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Electric fields find use in tissue engineering but also in sensor applications besides
the broad classical application range. Accurate numerical models of electrical
stimulation devices can pave the way for effective therapies in cartilage
regeneration. To this end, the dielectric properties of the electrically stimulated
tissue have to be known. However, knowledge of the dielectric properties is
scarce. Electric field-based methods such as impedance spectroscopy enable
determining the dielectric properties of tissue samples. To develop a detailed
understanding of the interaction of the employed electric fields and the tissue,
fine-grained numerical models based on tissue-specific 3D geometries are
considered. A crucial ingredient in this approach is the automated generation
of numerical models from biomedical images. In this work, we explore classical
and artificial intelligencemethods for volumetric image segmentation to generate
model geometries. We find that deep learning, in particular the StarDist algorithm,
permits fast and automatic model geometry and discretisation generation once a
sufficient amount of training data is available. Our results suggest that already a
small number of 3D images (23 images) is sufficient to achieve 80% accuracy on
the test data. The proposed method enables the creation of high-quality meshes
without the need for computer-aided design geometry post-processing.
Particularly, the computational time for the geometrical model creation was
reduced by half. Uncertainty quantification as well as a direct comparison
between the deep learning and the classical approach reveal that the
numerical results mainly depend on the cell volume. This result motivates
further research into impedance sensors for tissue characterisation. The
presented approach can significantly improve the accuracy and computational
speed of image-based models of electrical stimulation for tissue engineering
applications.
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1 Introduction

Articular cartilage, also known as hyaline cartilage, is a
heterogeneous and hierarchical arrangement of an avascular
tissue that covers opposing skeletal ends in diarthrodial joints
(Cohen et al., 1998; Fox et al., 2009). It is composed of
chondrocytes and their surrounding pericellular matrix (PCM)
enclosed in an extracellular matrix (ECM) (Jahr et al., 2015). The
chondrocytes are accountable for synthesising and maintaining the
ECM, which is made of collagen networks, charged proteoglycan
gels, and other proteins. The chondrocytes also release substances
that contribute to the flexibility and strength of cartilage. Three
distinct zones of articular cartilage can be distinguished based on
different matrix compositions and cellular characteristics, namely,
the superficial (top), transitional (middle), and radial (deep) zones
(Hunziker et al., 2002; Martel-Pelletier et al., 2008; Fox et al., 2009).

Upon progression of osteoarthritis, which is a severely
detrimental condition caused by the degeneration of cartilage, the
composition and structure of the tissue are altered (Maldonado and
Nam, 2013; Chen et al., 2017). However, human cartilage is nearly
incapable of self-healing, meaning injuries tend to worsen with time
(Keeney et al., 2011). As a result, osteoarthritis has been a significant
contributor to the global burden of disease (Nelson, 2018). Electrical
stimuli are being studied as a potential means of enhancing
proliferation, differentiation, and cell activity in cartilaginous
tissue regeneration (Brighton et al., 2008; Vaca-González et al.,
2017; Krueger et al., 2021). Despite experimental progress, a deep
understanding of the effect of electrical stimulation on cartilage is
still lacking. The lack of understanding hampers patient-specific
tissue engineering and regenerative medicine approaches for the
treatment of osteoarthritis. In this regard, fine-grained numerical
simulations provide insight into the interaction between cells and
electric fields. The induced cellular transmembrane potential as a
measure of the stimulation dosage can be estimated (Zimmermann
et al., 2022a). Moreover, the ambiguity of the dielectric properties of
biological tissue in general and cartilage in particular can be resolved
(Zimmermann and van Rienen, 2021; Zimmermann et al., 2022b).
In turn, the fine-grained numerical models including the cellular
scale can be used to calibrate coarser volume conductor models at
the tissue scale.

