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The use of enzymes to accelerate chemical reactions for the synthesis of
industrially important products is rapidly gaining popularity. Biocatalysis is an
environment-friendly approach as it not only uses non-toxic, biodegradable,
and renewable raw materials but also helps to reduce waste generation. In this
context, enzymes from organisms living in extreme conditions (extremozymes)
have been studied extensively and used in industries (food and pharmaceutical),
agriculture, and molecular biology, as they are adapted to catalyze reactions
withstanding harsh environmental conditions. Enzyme engineering plays a key
role in integrating the structure-function insights from reference enzymes and
their utilization for developing improvised catalysts. It helps to transform the
enzymes to enhance their activity, stability, substrates-specificity, and substrate-
versatility by suitablymodifying enzyme structure, thereby creating new variants of
the enzyme with improved physical and chemical properties. Here, we have
illustrated the relatively less-tapped potentials of plant enzymes in general and
their sub-class of extremozymes for industrial applications. Plants are exposed to a
wide range of abiotic and biotic stresses due to their sessile nature, for which they
have developed variousmechanisms, including the production of stress-response
enzymes. While extremozymes from microorganisms have been extensively
studied, there are clear indications that plants and algae also produce
extremophilic enzymes as their survival strategy, which may find industrial
applications. Typical plant enzymes, such as ascorbate peroxidase, papain,
carbonic anhydrase, glycoside hydrolases and others have been examined in
this review with respect to their stress-tolerant features and further improvement
via enzyme engineering. Some rare instances of plant-derived enzymes that point
to greater exploration for industrial use have also been presented here. The overall
implication is to utilize biochemical clues from the plant-based enzymes for
robust, efficient, and substrate/reaction conditions-versatile scaffolds or
reference leads for enzyme engineering.
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1 Introduction

With the rapid growth of industries, there is a constant need to
assess their impact on the environment and develop ecologically
friendly systems to bridge the gap between the increasing demands
of modern society and the conservation of natural resources. This
could be achieved by deploying sustainable alternatives in industries
which can help us to face various environmental challenges like
global warming and pollution. In this regard, the application of
enzymes as catalysts for the synthesis of different products has
proven to be more efficient and a much greener approach in contrast
to its inorganic counterparts (Sheldon & Woodley, 2018). Another
advantage of enzymes is that they are highly stereoselective which
enables them to carry out a wide range of chemical transformations
with unparalleled levels of reaction specificity (Kate et al., 2022).

Despite the manifold benefits of using enzymes, there are
concerns over their relative stability owing to the extreme
temperature and pH in the large-scale catalytic chambers in
industries (Littlechild, 2015). Recent trends in biocatalysis,
therefore, explore the application of extremozymes, that is
enzymes employed by organisms thriving in extreme conditions
(Herbert, 1992). Extremozymes are naturally tolerant to harsh
environmental conditions such as high temperature and pressure,
high salinity, water scarcity and extremes of pH. Since
extremozymes are adapted to extreme physicochemical
conditions, these are one of the most sought-after class of
biocatalysts in industrial processes (Liszka et al., 2012). For
instance, nuclease H, a halophilic enzyme isolated from
Micrococcus varians subsp. halophilus, breaks down RNA at 60°C
and 12% salt concentration, and is used for the production of a
flavoring agent 5-guanylic acid in the food industry (Onishi et al.,
1988). Another example is the L-aminoacylase enzyme derived from
the thermophilic archaeon Thermococcus litoralis, which shows
optimum activity at 85°C in Tris- HCl, pH 8 and has a broad
substrate specificity (Toogood et al., 2002). This enzyme is used for
the industrial synthesis of various L-amino acids and their analogs
by several pharmaceutical companies.

One challenge with the implementation of enzymes from
extremophilic organisms has been the limited success of
recombinant protein expression in hosts (Liszka et al., 2012).
This has been partly overcome by altering the host systems
which however reduces the enzyme stability and catalytic activity.
This is where the techniques of enzyme engineering can be exploited
to overcome this problem and optimize enzymes for better yield,
stability and efficiency. These techniques include the customization
of amino acid sequences of an enzyme, by making changes in the
covalent and hydrophobic or electrostatic interactions between the
catalytic domains or the other flanking amino acid residues in the
enzyme.

A conventional approach in improving enzyme yields for
industrial scale-up processes has been to experiment with the
unit operations towards process optimization. For instance, using
biocalorimetry and metabolic profiling, a comparative analysis of an
industrially important enzyme, Inulinase, was made between batch
and fed-batch enzyme production in Kluyveromyces marxianus by
optimizing substrate feeding rates (Leelaram et al., 2016). Such
process engineering approaches may be complemented by
modern biotechnological approaches that include enzyme

engineering and recombinant DNA technology. To this end,
plants provide ample opportunities to use them as bioreactors for
enzyme production, or as inspiration for enzyme engineering. While
microbes have been abundantly exploited for sourcing
extremozymes, plants are emerging with complementary
potential. This review aims to highlight different mechanisms for
enzyme engineering to facilitate the generation of enzyme variants
for industrial applications, and presents some special case studies of
plant-based enzymes, including extremozymes.

2 Enzyme engineering

The prominence of enzymes in industries as biocatalysts is ever-
increasing, owing to the advantages they have over traditional
inorganic catalysts. However, when it comes to the use of native
enzymes in industrial processes, there are a number of limitations
that should be considered, especially when these enzymes are
subjected to extreme conditions that are very different from their
natural environment. These include lower catalytic efficiency,
decreased tolerance towards organic solvents, lack of stability
under high temperatures and pressure in large-scale industrial
fermenters, which ultimately leads to poor product yield
(Victorino da Silva Amatto et al., 2022). Hence, these wild-type
enzymes need to be engineered to work under non-physiological
conditions, with non-natural substrates, for the production of
industrially important biochemicals.

