On the
other hand, the AuNPs distributed on Co-MOF can reduce the
working voltage and significantly improve its catalytic activity for
nitrite oxidation.

TABLE 1 (Continued) Electrochemical sensors based on MNPs/MOFs composites.

Materials Targets Electrochemical
methods

Linear range Detection limit Ref

Ni/Co-FAMOF glucose CV, EIS 0.006–1.004 mM 2 μM Song et al. (2023)

Ag@MOF-199 Ni2+ CV - 6.06 nM Bodkhe et al. (2023)

AuNPs/Zr-MOF-
Graphene

sunset yellow CV, DPV 0.1–1,000 μM 0.1 μM Sun et al. (2023)

AuNPs/Zr-MOF-
Graphene

Sudan I CV, DPV 0.1–800 μM 0.1 μM Sun et al. (2023)

AuNP/Cu-TCPP(Fe) lactate (LA) CV, EIS 0.013 nM-100 mM 0.91 p.m. Ji et al. (2023)

FIGURE 1
(A) Schematic illustration of the synthesizing process for the AuNPs/Co-MOF/MWCNT and the sensing mechanism of nitrite (Lei et al., 2021); (B) A
schematic diagram of the electrochemical sensing strategy of telomerase activity based on the construction of streptavidin (SA) modified AgNPs/PCN-
224 (Dong et al., 2019); (C) Pictorial representation of bimetallic Cu@Ni organic framework for electrochemical glucose oxidation (Kim and Muthurasu,
2020); (D) Schematic illustration of the construction process of the sandwich electrochemical immunosensor (Dong et al., 2020).
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2.2 MOFs/Ag NPs-based electrochemical
sensors

In addition to Au nanoparticles, Ag nanoparticles are also
suitable as classical electrochemical detection labels. For instance,
Wang and his colleagues took advantage of the fact that Ag
nanoparticles are not easily oxidized and modified them on a
porphyrin Zr-MOF (PCN-224) surface (AgNPs/PCN-224),
functionalizing the surface with a streptavidin (SA) recognition
element (Wang Y. et al., 2021). A hairpin structure of DNA is
then modified on the electrode, and the developed sensor can be
used to detect telomerase activity in cancer cells (Figure 1B). Zheng
and his co-workers were also successful in embedding AgNPs into
the ZIF-67 framework to form an ideal Ag@ZIF-67 core/shell
material. The porous structure and large surface area of ZIF-67
provide abundant active sites for H2O2 adsorption and reduction as
well as fast H2O2 diffusion channels (Dong et al., 2019). Moreover,
the excellent electrical conductivity of AgNPs accelerates the
electron transfer capability during H2O2 reduction, resulting in a
highly sensitive electrochemical H2O2 sensor.

2.3 MOFs/Pt NPs-based electrochemical
sensors

Pt nanoparticles, as noble metal nanoparticles, also have salient
electrical conductivity and electrocatalytic activity and are among the
superior materials for enhancing the conductivity of MOF-based
sensors. Ma and his colleagues reported the synthesis of
nanocomposite Pt@UiO-66-NH2 by immobilizing Pt NPs on the
surface of UiO-66-NH2 and applying it to the preparation of
acetylcholinesterase (AChE) biosensors (Ma et al., 2019). The pores
of UiO-66-NH2 can restrict the aggregation of Pt NPs and help the
transfer of Pt NPs. At the same time, it can also provide more AChE
active sites. Thus, the sensor can achieve sensitive detection of
organophosphorus pesticides (OPs). Deng and his colleagues
reported a one-pot hydrothermal reduction of metals with three
different ligand lengths of Zr-MOF(Deng et al., 2018). And TEM
results demonstrated that the Pt@UiO-66 composites maintained the
integrity of the UiO-66 framework with some Pt NPs dispersed within
the framework. Meanwhile, aggregated Pt NPs were observed in the
Pt@UiO-68 composites, which could be attributed to the exudation and
aggregation of Pt nanoparticles due to the large pore size of UiO-68.
However, the doping of Pt NPs led to the collapse of the UiO-67 crystal
structure. The framework structure of Pt@Zr-MOF has a great
influence on the electrocatalytic activity and induction of N2H4,
where Pt@ UiO-66 has the best performance, followed by Pt@UiO-
68, and Pt@UiO-67 has the worst electrocatalytic performance.

2.4 MOFs/Ru NPs-based electrochemical
sensors

Ruthenium belongs to the platinum group of noble metals along
with platinum. Although ruthenium nanoparticles have the advantages
of electrochemical catalysis, charge storage, and electrode modification,
they usually suffer from the defects such as poor porosity, poor stability,
and low electron transfer rate (Abdelwahab et al., 2020). Therefore,

bimetallic nanoparticles, especially bimetallic Pt and Ru nanoparticles
possess more attractive electrocatalytic properties, large specific surface
area, good stability, and higher sensitivity than single Ru nanoparticles
(Lavanya et al., 2020). Cao and his colleagues prepared nanocomposites
of MOFs encapsulating bimetallic nanoparticles (PtRu/UiO66-NH2) by
embedding PtRu bimetallic nanoparticles (PtRu NPs) in UiO66-
NH2(Cao et al., 2020). Subsequently, PtRu/UiO66-NH2 was
subjected to high-temperature carbonization to synthesize PtRu-PC
for the detection of uranium in aqueous solution. Among them, UiO66-
NH2 could not only limit the aggregation and migration of PtRu NPs,
but also improve the electrical conductivity. Raju et al. (2023) also
synthesized a novel nanocomposite of ZIF-67-modified bimetallic
platinum and ruthenium nanoparticles (Pt-Ru@C/ZIF-67) and
constructed a biosensor based on this composite for the detection of
saxitoxin (STX)). ZIFs are a class of MOFs consisting of imidazolyl
ligands and transition metal cations, which have the advantages of high
stability, large surface area, and tunable pore structure. The
electrochemical conductivity of the Pt-Ru@C/ZIF-
67 nanocomposites was improved by the synergistic interaction
between bimetallic PtRu NPs and ZIF-67. In addition, the unique
porous structure of the composite and the presence of Co easily adsorb
STX adsorption, thus facilitating STX detection.