Fine-grained models have to capture the cellular organisation,
cell distributions and their anatomical representation in the tissue.
Previously, confocal fluorescence microscopy images have been used
to create tissue-specific geometries and meshes (Bennetts et al.,
2014). In this workflow, the geometry and mesh generation has been
automated and made available as open-source software.
Nevertheless, the approach described by Bennetts et al. (2014)
requires segmented images and cells that can be described by
ellipsoids. A manual or semi-automated image segmentation
becomes prohibitively expensive with a growing sample size.
Furthermore, the description of cells by ellipsoids is limited and
might not always be justified. Thus, we explore how the recent
developments of artificial intelligence for image segmentation can be
exploited to automate the modelling approach. The goal is to
generate tissue-specific models starting from the original
fluorescence microscopy images with minimal user involvement.

The segmentation of 3D cellular images is highly challenging
(Weigert et al., 2020; Hollandi et al., 2022; Xu et al., 2022). Thanks to

machine learning and artificial intelligence, numerous algorithms
have emerged, offering automated cell image segmentation
solutions. Conventional machine learning algorithms, such as
random forest, support vector machine and decision tree, have
been made available in well-established open-source platforms for
bioimage analysis problems (Arganda-Carreras et al., 2017; McQuin
et al., 2018; Berg et al., 2019; Caicedo et al., 2019). They require
manual good feature extractors such as, for example, intensity,
texture, and shape to segment the images (LeCun et al., 2015). In
recent years, deep learning-based techniques have illustrated
considerable enhancement in outcomes for biomedical images
(LeCun et al., 2015; Tokuoka et al., 2020; Weigert et al., 2020;
Wang et al., 2022). Among them, convolutional neural networks
(CNN) have achieved state-of-the-art performance due to their
capability of automatically extracting image features. Most
notably U-Net (Ronneberger et al., 2015; Çiçek et al., 2016) but
also several other CNN-based models (Valen et al., 2016; He et al.,
2017; Xu et al., 2018) have been proposed for cell segmentation.
Deep learning-based methods can achieve remarkable results in
segmenting cells when trained on a large, well-annotated dataset.
Nonetheless, annotated data are scarce (i.e., images segmented
manually or semi-automatically by experts), especially in 3D
data. Furthermore, cell type and fluorescent stain variations can
significantly impact cell images, rendering an inadequate
performance of deep learning-based segmentation methods
(Khan et al., 2020; Durkee et al., 2021; Minaee et al., 2021; Xu
et al., 2022). As a solution to this challenge, data augmentation,
transfer learning, and active learning have been developed. Transfer
learning has demonstrated promising outcomes in cell segmentation
by using a pre-trained network as a starting point and fine-tuning it
for the specific task (Kraus et al., 2017; Khan et al., 2019; Majurski
et al., 2019; Zhang et al., 2020). In active learning, high-value
training samples are chosen from unlabeled data for annotation,
as labelled data do not contribute equally to learning meaningful
features (Lou et al., 2014; Smith and Horvath, 2014; Carse and
McKenna, 2019). Still, low signal-to-noise ratios and dense packing
of cells in fluorescence microscopy datasets pose a challenge to cell
instance segmentation, locating individual cells and labelling them
with different pixels in volumetric images. Currently, popular
methods can be divided into anchor-based (Johnson, 2018; Tsai
et al., 2019; Hollandi et al., 2020) and region-based methods (Kainz
et al., 2015; Bai and Urtasun, 2017; Song et al., 2017). Another
approach is using a star-convex polygon representation for cell
instances (Weigert et al., 2020), or utilising a vector-field label
(Stringer et al., 2020). However, algorithms often lack verification
outside of their customised settings. Furthermore, limited
programming skills and specific hardware requirements have
hindered the deployment of deep learning techniques in practical
applications. Therefore, several model architectures and pre-trained
models have been made available in user-friendly imaging software
such as ImageJ (Berg et al., 2019; Stringer et al., 2020; Gómez-de
Mariscal et al., 2021) or as cloud-based open-source tools (Lösel
et al., 2020; von Chamier et al., 2021). Ideally, this enables users to
make predictions on new data without extensive training, hence
reducing the need for a large training dataset. Alternatively, the users
can train a preconfigured model and fine-tune it using specific data
leveraging free cloud GPUs, which reduces hardware requirements
on the user side. With the development of new software tools using
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artificial intelligence, the segmentation of fluorescence microscopy
images has made significant progress.