Enzyme engineering has emerged as a potential technique to
develop new robust enzymes and/or to enhance the existing enzyme
properties which are crucial for industrial biotransformations.
Engineering of enzymes can improve their catalytic activity,
thermostability, substrate specificity or enhance their ability to
work with a broader range of substrates (Steiner & Schwab, 2012;
Mazurenko et al., 2019). The main aim of enzyme engineering is to
optimize the activity of an enzyme by altering its amino acid
sequence and thus, making it suitable to be used in industrial
processes. The primary target in various approaches of enzyme
engineering is gaining insights into the sequence and structure of the
enzyme to be modified. This is based on the idea that the functional
characteristics of an enzyme can be manipulated by leveraging
information about the molecular complexity of its structure.
During biocatalysis, the formation of the enzyme-substrate
complex plays a major role in determining the kinetic efficiency
of the enzyme. Therefore, while engineering enzymes it is usually
deemed important to modulate changes in the amino acid residues
present in the catalytic domain of the enzyme which, in most cases,
are involved in the enzyme-substrate interactions. However,
modifications in amino acids other than those found in the
active site might also help to regulate enzyme-substrate
interactions, by bringing about an overall alteration in the
conformation of the enzyme and its functional improvisation
(Wilding et al., 2019).

2.1 Methods for Enzyme engineering

Recent advances in the field of protein engineering have
unlocked new pathways to employ several biotechnological
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techniques to meet the ever-increasing demands of industrial
biocatalysis and biotransformations. Enzymes engineering
require the implementation of different enzyme-designing
strategies such as random mutagenesis, site-directed
mutagenesis, enzyme immobilization, molecular modeling,
DNA shuffling, and peptidomimetics. Broadly, the
methodologies for enzyme engineering can be classified into
three major groups: directed evolution, rational design and
semi-rational design. Figure 1 schematically shows various
strategies to enhance enzyme activity and stability for
increased product yield.

2.1.1 Directed evolution
The process of directed evolution adopts the idea behind natural

selection in that it integrates randommutations in the gene encoding
for the enzyme of interest (Zeymer & Hilvert, 2018). This results in
the generation of DNA libraries, which are used to develop different
variants of the enzyme, either in-vitro (in cells or free solution), or
in-vivo (in living organisms). High throughput screening techniques
are, then, exploited to select the most preferred enzyme variant
based on its enhanced properties. Directed evolution has proven to
be one of the most successful approaches of enzyme engineering for
the production of enzymes with improved catalytic activity,

FIGURE 1
Schematic illustration of different strategies used for the improvement of catalytic properties and product yield of enzymes derived from various
classes of extremophiles. The figure was created with BioRender.
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thermostability, substrate-specificity and stereoselectivity. This
method of protein engineering is often applied in cases where
there is limited knowledge about the structure-function
relationships within the enzyme (Laksmi et al., 2020).

In this approach, techniques such as error-prone polymerase
chain reaction, staggered extension process and DNA shuffling are
used to introduce mutations randomly in the genetic assembly
encoding the protein of interest, generating large libraries of
DNA (Bloom et al., 2005; Sharma et al., 2021). Screening these
libraries to search for the enzyme variant with desirable attributes is
the most challenging part of this method. Several analytical methods
like chromatography, fluorescence or NMR spectroscopy to high
throughput screening techniques such as fluorescence-activated cell
sorting (FACS), microtiter-plate screening and in-vitro
compartmentalization have been employed to facilitate the
process of screening and selection. In-vitro selection systems like
ribosome display or mRNA display and phage-assisted continuous
evolution (PACE) are known to be potent tools to increase the rate of
the evaluation of enzyme variants (Ali et al., 2020). Arnold and co-
workers (K. Chen & Arnold, 1993) first experimentally implemented
the Eigen concepts (Eigen & Gardiner, 1984) of directed evolution of
enzymes. In this pioneering work, variant of subtilisin enzyme (used
in detergent, cosmetic and food processing industry) was obtained
from several sequential rounds of mutagenesis and screening which
showed around 256 fold increased enzyme activity than wild-type
enzyme (Arnold, 1993).

2.1.2 Rational design
Rational design is one of the most widely used methods of

enzyme engineering, which is based on the association of the
structural aspects of an enzyme with its functions. This method
requires prior knowledge about the sequence and structure of the
enzyme of interest to identify potential amino acid residues within
the enzyme that can be mutated, without disrupting the catalytic
activity of the enzyme. Specific amino acid residues are either
substituted, inserted or deleted by subjecting them to site-
directed mutagenesis (Dadwal et al., 2020). In order to identify
specific amino acids, the three-dimensional structure of the enzyme
is analysed to extract information about the amino acid residues
located within or close to the active site of the enzyme. These amino
acids come in direct contact with the substrate and hence, are
targeted to be mutated, as mutations in these sites would prove
to be significant in altering the catalytic properties of the enzymes.
Mutation hotspots can be identified by developing enzyme models
using techniques like homology modelling and threading. This is
achieved by using in silico tools like Rosetta (Mills et al., 2013),
IntFOLD (Roche et al., 2011), I-TASSER (Yang et al., 2014), Swiss-
Model (Waterhouse et al., 2018) and Protein Homology/AnalogY
Recognition Engine (Kelley & Sternberg, 2009). Performing multiple
sequence alignment to compare homologous protein sequences with
the sequence of the enzyme of interest provides valuable information
about the conserved sequences of amino acids in the enzyme
(Sebestova et al., 2014). This is particularly useful because
stretches of conserved amino acid residues are important for
maintaining the core structure of the enzyme and therefore, they
cannot be subjected to mutation. However, the amino acid residues
which are less conserved could be mutated for enzyme engineering.
The information about the interaction of the active site residues with

its substrate can be generated through various computational
applications like molecular dynamics (MD) simulation (Anbar
et al., 2012) and molecular docking. These mutant enzymes are
further screened to obtain the mutant with the most desirable
properties, such as increased catalytic activity, specificity for non-
natural substrate as well as multiple substrates, enantioselectivity,
and solubility. Rational design approach was utilized in creating
variants of TesA thioesterase enzyme in Escherichia coli in which
iterative protein redesign and optimization (IPRO) method
(Pantazes et al., 2015) was used. The enzyme variant improves
medium-chain free fatty acid (substrate) specificity and maintain
high thioesterase activity (Grisewood et al., 2017).

2.1.3 Semi-rational design
Semi-rational design of enzyme engineering involves the use of a

combination of approaches employed in both direct evolution and
rational design to combat the disadvantages faced (like extensive
screening process and unavailability of detailed structural
information of enzymes) when these methods are deployed
individually (Ali et al., 2020). In semi rational design, sequence
and structure-based information about the concerned enzyme is
considered to select promising target sites which could be altered by
combining random mutations and site-directed mutations.
Computational algorithms, further, help to predict and eliminate
the possibility of unbeneficial mutations. This approach creates
small libraries with functional content that assists the desired
change in protein conformation. This strategy for engineering
enzymes focuses on the effect of substitution of amino acids
within the catalytic domain of the enzyme and has been found to
be extremely successful in terms of designing new enzymes and
enhancing the catalytic activity, stereoselectivity and stability of
existing enzymes. The development of in-vitro experimental
assays depending on the information pipeline is critical to
modify existing proteins as well as biosynthesis of novel enzymes
possessing properties that are beneficial to biocatalytic processes in
the industry. Semi rational design generally adopts sequence,
structure and random mutagenesis-based strategies. These
strategies are heavily dependent on computational techniques.