2.5 MOFs/Cu NPs-based electrochemical
sensors

Although noble metal nanoparticles (such as Au, Ag, Pt, etc.) are
excellent materials for building sensors, their scarcity and high cost are
disadvantages that do not facilitate their dissemination. Hence,
researchers started to explore the possibility of non-precious metal
nanoparticles (e.g., Cu, Co, Ni, etc.). In 2016, Shi and his colleagues
informed for the first time that their team utilized the in situ synthesis of
Cu NPs inside the ZIF-8 cavity. The Cu NPs@ZIF-8 nanocomposite
was successfully applied to construct a novel electrochemical glucose
sensor (Shi et al., 2016). In addition, due to the low loading ofMNPs on
MOFs and slow electron migration during encapsulation, Kim and his
colleagues synthesized a metal-organic bimetallic skeleton structure
based on a Cu@Ni solid spherical structure using a two-step
hydrothermal method to solve these problems. They then modified
it on a glassy carbon electrode (GCE), which can be regarded as a non-
enzymatic sensor for glucose detection in an alkaline solution
(Figure 1C) (Kim and Muthurasu, 2020). The sensor displayed
better electrocatalytic activity for glucose oxidation compared to the
sensors prepared from individual material. Its excellent catalytic
performance for glucose mainly depends on the synergistic effect of
Cu and Ni MOF. It also effectively prevents the oxidation of common
interfering biomolecules, including ascorbic acid, dopamine and uric
acid. This bimetallic Cu@Ni organic backbone microsphere electrode
has high reliability and accuracy and is suitable as an alternative
electrode for non-enzymatic glucose sensors.

2.6 MOFs/other NPs-based electrochemical
sensors

In addition to these common MOF-based electrochemical
sensors constructed with metal nanoparticles, there are also
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bimetallic MOFs, which exhibit even more excellent electrochemical
properties. Dong and his co-workers designed a novel composite
with high electrocatalytic activity by functionalizing 2D ultra-thin
Cu-TCPP(Fe) nanoflakes (PtNi@Cu-TCPP(Fe)) with PtNi
nanospheres (Dong et al., 2020). The bimetallic Cu-TCPP(Fe)
nanosheets have a huge specific surface area and a good deal of
accessible active centers, allowing multiple PtNi to attach to their
surfaces. Not only does it strengthen enzyme-free catalysis and
conductivity, but it also provides junction sites for the
immobilization of antibodies modified with fiducials. They
constructed a sandwich-type calcium-binding protein
immunosensor by exploiting the dual electrocatalytic activity of
Cu-TCPP (Fe) and PtNi to amplify the signal for H2O2 reduction
(Figure 1D). However, the immobilization of MNPs on the MOFs
surface by simple sonication or surface self-assembly strategies will
inevitably lead to the aggregation of some metal nanoparticles,
which reduces the catalytic activity of MNPs. To further improve
the analytical performance of electrochemical sensors, more
effective active sites, and electrocatalysts are needed to be
uniformly dispersed on the electrode surface. To achieve this
goal, Chen and his colleagues used electrodeposition to uniformly
disperse a large number of Au NPs (<200 nm) on the surface of Cu-
MOF. Compared with the nitrite electrochemical sensor prepared by
these two composites, the electrochemical sensor with
electrodeposited Au/Cu-MOF has a wider linear detection range
(Chen et al., 2019).

3 Conclusion and prospects

Within the last few years, the literature related to
electrochemical sensors based on MNPs/MOFs composites has
increased dramatically, and most of them focus mainly on the
detection of glucose, hydrogen peroxide, and dopamine. The
innovation of this mini-review is to systematically summarize the
studies on electrochemical sensors related to MNPs/MOFs
composites. The synthesis of MNPs/MOFs composites and the
advantages of electrochemical sensors prepared using these
composites are also briefly discussed. In addition, more detailed
statistics of the studies on the detection of various analytes using the
sensors are also presented. In addition, MNPs/MOFs composites
utilize the synergistic effect between MNPs and MOFs: 1) MNPs act
as active centers and MOFs play a stabilizing role. 2) MOFs limit the
aggregation ofMNPs. However, the sensor also has some drawbacks.
First, MNPs or bimetallic nanoparticles composed of noble and non-
precious metals are scarce and expensive, and cannot be applied on a
large scale. Therefore, subsequent studies should consider affordable
alternatives to MNPs or use non-precious metal particles. Secondly,
based on MNPs/MOFs composites, efforts should be devoted to the

development of electrochemical sensors with more sensitivity, better
stability, and reproducibility. In conclusion, the nanocomposites
synthesized by attaching MNPs on the surface of MOFs or
encapsulating them internally have largely improved the sensing
performance of electrochemical sensors and have a bright future in
the sensing field.
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