In this work, we explore the applicability of machine learning
and artificial intelligence approaches for a fast and reliable model
generation of cartilage-like tissue samples from biomedical images.
First, we compare classical, machine learning and deep learning
approaches for the 3D segmentation of bovine cartilage samples. We
benchmark our results against previous results that were obtained by
manual segmentation. Subsequently, the impedance and dielectric
properties are estimated by finite element simulations using fine-
grained models derived from the segmented images. The simulation
results serve as another means to compare between simplified
ellipsoidal cells and realistic geometries. The effect of
uncertainties of the segmentation approach is probed by
uncertainty quantification (UQ) and sensitivity analysis (SA). In
addition, different samples are considered to elucidate the impact of
different tissue volumes, cell distributions, and cell orientations on
the computed dielectric properties. Eventually, we discuss how
impedance measurements, together with accelerated image
segmentation, can contribute to the advancement of biosensor
applications in the diagnosis of osteoarthritis. The combination
of the biosensor with an electrical stimulation unit has the
potential to pave the way for a targeted and personalised
treatment of osteoarthritis.

2 Materials and methods

2.1 Model generation workflow

Confocal microscope images of bovine chondrocytes were
employed to generate the geometries and finite element meshes.
We used 27 original 16-bit grayscale images of the healthy control
samples, obtained from the previous research conducted by Lv et al.
(2019). These images have a resolution of 2048 × 2048 pixels per
slice with a stack size varied between samples. The voxel size is
0.1099 × 0.1099 × 1 µm. The bovine cartilage explants were dyed
with a red fluorescent cell tracker (Red CMTPX Dye, Thermo

Fisher), cultured in regular medium for four days prior to
imaging, and imaged with a Zeiss LSM510 microscope. The
benchmark for cell volume estimation in this study was based on
the manually estimated cell volume from the previous study, with a
detailed procedure provided in the Supplementary Materials.

2.1.1 Advanced classical image segmentation
approach

The classical automated creation of tissue-specific meshes
involves three steps (see Figure 1 and compare (Bennetts et al.,
2014)): 1) image segmentation and ellipsoid fitting, 2) defining
geometric input files, and 3) generating geometry and mesh.

The geometry and distribution of individual cells can be
determined directly from the processed images of specimen-
specific tissues. To obtain a geometric description of the cells, we
fitted ellipsoids to a contiguous set of voxels associated with each cell
using ImageJ v.1.53f51 (Schneider et al., 2012)1. Eventually, we
obtained the cells’ location, radii, and orientation in the tissue.
Anisotropic voxel sizes in the 3D images exacerbated the separation
of adjacent cells in the z-direction. Therefore, we have resampled the
3D images to obtain image stacks with isotropic voxels. In addition,
various filters were employed to reduce noise in the image, enhance
contrast, and remove unevenly illuminated backgrounds while
preserving low-intensity fine detail. Subsequently, for the sake of
reproducibility, an auto-threshold technique was utilised to segment
images into cell interior and exterior instead of manually tweaking
them. Subsequently, gigantic artifactual objects with an area
surpassing 300 μm2 were removed from the image slice.
Miniature noises and artifacts cannot be filtered out based on
this criterion because parts of the cells could be excluded from
individual image slices. As an alternative, a volume filter from
BoneJ2 v.7.0.13 (Domander et al., 2021) was employed to remove
various tiny noises with a volume of less than 200 µm3. Afterwards,
holes were filled and touching cells were separated by the Distance

FIGURE 1
The automation of creating tissue-specific meshes involves three primary stages, utilising advanced classical and deep learning-based
segmentation approaches.

1 https://imagej.net/software/fiji/
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Transform Watershed algorithm (Legland et al., 2016). Lastly, the
cell shape was assumed to be ellipsoidal and the geometric
description of the cells was obtained via 3D ellipsoid fitting
(Ollion et al., 2013). The whole procedure was wrapped into an
ImageJ script to batch process all images.