Analysis of protein sequences, for identification of sites that
might be mutated, can be done using computational tools like
HotSpot Wizard server and 3DM database which compile
information about the sequence data retrieved from different
repositories (Pavelka et al., 2009; Steiner & Schwab, 2012). The
amino acid sequences within the active site are directly associated
with its catalytic properties. Various methods like multiple sequence
analysis and construction of phylogenetic trees give useful insights
into the conservation of homologous protein sequences and their
evolutionary history. This allows easier selection of amino acid
residues which can be substituted in the process of enzyme
engineering. Identification of amino acid residues in the active
site of enzymes facilitate the generation of small and smart libraries.

In structure-based semi-rational design, the structural
information of enzymes is taken into account to enhance
enzymatic activity (Siloto & Weselake, 2012). In the absence of
crystal structure, models of enzymes can be produced using the
information about its sequence by methods like homology
modelling and threading. Computational evaluation of these
models is carried out based on the energetics of amino acid
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mutations in the enzyme using the available rotamer libraries and
backbone recognition (Ebert & Pelletier, 2017). Forcefield-based
various algorithms like FoldX (Buß et al., 2018), TANGO (Musil
et al., 2019), SNPEffect (De Baets et al., 2012) can score the enzyme
mutants by calculating the difference in their free energies. De novo
enzymes having specific catalytic properties can also be synthesized
using computational methods. This approach is particularly useful
to understand enzyme-substrate interactions (Kries et al., 2013).
Virtual modulations in amino acid substitutions to generate
desirable qualities in the novel enzyme screens out only a few
designs for the in-vitro engineering of enzymes. Molecular
dynamics simulation and quantum mechanical calculation predict
the exact locations of amino acid residues within the active site of the
enzyme. To achieve this, programmes such as RosettaMatch (Siegel
et al., 2010), YASARA (Zorn et al., 2018) can be utilized.

In the absence of sequence and structural information of
enzymes, random mutagenesis technique is employed. In this
technique, large enzyme libraries are created by incorporating
random mutations in the enzyme. Variants of enzymes with
superior properties are screened out. Upon recognition of amino
acid residues which are mutated in the superior variety of enzymes,
site-directed mutagenesis can be performed to generate the desired
enzyme variant. Both these methods are used in semi-rational design
(Chica et al., 2005). With the help of this strategy (using a
combination of rational design and saturation mutagenesis), Rui
et al. (2004) successful modified epoxide hydrolases. The modified
enzyme could accommodate wide range of substrate through
beneficial residues within active site of the enzyme. The modified
enzyme also enhanced the substrate degradation rate by 4 to 7 fold.

2.2 Enzyme immobilization as a
complementary strategy for enhanced
enzyme stability and product yield

For the commercialization of enzyme-based catalysis, it is
essential that these biocatalysts have the ability to be recovered
and reused, making the catalytic process cost-effective.
Immobilization of enzyme is a technique that imparts excellent
stability to the enzyme and allows it to react with the substrate while
being restricted in a predefined area (Soleimani et al., 2012;
Maghraby et al., 2023). The process of immobilization requires
the application of various interdisciplinary fields including
biocatalysis, material science, biophysics, protein chemistry,
chemical engineering and molecular biology. Enzyme
immobilization is an immensely profitable technology in
industries where the use of biocatalysts bears a huge impact on
their economic feasibility. This technique makes sure that the
process is optimized to control the operational time of enzyme
usability and increases the total turnover number. Enzyme
immobilization can also be used to shift the reaction equilibrium
when the enzyme is required to work in non-conventional
conditions. This wholly depends on the optimization of the
enzyme-support system which forms the most critical part of
enzyme immobilization. Designing of a potent immobilization
technique consists of steps like selection and characterization of
the enzyme to be immobilized, identification of a suitable matrix
that can successfully bind to the enzyme conferring stability without

affecting its catalytic properties and optimization of the operational
performance of the resulting enzyme-support system such that it
increases the yield and activity of the enzyme keeping in mind the
reaction criteria to be used (van Pelt et al., 2008; Bernal et al., 2018).

Enzyme immobilization can be achieved through covalent
attachment where the support material contains compounds or
groups such as glyoxyl, glutaraldehyde, vinyl sulfone that can
covalently bind to the amine and thiol groups in the enzyme.
This method provides stability of the enzymes under various
inactivating conditions. Osuna et al. (2015) used chitosan-coated
magnetic nanoparticles to immobilize Aspergillus niger lipase
(Osuna et al., 2015). Glutaraldehyde and glycidol were used to
form covalent linkages between the enzyme and the polymer.
The immobilized enzyme showed enhanced stability to withstand
changes in pH and temperature and retained 80% of its initial
catalytic activity after 15 hydrolytic cycles. Another method of
immobilization requires the induction of weak forces between the
enzyme and the support material through adsorption. Recently,
hydrophobic groups like octyl and phenyl moieties have been
introduced on the surface of carriers to enable their adsorption
on the hydrophobic patches of the enzyme. For instance, Rueda et al.
(2015) compared the efficiency of octyl-agarose and octyl-glyoxyl
agarose to immobilize lipases from Candida antarctica (form B),
Thermomyces lanuginosus (TLL) or Rhizomucor miehei by using
both hydrophobic adsorption and covalent bonding techniques
(Rueda et al., 2015). This study demonstrated that the stability
and the activity of the enzymes were enhanced in organic solvents
and also, that these enzymes can be reused for 5 hydrolytic cycles
without any considerable loss in activity when they were
immobilized on heterofunctional support (octyl-glyoxyl agarose).
Thus, both covalent attachment and adsorption can be implemented
together to favour enzyme–support interactions and to achieve high
enzyme stability.