To define geometric input files, we utilised a format consistent
with previous research to store the characteristic dimensions of the
ECM and ellipsoids (Bennetts et al., 2014). Due to the fact that each
image was captured for only one particular cartilage zone, a
geometrical model incorporating multiple cartilage zones can be
constructed.

Numerical models such as the finite element method (FEM)
require a discretised geometry. For that, we employed the mesh
generator Netgen (Schöberl, 1997) to automatically construct the
geometry. From the geometrical parameter in the input text file, a
solid model is assembled using the Open Cascade Technology
(OCCT)2 geometry kernel, provided in the Netgen Python library.
Boolean unions of touching objects were implemented to obtain a
single cell volume. We meshed the cellular geometries using a pre-
determined mesh hypothesis. The meshes were created in such a
manner that their surface and volume error were less than 1% with
regard to the cell surface area and volume.

2.1.2 Artificial intelligence approaches for 3D cell
segmentation

In this work, we suggest the following approach to build a
numerical model in an automated manner (see Figure 1): 1) 3D cell
segmentation using an artificial intelligence approach on the original
images, 2) geometry creation directly from the segmented image
using the Standard Triangle Language (STL), 3) conversion to a
computer-aided design (CAD) model and meshing.

Before finding a suitable approach, we compared various
methods, namely, the Trainable Weka Segmentation (TWS)
method (Arganda-Carreras et al., 2017), DeepImageJ (Gómez-de
Mariscal et al., 2021), Biomedisa (Lösel et al., 2020) and
ZeroCostDL4Mic (von Chamier et al., 2021). Unfortunately, we
could not achieve satisfactory results using these methods. A
detailed description of the procedure that we followed for each
approach is reported in the Supplementary Material.

We chose Stardist because it was developed with a focus on blob-
shaped cells in a crowded environment (Weigert et al., 2020).
StarDist uses a slightly modified variant of 3D U-Net as a neural
network backbone to predict the radial distances (star-convex
polyhedron representation) and object probabilities (indication of
how likely a pixel is part of an object). There are only a few
hyperparameters in StarDist to be tuned. We trained the model
on three different platforms to assess hardware configuration
requirements for deep learning model training. A workstation
with Intel Core i7-10700 (64 GB RAM) without GPU support,
and the post-processing node of the HAUMEA HPC cluster at
the University of Rostock with a GeForce179 RTX 2080 Ti GPU
(11 GB VRAM) and an Intel Xeon Gold 6234 CPU (8 cores,
16 threads) with 1.5 TB RAM were utilised for training the deep
learning model.

Because the model input is the original image, no pre-processing
step is required. We used the fitted-ellipsoid images as ground truth.
These images were generated by fitting ellipsoids to the voxels of the
cells using the 3D ellipsoid fitting plugin in ImageJ. This process was
performed after applying the Distance transform watershed. The
fitted ellipsoid images are represented as 16-bit images, where each
ellipsoid is assigned a unique voxel intensity value. These intensity
values serve to distinguish individual cells within the image. An
example of a slice in a training pair can be seen in Supplementary
Figure S10. To increase the diversity of the training data and
improve the models’ performance, we applied a basic data
augmentation comprising a lateral flip, rotation, and random
intensity scaling. We randomly selected 23 images for training/
validation and four images for testing the deep learning model. The
test images were labelled according to their source, sample number
and cartilage zone, such as animal 1 sample 1 top zone (A1S1),
animal 2 sample 1 top zone (A2S1), animal 4 sample 1 deep zone
(A4S1) and animal 5 sample 2 middle zone (A5S2). The testing data
set includes one good-quality image (A1S1), two noisy images
(A2S1 and A5S2) and one very noisy image (A4S1). As a
precaution against memory issues, the training/validation dataset
has been cropped into 92 equal XY-size images of 512 × 512 pixels
(78 for training and 14 for validating). In total, we have 6 GB of data.

To assess the model performance, we used the accuracy estimate
introduced by Weigert et al. (2020) as

accuracy τ( ) � TP
TP + FN + FP

(1)

where τ is the overlap threshold, true positives TP are the number of
correct predictions, unmatched predicted instances are FP false
positives, and unmatched groundtruth instances are identified as
FN false negatives. A predicted object Ipred and ground-truth object
Igt are considered as one correct prediction if they have an
intersection over union (IoU) that fulfils

IoU � Ipred ∩ Igt
Ipred ∪ Igt

≥ τ . (2)

We also report precision (see Eq. 3), recall (see Eq. 4) and F1 −
score, also known as the Dice score (see Eq. 5). They are commonly
employed in practice to access the model performance (Laine et al.,
2021). Precision measures the proportion of predicted voxels in the
segmentation results that match the ground truth voxels. Over-
segmentation results in lower precision scores. On the other hand,
recall represents the proportion of predicted voxels in the ground
truth that were correctly identified. Low recall scores are caused by
under-segmentation. The F1—score, which combines precision and
recall, provides an overall assessment of segmentation performance.
An increase in F1, indicates better segmentation performance, with a
value closer to 1 indicating more accurate and precise segmentation.

precision � TP
TP + FP

(3)

recall � TP
TP + FN

(4)

F1 � 2 ×
precision × recall
precision + recall

(5)

Apart from building the model from scratch, we also employed
transfer learning techniques with the StarDistmodel. Our approach2 https://dev.opencascade.org/
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involved retraining the pre-trained StarDist model from Rasse et al.
(2020),3 with our specific data. The pre-trained model had been
previously trained on an Arabidopsis thaliana lateral root nuclei
dataset (Wolny et al., 2020). Furthermore, for comparison, we
considered ilastik (Berg et al., 2019) and Cellpose3D (Eschweiler
et al., 2022). A comprehensive description of the methodology
employed in implementing ilastik and Cellpose3D can be found
in the Supplementary Material.

For the geometry creation, we generated the STL mesh of the
cells directly from the deep learning predicted images rather than
fitting the ellipsoid to derive the characteristic dimensions of the
cells. scikit-image4 was leveraged to accomplish this task using the
marching cubes algorithm (Lewiner et al., 2003). To improve the
STL mesh quality, an original surface representation was remeshed
and smoothened employing isotropic explicit remeshing (Peercy,
1993) and Taubin smoothing (Taubin, 1995) available in
PyMeshLab (Muntoni and Cignoni, 2021). A simplification of the
resulting mesh can then be achieved using the Quadric Edge
Collapse Decimation technique (Garland and Heckbert, 1997).
Subsequently, the simplified and smoothed STL meshes were
converted to CAD models using FreeCAD5. During this step, the
common parts of the cell membrane between two intersecting cells
are removed by the conversion algorithm, i.e., the cell cytoplasms are
not separated by a membrane. The CAD geometries were, thereafter,
utilised to generate quality tetrahedral volume meshes in Netgen.

2.2 Numerical modelling

Many therapeutic procedures associated with the electrical
stimulation of biological samples involve slow variations in
electromagnetic fields (van Rienen et al., 2005). Under the
assumption that magnetic fields and eddy currents are negligible,
the electro-quasistatic (EQS) potential ϕ can be obtained by solving

∇ · σ + jωε( )∇ϕ[ ] � 0 , (6)
where σ is the conductivity, ε = εrε0 is the permittivity with ε0 =
8.854 × 10-12 F m−1, and ω is the angular frequency. We solved
Equation (6) by the finite element method (FEM) with second-
order curved elements in NGSolve (Schöberl, 2014). As the cell
membrane is very thin compared to the remaining components
of the geometry, we used a thin layer approximation to describe it
with a thickness of 7 nm (Pucihar et al., 2006; Zimmermann,
2022). For the dielectric properties of the cell’s components, a
subscript m is a cell (plasma) membrane, cyt is a cytoplasm and
buf is the cell culture medium. We selected σm = 8.7 × 10−6 S m−1,
σcyt = 0.48 Sm−1, σbuf = 1 Sm−1, εmr � 5.8, εcytr � 60 and εbufr � 80
(Ermolina et al., 2000; Zimmermann, 2022). A voltage drop of
1 V was imposed across the simulation domain. Frequencies from
1 kHz to 1 THz with ten logarithmically spaced points per decade
were considered. The Conjugate Orthogonal Conjugate Gradient
(COCG) solver with a Jacobi preconditioner was used to solve the