Entrapment and crosslinking enzyme aggregates are other
strategies of enzyme immobilization. Crosslinking enzymes with
suitable matrices involves the formation of enzyme aggregates by
precipitation of enzymes and then cross-linking them with the
support material such that the biocatalyst thus formed is active
and fully functional. For example, nitrile hydratase from a
haloalkaliphilic actinobacterium was precipitated with
ammonium sulfate and glutaraldehyde was used to crosslink the
enzyme to make stable aggregates for the hydration of acrylonitrile
(van Pelt et al., 2008). The entrapment of enzymes in porous
matrices is a trusted strategy to stabilize them and retain their
native structure. The enzyme remains trapped in the gel–like matrix
which allows easy diffusion of the substrate and the product. Ca-
alginate beads were used by Arruda and Vitolo to entrap invertase
from S. cerevisiae for sucrose hydrolysis. The immobilized
biocatalyst showed high stability at pH 4.6 and 30°C (Arruda &
Vitolo, 1999).

2.3 Extremozymes and Enzyme engineering

Enzyme engineering to improve enzyme specificity, stability,
stereoselectivity and/or catalysis of a wider range of substrates, can
be applied to several industrial sectors. The following section focuses
on extremozymes as examples of industrially significant biocatalysts.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Chatterjee et al. 10.3389/fbioe.2023.1229300

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1229300


TABLE 1 List of extremozymes engineered for various industrial applications.

Enzyme Source organism Enzyme engineering
strategy

Application References

α-glucosidase Thermus thermophilus TC11 Random and site-directed
mutagenesis

Commercial production of oligosaccharides Zhou et al. (2015)

α-amylase Klebsiella pneumoniae
(CCICC no. 10018)

Site-saturation mutagenesis Food processing and Biosynthesis
applications

Pan et al. (2020)

Laccase Thermus thermophilus
SG0.5JP17-16

Site directed mutagenesis Production of paper and applications in food
industry

Zhu et al. (2021)

Pullulanase Bacillus acidopullulyticus Site directed mutagenesis Breakdown of starch for the production of
high-glucose syrup

Chen et al. (2019)

Type II pullulunase Anoxybacillus sp. WB 42 Site directed mutagenesis using
overlap extension PCR

Application in food and chemical industries
for starch debranching process

Pang et al. (2020)

Chitinase Paenibacillus pasadenesis
CS0611

Site directed mutagenesis Production of chito-oligosaccharides Xu et al. (2020)

Esterase Sulfolobus solfataricus P2 Site directed mutagenesis by
overlap PCR

Detergent and leather industry Shang et al.
(2010)

Lipase Bacillus sp. Site directed mutagenesis Application in production industries Chopra et al.
(2018)

Endo-glucanase and β-1,4-
glucosidase chimeric enzyme

Clostridium thermocellum Site directed mutagenesis Bioethanol and biofuel production Nath et al. (2019)

Cyclodextrin glycosyltransferase Bacillus circulans STB01 Site directed mutagenesis Application in food and pharmaceutical
industry

Li et al. (2016)

Endo-1,4-β-xylanase Thermoascus aurantiacus
CBMAI756

Site directed mutagenesis Degradation of lignocellulose biomass in
biofuel industry

de Souza et al.
(2016)

Lipase Geobacillus
stearothermophilus T6

Site directed mutagenesis Production of biodiesel by methanolysis Dror et al. (2014)

Maltogenic amylases Thermus sp. strain IM6501 Random mutagenesis Emulsifiers and defoaming agents in starch
industry

Kim et al. (2003)

β-1,4-endoglucanase Pyrococcus horikoshii Site directed mutagenesis Application in textile industry Kang et al. (2007)

Endo-glucanase Thermobifida fusca Site directed mutagenesis Biofuel and biopolymer production Zhou et al. (2004)

Chitinase A Vibrio carchariae Site directed mutagenesis by PCR Application in the pharmaceutical industry
for production of chito-oligosaccharides

Pantoom et al.
(2008)

Endoglucanase Alicyclobacillus
acidocaldarius

DNA amplification by PCR using
enzyme template

Degradation of plant biomass to produce
biofuels

Younesi et al.
(2016)

Subtilisin protease Bacillus gibsonii Site directed mutagenesis Application in surfactant industry Jakob et al.
(2013)

Maltogenic amylases Thermus sp Site directed mutagenesis by mega-
primer method

Application in starch and carbohydrate
industry

Kim et al. (2005)

D-hydantoinase Bacillu
stearothermophilus SD1

Rational design by overlapping PCR Production of optically pure D- and L- amino
acids

Lee et al. (2009)

Lipase CALB Candida antarctica Iterative Saturation mutagenesis
based Directed Evolution approach

Application in pharmaceutical industry Wu et al. (2013)

Acyl-aminoacyl peptidase Aeropyrum pernix K1 Site directed mutagenesis Synthesis and resolution of enantio-pure
drug precursors

Liu et al. (2011)

Prolidase Pyrococcus horikoshii Error-prone PCR mutagenesis using
Random Mutagenesis kit

Detoxification of organophosphates Theriot et al.
(2011)

Maltogenic amylases Bacillus
thermoalkalophilus ET2

DNA shuffling for random
mutagensis

Starch and carbohydrate industry Tang et al. (2006)

Aminotransferase Vfat Vibrio fluvialis Site-specific mutagenesis Synthesis of chiral amines and amino acids Midelfort et al.
(2013)

(Continued on following page)
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Enzymes have been extensively used in the food and beverage
industry to enhance flavour and nutritional value of the product.
Xylanases and starch processing enzymes such as amylases,
pullulanases and transglutaminases are widely used in the
production of food additives. These enzymes are often used at
high temperatures in the industry. Therefore, engineering such
enzymes to increase their thermal stability enhances their
efficiencies and the product yield. Pang et al. improved the
thermostability and activity of a type II pullulanase from the
thermophile, Anoxybacillus sp. WB42 by surficial residue
replacement and disulphide bond introduction (Pang et al.,
2020). Xylanases are also known to be used in the biofuel
industry as they can degrade hemicellulose, a structural
component of plant cell wall. A thermostable xylanase from
Geobacillus stearothermophilus was used by Hegazy et al. to
create xylose-tolerant mutants by random mutagenesis, which
have high catalytic efficiencies (Hegazy et al., 2019). In this case,
in the absence of three dimensional structure of xylanase-xylose
complex, random mutagenesis of the whole xylanase gene was
prepared by error-prone polymerase chain reaction creating a
huge library. Screening of the library produces xylose-tolerant
mutants with M116I, L131P, and L133V, mutation which are
within the N-terminus of α-helix 3. In comparison with the wild-
type, the best xylose-tolerant mutant showed 3.5 fold higher ki value
and 3 fold better catalytic capability. Apart from xylanases, lipases
and endoglucanases are also employed by the biofuel industry for the
production of biodiesel.