arising linear system of equations. The impedance Z of the
considered samples was computed from the solution of
Equation (6) as described in (Zimmermann et al., 2021). The
dielectric properties were estimated from the impedance for a
known electrode geometry (Zimmermann and van Rienen, 2021)
by employing the open-source package ImpedanceFitter
(Zimmermann and Thiele, 2021). All simulations were carried
out on the high-performance computing (HPC) cluster
HAUMEA of the University of Rostock (each computing node
equipped with 2 Intel Xeon Gold 6,248 CPUs with in total
40 cores and 192 GB RAM). Unless otherwise stated, we used
the message passing interface (MPI) to parallelise the simulations
across multiple nodes. The interested reader can find more details
elsewhere (Zimmermann, 2022).

2.3 Uncertainty quantification

We addressed potential inaccuracies of the deep learning
prediction by Uncertainty Quantification (UQ) techniques. We
considered two cases.

In case 1, an error in the cell’s location, volume, or
orientation was covered. This case primarily aims to
determine which error from the geometrical variation above
significantly impacts the numerically computed impedance and
dielectric properties. For that, we used a geometry constructed
from one cell exported from the CAD model derived from the
deep learning-predicted image. To examine the mutual cell
interaction in the first UQ approach, the cell was placed in
the centre of a square box and could move in the xyz-direction,
while its copy was fixed at the top right of the box. The box
volume was chosen in such a way that the volume ratio is similar
to the value of the original volumetric images. The fixed cell’s
position was chosen so that it could not intersect with the
movable cell. An illustration of different cell positions, volumes
and angles can be seen in Supplementary Figure S11.

In case 2, uncertainties of the cell geometry were not
considered but the influence of an uncertain membrane
thickness and uncertain dielectric properties were probed.
Here, we used the deep-learning-based geometry of A4S1 to
test the approach on a realistic geometry.

All potential error sources and assumed hypotheses in the UQ
analysis are summarised in Supplementary Table S3. To keep the
computational amount reasonably small, we employed
polynomial chaos expansion (PCE), being much more efficient
than the Monte Carlo approach (Tennøe et al., 2018). For
example, case 1 with five uncertain parameters required
254 FEM model evaluations with the PCE method while case
2 required 662 model evaluations. We used a modified version6 of
Uncertainpy (Tennøe et al., 2018). The expansion coefficients
were estimated based on a point collocation method with the
polynomial order of four as suggested in (Eck et al., 2015). To
obtain the 5th and 95th percentile, 104 samples were drawn from
the PCE surrogate model.

3 https://github.com/trasse/model_zoo

4 https://scikit-image.org/

5 https://www.freecadweb.org/ 6 https://github.com/j-zimmermann/uncertainpy
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3 Results

3.1 Image segmentation and mesh
generation

3.1.1 Advanced classical segmentation approach
Using 27 images from different cartilage zones, the classical

segmentation approach together with the ellipsoidal fitting
yielded an average cell volume of 2,157 ± 957 µm3. This cell
volume is consistent with the reported value of 2,270 ± 590 µm3

by Lv et al. (2019), which we used as a benchmark. It indicates
that the segmentation process is reliable. Furthermore, the
obtained geometric model comprising the fitted ellipsoids
resembled the original microscope image very well (see
example in Figure 2).

However, some of the processed geometries could not be
meshed. We identified small voids between intersecting or
touching cells as the culprit. The error could be fixed by
adding small spheres to cover the void. For that, an initial
intersection check was performed on all objects and then an
indexed list of the touching objects was created. The indices were
mapped to a graph employing NetworkX (Hagberg et al., 2008)7.
The nodes corresponding to intersecting objects were connected.
In this way, cycles (loops) within the graph could be detected.

Whenever a cycle in the graph is detected, the common volumes
between the individual cells are computed and fused. In the case
of a void, the fused common volumes do not form one single
solid. The located void spaces were filled with a sphere.

3.1.2 Deep learning-based 3D cell segmentation
approach

The training of StarDist on our workstation without GPU
support could not finish due to memory issues. Still, it succeeded
on the HPC post-processing node after around five hours for
400 epochs when the loss value had converged. Subsequently, the
trained deep learning model was validated with test images of
varying quality. For that, we chose a good-quality image, two
noisy images, and one highly noisy image. The predictions of the
deep learning model, which was trained on our data, are shown in
Figures 3, 4. The results suggest that the deep learning model
performed well not only on high-quality images but also on noisy
and highly noisy images. The precision, recall and F1 score with a
recommended IoU threshold τ of 0.5 on the validation and test
data, given in Supplementary Table S2, indicated that no over- or
under-segmentation could be observed as those performance
metrics are larger than 0.7. The evaluation metrics at different
IoU threshold are provided in Supplementary Figure S4, S5.
Moreover, the model achieved a test accuracy of
approximately 80%, while the validation accuracy was around
60%. This result is in contrast to the general expectation that the
performance metrics of the validation should be higher than
those values from test data. We believe that our result can be

FIGURE 2
3D view of the deep zone from animal 4 sample 1. (A) From top left to top right: the original image, the pre-processing image, the fitted ellipsoid, and
themesh based on the advanced classical segmentation approach. Bottom left and bottom right: the deep learning prediction and its mesh, respectively.
Using the deep learning-based approach, one can obtain the segmented image without any pre-processing steps. (B) The zoomed-in image of themesh
from fitted ellipsoid (left) and the deep learning predicted image (right). As being constructed from several triangles of the STL geometry, the deep
learning mesh was not smooth in contrast to the ellipsoid mesh. Most of the cells can be predicted, however there are some volume and position errors.
The unit of the specified lengths is µm.

7 https://networkx.org/
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FIGURE 3
The original images are shown from top left to top right: good-quality image, two noisy images, and a highly noisy image. The corresponding deep
learning predictions of the original image are shown from bottom left to right. The length unit in the images is µm. The deep learningmodel demonstrated
good performance not only on high-quality images but also on noisy images. As a 3D visualisation of the highly noisy images is difficult, different slices
from the original image and its corresponding deep learning prediction are shown in Figure 4.

FIGURE 4
From top left to top right: The 2D view of slice 20, 37 and 70 from the original image of the highly noisy image (see Figure 3). From bottom left to
right: the corresponding deep learning predictions using StarDist of the above slices from the original image. The deep learning model evidently
demonstrated good performance on even highly noisy images.
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explained by the data quality. In the cropped images, which we
used for validation, several objects touched the image boundary.
StarDist cannot detect objects in contact with the boundary of the
images well, which could explain the relatively low validation
accuracy. In practice, the deep learning model achieved a good
prediction despite the relatively low validation accuracy.

To underline this point, we considered the total number of cells
and the cell volume as additional model evaluation metrics. The
predicted cell volumes did not deviate significantly from those
obtained from the classical ellipsoid-fitting approach (see Table 1
for a comparison of the obtained volume ratios). Nonetheless, the
number of cells counted using the deep learning method was 9.5%
lower than in the classical approach. Moreover, a visual comparison
of expected output versus deep learning prediction (refer to
Supplementary Figure S6) also shows that most of the cells can
be detected but some of them have slightly smaller volume than the
cell in the ground truth. Using four test images, the classical
approach detected 748 cells with an average volume of 1,714 ±
1,180 μm3, while the deep learning method identified 683 cells with
an average volume of 1,601 ± 620 µm3. It is worth noting that the
average cell volume is smaller than the reported value for all samples
due to the predominant presence of cells from the top zone in the

test image. Typically, chondrocytes in the top zone have the smallest
volume compared to cells in other zones.