In the pharmaceutical industry, enzymes with therapeutic
potential such as ketoreductases and transaminases play a
significant role in the synthesis of chiral compounds. Such
enzymes are engineered to make them highly enantioselective.
For example, with the help of quantum mechanical calculations
and molecular dynamic simulations, enantioselective mutants of
Lactobacillus kefir ketoreductase, generated by Noey et al. which
worked more efficiently with 3-thiacyclopentanone than with 3-
oxacyclopentanone (Noey et al., 2015). This MD based method finds
correlation between the relative fraction of catalytically feasible
poses for the enantiomeric reductions and the actual
experimentally observed enantiomeric ratio. It is shown that
certain mutations alter binding site geometry which in turns
enlarge binding pocket to accommodate the larger sulphur atom
and thus enhancing the S-selectivity with 3-thiacyclopentanone.

The surfactant industry uses a wide range of lipases and
proteases as bio-detergents. Enzyme engineering strategies are
applied to these enzymes to increase their stability and retain
their activity in the formulations. For instance, enzyme variant of
a thermophilic esterase from Sulfolobus solfataricus P2 was
produced by Shang et al. using site directed mutagenesis. This

mutant showed higher specific activity at pH 5.5 and 80°C
(Shang et al., 2010). Lactonase is another enzyme from S.
solfataricus, which is important for the detoxification of
organophosphorus compounds (Jacquet et al., 2017). Use of
enzymes is a promising method to carry out the targeted
breakdown of hazardous chemicals into safer substances. A
summary of some noteworthy industrially important enzymes
from extremophiles has been presented in Table 1.

3 Nature-inspired biocatalysis, enzyme
engineering and extremozymes: case
studies from the plant world!

Extremozymes from bacteria and fungi, both natural and
engineered ones, have been more popular for industrial
applications like food, pharmaceuticals, biofuel, surfactant and
bioremediation. However, the world of plants could also offer a
distinct functional pool of novel biocatalysts, as there might be
unique chemical reactions (metabolic pathways) that happen only in
plants but not in microorganisms. The following sections highlight a
few representative examples where extremozymes have been
characterized and reported from plants. Specific plant enzymes,
which could be selected in future for potential protein engineering
experiments and a few which have been successfully engineered for
improved biochemical characteristics like thermostability and
substrate specificity, have also been discussed (Figure 2).

3.1 Thermostable glycoside hydrolases from
(semi) arid plants

Glycoside hydrolases (GH; EC 3.2.1) are key enzymes of the
CAZY (Carbohydrate active enzymes; http://afmb.cnrs-mrs.fr/
CAZY/) category that are capable of hydrolyzing the glycosidic
bonds between two carbohydrates or between a carbohydrate and a
non-carbohydrate moiety. In plants, they participate in cell wall
polymer rearrangements during plant growth (Calderan-Rodrigues
et al., 2018), or facilitate plant defense/stress response via release of
biologically active aglycones during insect infestation or pathogen/
herbivore attack (Asati et al., 2021). They are often localized in the
endoplasmic reticulum, plasma membrane, apoplast or plastids and
come into contact with the corresponding glycosides (often stored in
vacuoles) during cell damage. The GH superfamily includes
29 families of enzymes, such as cellulases, α- and β-glucosidases,
β-galactosidases, β-xylosidases, α- and β-amylases, and lactases to
name a few (Henrissat et al., 2001). Commercially, GHs find major
applications in pulp and paper processing; textile manufacture;

TABLE 1 (Continued) List of extremozymes engineered for various industrial applications.

Enzyme Source organism Enzyme engineering
strategy

Application References

Lactonase Sulfolobus solfataricus Rational method using structure-
based approach

Bioremediation of organophosphorus
compounds

Jacquet et al.
(2017)

Prolidase Pyrococcus furiosus Random mutagenesis Detoxification of organophosphorus
compounds

Theriot et al.
(2010)
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detergent, chemical and biofuel production; cosmetics industry;
food industry (dairy, baking, juice and brewing) (Cobucci-
Ponzano et al., 2011).

From an industrial perspective, deconstruction of plant biomass
mainly requires depolymerizing starch, lignocellulose and pectin,
that often require the use of enzyme cocktails (Lopes et al., 2018).
Reduction in lignocellulose recalcitrance by thermal pre-treatment
of plant biomass is considered a necessity even for enzyme-aided
processes, therefore highlighting the importance of thermotolerant
GHs. Mostly, bacterial and fungal enzymes have been used in the
process, but plant enzymes present an equally attractive opportunity
as these are naturally involved in cell wall turnover in plants.
Whatever the source of enzyme, researchers have noted that
natural enzymes may not be sufficiently active to enable
economically viable bioprocesses, even at optimal conditions or
might be subject to product inhibition (Chaudhari et al., 2023).
Therefore, enzyme engineering becomes a necessity.

Starch is converted to fermentable sugars (with the help of α-
glucosidase as one of the enzymes) during the industrial production
of ethanol. This process requires temperature in the range of
65–73°C. Typical α-glucosidases (EC 3.2.1.20) are thermolabile at

these temperatures, resulting in reduced efficiency of starch
breakdown. (Mansfeld et al., 1997). A study reported on
improving the thermostability of α-glucosidase from barley
(Hordeumvulgare) by inserting proline residues (in place of
threonine) at position 340 in the first turn of an α-helix. This
kind of change has been suggested to stabilize a protein
molecule. In this case, the thermostability (T50) of the mutant
enzyme, T340P, was found to be 10°C higher than the non-
mutant enzyme. Interestingly, the researchers got the clue for this
threonine-to-proline substitution in barley by studying the relatively
more thermostable α-glucosidases from three other plants, viz.
sugarbeet (Beta vulgaris), spinach (Spinaceaoleracea) and
Arabidopsis (Arabidopsis thaliana).

β-amylase (EC 3.2.1.2) is a maltose-producing exohydrolase of
the starch degradation pathway and finds its application in brewing
and baking industries. β-amylase from barley has been used for
commercial production of maltose; however, its low thermostability
has been a major challenge for industries. Recently, Ogundolie et al.,
2022 reported on the isolation and characterization of a novel
thermostable β-amylase from an underutilized climber legume,
Diocleareflexa, and suggested it to be a potential candidate for

FIGURE 2
Schematic representation of plants as potential resources of enzymes (extremozymes) and related natural products. The figure was created with
BioRender.
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further improvement via enzyme engineering (The enzyme was
relatively stable for 140 min retaining 70% of its initial activity at
60°C and 67% of the activity at pH 6.0). Earlier, Daba et al., 2012
evaluated various solvent additives to enhance the activity and
thermostability of wheat β-amylase. Solvent engineering is a
relatively less employed method for rational control of catalytic
activity for enzymes. Here the premise is that a combination of
structural and environmental factors can be used to realize optimal
enzyme activity, the latter requiring use of stabilizing additives in the
solvent. It is supposed to enhance enzyme catalytic efficiency, ensure
safety of the products and reduce the costs for production. The
wheat β-amylase is extracted from wheat bran, considered an
industrial byproduct. It was observed that modifications of the
solvent with 182 mM glycine and 0.18% (w/v) gelatin increased
the T50 by 5°C (Daba et al., 2012). It has been suggested that the
mechanism for thermostabilization by additives could be due to
reduction in the degree of water-solvation or deformation of a water
shell around the protein.

It has been reported that the desert legumes such as Prosopis
cineraria and Cyamopsis tetragonoloba harbor thermostable β-
glucosidase enzymes (EC 3.2.1.21), capable of showing significant
catalytic activity even above 50°C temperature (V Asati & Sharma,
2018; Asati and Sharma, 2019). These enzymes were specific towards
isoflavone glycosides and did not show any activity with glycosides
of other flavonoid categories, possibly due to difference in structure
of the substrate, that is, flavonoid parent skeleton (benzene ring
connected to Carbon 3 of C-ring in case of isoflavonoids, as against
Carbon 2 in case of flavonoids). The plant β-glucosidases score over
the bacterial counterparts by being relatively more tolerant to
glucose inhibition (Monteiro et al., 2020). These traits make such
enzymes (from plants in the arid regions of the world) potential
candidates for protein engineering for further improvement in
physiochemical characteristics, towards application in
nutraceutical and food industries.

3.2 Digestion of lignocellulosic biomass by
recombinant hyperthermophilic
endoglucanase (EC 3.2.1.6) and xylanase (EC
3.2.1.8) enzymes

Lignocellulose biomass is primarily derived from plant
materials, which includes waste from the agricultural and timber
industries, forest residue, and municipal waste (Yousuf et al., 2020).
It is a complex matrix mainly composed of lignin (15%–20%) and
polysaccharides, such as cellulose (35%–50%) and hemicellulose
(20%–25%), which are found in plant secondary cell walls (H. Chen,
2014). These polysaccharides can be broken down into
monosaccharides, which can then be used to produce
fermentable sugars. Lignocellulose is a valuable source for
producing bioethanol and biogas, which are sustainable
alternatives to petrochemicals and have gained increasing
attention in recent years (Arevalo-Gallegos et al., 2017; Okolie
et al., 2021). Additionally, lignocellulose offers advantages over
other feedstocks for biofuel production, such as its great
abundance, sustainable supply, lower direct food versus fuel
competition, and fewer greenhouse gas emissions (Nanda et al.,
2015).

However, the efficient conversion of lignocellulose to biofuel
is a significant challenge in the production process, primarily due
to the high processing costs involved in its pretreatment and
enzymatic hydrolysis (Bhatia et al., 2020; Zhao et al., 2022). To
reduce these costs, scientists have expressed lignocellulosic
digesting enzymes in plants, but this approach also causes
performance challenges, such as auto-hydrolysis of cell walls,
stunted plant growth, poor yield, and stability of enzymes in
extreme conditions such as high temperatures, extreme
pH values, or high salt concentrations, which are required for
the biomass processing steps (Marriott et al., 2016). Therefore,
while this approach shows promise in reducing cost, another
strategy has been to use recombinant hyperthermophilic
lignocellulose digesting enzymes (glucanase and xylanase) in
Arabidopsis plants which can withstand high temperatures
(Mir et al., 2014; 2017). The endoglucanase and xylanase
retain their hydrolyzing activity at around 100°C and around
80°C degrees, respectively (Graham et al., 2011; Verma et al.,
2013). These enzymes were chosen because of their ability to
withstand high temperatures and high pH during the
lignocellulose treatment process, thereby improving biofuel
yield.

3.3 Ascorbate peroxidase (EC 1.11.1.11) -
Temperature induced isoforms in plants and
structural clues

Plants are regularly exposed to various environmental
stresses, including biotic and abiotic stress, which poses a
significant challenge to their growth and survival (Suzuki
et al., 2014). One consequence of such stresses is the notable
increase in the production of reactive oxygen species (ROS),
which are highly reactive molecules that can be either free
radical or non-radical molecules. ROS are a natural by-
product of plant cellular metabolism in association with
oxidases, but when ROS levels go unchecked, it can be
harmful to cells (F. K. Choudhury et al., 2017). To maintain
redox homeostasis, the plants antioxidant defence system is
activated, which includes several oxidases such as catalases
(EC 1.11.1.21), ascorbate peroxidases, glutathione peroxidase
(EC 1.11.1.9), superoxide dismutase (EC 1.15.1.1), glutathione
S-transferase (EC 2.5.1.18), and glutathione reductase (EC
1.8.1.7), that regulate ROS levels (Gill & Tuteja, 2010;
Trchounian et al., 2016)

Among these, ascorbate peroxidase (APX) is a crucial scavenger
of free radicals and belongs to a family of heme-containing
peroxidases that consists of four different isoforms based on their
sub-cellular localization (Menossi Menossi et al., 2017). The central
hydrogen peroxide scavenging system is present in chloroplasts,
where APX exhibits a high affinity for H2O2 and catalyzes its
conversion to H2O, using ascorbic acid as an electron donor
(Smirnoff & Wheeler, 2000). By performing this function, APX
protects plant cells from oxidative stress and stabilizes the internal
biochemical state of the cell, leading to acclimatization as well as
tolerance to various abiotic stresses (Das & Roychoudhury, 2014;
Huang et al., 2019). However, APX also plays a role in the cytosol,
mitochondria, and peroxisomes. Cytosolic APX isoforms are more
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sensitive to ascorbate reduction than stromal and thylakoid
membrane-bound APX, which are of chloroplastic origin (Huang
et al., 2019).

Under extremely low or high temperatures, various APX
isoforms have been found to be induced in plants, which can
enhance the plant’s ability to tolerate stress. For instance,
cytosolic APX has been upregulated in potato tubers
(Kawakami et al., 2002), maize (Tiwari & Yadav, 2020;
Ramazan et al., 2021), and rice (Sato et al., 2001), while
mitochondrial APX is expressed in Arabidopsis (Chew et al.,
2003), and thylakoidal APX is expressed in tobacco plants (Sun
et al., 2010). The differential expression of these various
subcellular isoforms in regulating how plants adapt to
temperature stress could provide insights at both the cellular
and molecular levels, for their utilization in genetic engineering
and other applications.

3.4 Carbonic anhydrases (EC 4.2.1.1): Role of
unicellular green algae in pH- and salt-stress

Carbonic anhydrase is a type of metalloenzyme that is widely
distributed across the biological kingdom (Chegwidden & Carter,
2000). Found in bacteria, plants, algae, and animals, including
humans, and is known to function in a broad range of
environmental stresses, including heat stress, CO2 stress, and salt
stress, drought stress (Polishchuk, 2021). It plays a vital role in
converting carbon dioxide to bicarbonate, along with a proton, in a
reversible manner to carry out necessary biological processes such as
carbon fixation, pH regulation, and ion transport (Imtaiyaz Hassan
et al., 2013).

Plants produce reactive oxygen species (ROS) in response to
stress conditions. Carbonic anhydrase is a crucial enzyme that helps
to maintain the pH of the cell, thereby reducing the adverse effect of
ROS in cellular damage (Di Fiore et al., 2018). In conditions, where
CO2 is limited, bicarbonate can serve as a source of carbon for
photosynthesis (Momayyezi et al., 2020). Additionally, carbonic
anhydrase activity is upregulated during drought conditions, as it
supports the plants in maintaining their water balance and protects
them from dehydration by reducing water loss through the closure
of stomata.

Carbonic anhydrase activity has also been reported in the
halophilic algal species Dunaliella salina, a green alga that can
survive in high salt concentrations where the solubility of CO2 is
limited. To cope with these extreme conditions, D. salina
increases the expression of carbonic anhydrase, located on the
plasma membrane, to acquire CO2. This CO2 can then be
assimilated for glycerol synthesis, which is an essential
product of photosynthesis in halophiles (Jeon et al., 2016). It
is also used in coupling the sequestered CO2 (from greenhouse
gas emissions) into valuable products that include biofuels and
bioplastics. For this several bacterial and algal sources of
carbonic anhydrase are being reported (Y. Chen et al., 2020;
Kumar et al., 2018). Thus, extremozymic forms of carbonic
anhydrase can be explored for environmental hazard
mitigation as well as sustainable production of industrially
important products.

3.5 Papain—An industrially important plant
protease with enhanced thermostability by
protein engineering technique

Among industrially relevant enzymes, proteases represent more
than 60% of the enzymemarket share (Fernández-Lucas et al., 2017).
Proteolytic enzymes from plants, particularly the cysteine proteases,
have attracted significant commercial interest, due to their wide
substrate specificity and catalytic activity over broad pH and
temperature ranges (Mamboya & Amri, 2012). These enzymes
have found their applications in medicine (e.g., synthesis of
bioactive peptides and treatment of burn wounds) as well as food
(e.g., preparation of protein hydrolysates, removal of food allergens
and tenderization of meat) and detergent industry (hydrolytic
degradation of difficult protein stains) (Sharma et al., 2021). A
few other novel applications include antimicrobial food packaging,
dental caries removal agent, tooth-whitening additive in toothpastes
and skin-care products (Cynthya et al., 2014; Epple et al., 2019).

Papain (EC 3.4.22.2) is a cysteine endopeptidase isolated from
latex of the tropical plant Carica papaya. Physiologically, the enzyme
is involved in plant growth, development, senescence and
programmed cell death (Martínez et al., 2007). As per Market
Research Future (Market Research Future (2017) Global Meat
Tenderizing Agents Market Research Report- Forecast to 2023. ID:
MRFR/F-B & N/2125-HCRR, 2017), owing to its broad protein
substrate specificity and better structural/functional integrity in
different operational conditions, papain outsold other plant-
derived proteases like bromelain (from Ananascomosus) and ficin
(from Ficuscarica). It has also been considered less expensive than
microbially sourced proteases (Dahiya et al., 2001).

Papain structure has two domains, L and R, with its catalytic cleft
located at the interface of the domains. Choudhury et al., 2010 improved
thermostability of papain through structure-based protein engineering.
As per the authors, in the major protein engineering approaches
(random mutagenesis followed by selection, rational design based on
3D structure of protein, and consensus approaches using statistics and
sequence databases), a trade-off occurs between the rigidity required for
stability and flexibility required for activity. To take care of this aspect,
they produced a triple mutant by substituting three amino acids in the
interdomain region of papain (Val32, Gly36 and Lys174 in the
interdomain region were mutated to Ser, Ser and Arg, respectively).
The researchers ensured that the chosen positions for substitution were
away from the catalytic region (thereby not affecting enzyme activity).
The change resulted in multiple hydrogen bonds and salt bridges,
thereby improving the thermostability (the half-life extended by
94 min at 60°C and 45min at 65°C compared to the wild type).

Generally, the activity and specificity of an enzyme are altered by
introducing mutations at the catalytic and substrate-binding sites. A
different approach was suggested by Dutta et al., 2016 who carried
out a single amino acid substitution in the pro-peptide of papain to
modify its substrate specificity. The pro-peptide is a part of the
protease that functions as an intra-molecular chaperone (that
catalyzes the folding of the catalytic domain) as well as an
inhibitor of the protease (that blocks the active site cleft in the
zymogen form of the enzyme). Crystallographic studies of the
mutant proenzymes demonstrated that no gross conformational
changes had occurred in the catalytic cleft. One of the mutants, I86L,
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showed 29.1 times higher kcat/Km values (against protein substrates
having Leu at P2 position) compared to the wild type enzyme.

4 Other special examples of nature-
inspired biocatalysis

4.1 Plant-derived enzymes as
biopharmaceuticals: an emerging avenue

The historic achievement of producing a therapeutic enzyme
from a genetically engineered carrot cell line and its US-FDA
approval in 2012, points to plants as an emerging source of
enzymes, in addition to other valuable bioactive (Meyer &
Schmidhalter, 2014; Najmi et al., 2022).

Gaucher’s disease is a glycolipid storage disorder, where
enzyme replacement therapy (ERT) is the standard treatment.
Previously the production of the (imiglucerase) cerebrosidase
enzyme had several challenges, the important factor being its
restricted supply owing to viral contamination in production
units (Hollak et al., 2010). Subsequently, the development of
taliglucerasealfa, a recombinant human β-glucocerebrosidase
(EC 3.2.1.45) produced in carrot cells (Fox, 2012), with the
same protein sequence as imiglucerase, highlights the
importance of plant cell culture platform in the
biopharmaceutical industry (Zimran et al., 2012). Plant cell
culture is a promising technology for sustainable production
of high-value plant-derived products, as it is not affected by
seasonal variations and does not require extensive farming or
agricultural investments. Additionally, it presents a reduced risk
of viral contamination and improved long-term safety compared
to mammalian cell bioreactors (Caretto et al., 2010; Ochoa-
Villarreal et al., 2016).

The success with plants extends to the mosses (bryophytes).
Mosses often have the advantages of being a simple model system for
not only understanding complex plant biosystems but also being
amenable to scale-up production in bioreactors and for genetic
engineering.

Physcomitrium patens, a type of bryophyte, has shown
promising results in optimizing the glycan structure for
producing alpha-glucocerebrosidase and beta-glucocerebrosidase,
which are used to treat Fabry (Shen et al., 2016) and Gaucher’s
diseases (Reski et al., 2015). Compared to other cell culture systems,
Physcomitrium patens has demonstrated increased stability, no
cytotoxicity and improved pharmacokinetics, making it a
promising candidate for developing safe and effective therapies.
Moreover, the use, P. patensmay not be limited to lysosomal storage
diseases and could be explored for treating other medical conditions
as well (Campos et al., 2020).

4.2 Enzyme-substrate complexes from the
plant world for therapeutic applications

The remarkable understanding of utilizing enzyme-substrate
complexes for therapeutic purposes provides yet another
inspiration from the plant world for the industrial production of

enzymes. The rapid conversion of an inactive precursor to an active
form observed in plants was the premise for exploring anti-cancer
and anti-microbial effects of binary systems of enzyme and its
substrate. Phytoanticpins are secondary metabolites produced by
plants, either naturally or in response to pathogen attack. In the
presence of an enzyme β-glucosidases (EC 3.2.1.21), these
compounds are activated and have been shown to promote
health benefits through a binary system involving enzyme-
substrate complexes (Vinther et al., 2008; Ullrich et al., 2019).
The report of a binary system in garlic, where an allin/alliinase
combination was used as a substrate/enzyme combination, showed
antifungal activity (Fry et al., 2005). The glucosinolate/myrosinase
system is another binary combination from mustard that increased
Lactobacillus population during fermentation (Wang et al., 2021).
Additionally, these substrate-enzyme complexes have potential to
provide a broad spectrum of targets, possibly by multiple substrate-
enzyme formulations (Estevam et al., 2015). Such substrate-enzyme
complexes provide an alternative approach to the use of either
enzyme only, or enzyme inhibitors/activators, for
pharmacological uses.

4.3 Extracellular enzymes of fungal isolates
from plants: biotechnological applications

Several plants have therapeutic potential for the treatment of
various diseases. However, one of the challenges is the fungal
contamination of plants, which can pose problems and risks to
plant health and its natural products (Yun et al., 2013).
Interestingly, a study of the extracellular enzyme profile in
xerophilic fungi growing as a contaminant over dried
medicinal plants, revealed that these fungal isolates (such as
A. fumigatus and A. nidulans) from medicinal plants have the
ability to degrade hydrocarbons. The hydrolase activity of these
fungi, such as β-glucosidase (EC 3.2.1.21) activity, was found to
be the highest, followed by activities of other enzymes, namely,
acid phosphatase (EC 3.1.3.2), N-acetyl-β-glycosaminidase (EC
3.2.1.30), and naphthol-AS-BI-phosphohydrolase. Although
fungal contamination over plants is known to produce
mycotoxins, there may be such instances of useful
extracellular enzymes produced which can be used in
industrial applications, as well as for combating environmental
challenges, through air biofiltration and bioremediation (plant-
assisted mycoremediation, PAM) of soil and wastes (Janda &
Ulfig, 2009). Such fungi growing on medicinal plants also display
the ability to act on a variety of substrates, which again makes
them an attractive biotechnological strategy for industrial and
environmental applications (Van Zyl et al., 2010).

Such fungal enzymes are also reported from non-medicinal
crops such as maize as part of plant assisted mycoremediation
(PAM) approach. It was shown that the organic volatile
environmental pollutant, polycyclic aromatic hydrocarbons
(PAH), was effectively remediated by maize-assisted
mycoremediation through increased fungal biomass, microbial as
well as manganese peroxidase enzyme activity, thereby suggesting
PAM approach to be suitable for in situ soil remediation
applications (Košnář et al., 2019).
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5 Conclusion and future prospective

Enzymes are now established as the green catalysts preferred for
industrial productions and environmental remediation.
Biotechnological advances are providing further improvisations in
the enzyme design, kinetics and the overall productivity. The
naturally occurring category of extremozymes that inherently
withstand extremes of conditions such as temperature, pH, salinity,
and other stresses have found immense applications in industrial
settings as well as harsh environments for bioremediation
applications. While microbes have been widely reported for sourcing
of extremozymes, this review presents the largely untapped potential of
extremophilic plants as complementary sources of extremozymes. Such
plant enzymes offer valuable structural insights for developing stable
and robust enzymes, for instance thermostable proteases based on
papain. Plant cell culture is yet another avenue to increase the yield of
enzymes, without disturbing the ecosystem (that is, no felling of trees
and minimal use of solvents for extraction of plant-based products). In
the present review, we have also brought out some exotic instances of
plant based biocatalysis, ranging from algae andmosses to higher plants.
The plant fungal interaction which is generally construed as a harmful
host pathogen interaction, is now finding some useful applications such
as, PAM outlined in the above section. To conclude, plants literally and
scientifically represent the green avenue for nature inspired biocatalysis.
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