The ilastik model predicted 1,050 cells with an average volume
of 1,487 ± 1,343 μm3, resulting in a 28% increase in the number of
cells compared to the classical approach. As can be observed from
Figure 5, utilising the ilastik model resulted in the detection of
certain cell parts as separate objects, leading to an increased number
of cells and smaller average cell volume. The StarDist prediction
demonstrated better concordance with the classical approach, as
evidenced by a smaller discrepancy in both the number of cells
detected and their average volume. Moreover, due to the rugged
shapes of the cells segmented using ilastik, it is necessary to apply
post-processing techniques such as hole-filling, dilation, and erosion
to obtain smooth and complete cell borders before converting them
into STL geometry. Hence, StarDist is the method of choice in our
specific case.

With CellPose3D, all four predicted images showed only a
black background instead of cells (see Supplementary Figure S2).
Due to the significant increase in training and prediction times
compared to StarDist (approximately five times for training and
eight times for prediction), we did not conduct further
investigation into the algorithm failure in our case. It is worth

TABLE 1 The volume ratio of different sample geometries obtained from deep learning and the classical fitted ellipsoid approach. The deep learning geometry is
the CAD model converted from the simplified and smoothened STL geometry. The number of faces for both the original STL geometry and its simplified and
smoothened version also given.

Volume ratio/%

Sample Initial STL faces Simplified and smoothed STL faces Deep learning geometry Fitted ellipsoid geometry

A1S1 4,967,008 42,960 4.3 4.8

A2S1 2,785,728 25,304 3.0 3.2

A4S1 2,422,692 19,848 2.9 3.6

A5S2 1,411,760 12,590 2.1 2.8

FIGURE 5
2D view of the middle slice from a noisy image. From left to right: the original image, the result of the ilastik segmentation and the result of StarDist.
Using the ilastikmodel, some parts belonging to an individual cell were detected as different objects (indicated with the red ellipses), leading tomore cells
and a smaller average cell volume. Furthermore, it is required to perform post-processing such as additional filling holes, dilation and erosion tomake the
cell boundary complete and smoother before converting to STL geometry.
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noting that StarDist, unlike CellPose3D, does not require a data
preparation step and uses the original format of the images as
input. StarDist appears to be a more suitable algorithm for our
specific application.

In order to better assess the performance of different
segmentation approaches, we analyzed the distribution of cell
volumes (Supplementary Figure S3). A few artifacts having a
volume greater than 5,000 µm3 were identified as cells by the
advanced classical approach. These artifacts shared the same
pixel intensity as cells and could not be separated by means of
the Distance Transform Watershed algorithms. Consequently, based
on their fitted ellipsoid volume, these artifacts were excluded from
the final geometry during the defining geometry input step. On the
other hand, when utilising StarDist, all cell volumes fell within a
reasonable range, specifically smaller than 4,000 µm3. It appears that
StarDist can avoid wrong predictions of objects that deviate
significantly in size from the training data. However, this
characteristic may also be viewed as a disadvantage, because it
necessitates ensuring that new images have a similar pixel size to
the training images. Lastly, as previously mentioned, the usage of
ilastik resulted in the detection of certain cell components as distinct
objects. Hence, this led to an increased count of cells and a smaller
average cell volume.

Regarding the model configuration of StarDist, we followed the
advise by the developer. The training patch size was set to (16, 512,
512) to guarantee that it is smaller or equal to the size of the smallest
annotated training image. Additionally, the grid parameter of (1,4,4)
was used to specify the maximal size of well-segmented objects based
on the neural network’s receptive field. The training batch size could
not be set greater than one due to a lack of memory. A flexible
parameter in the fitting procedure is the number of rays. We found
that an adequately accurate reconstruction of the 3D cell in ground-
truth images can be acquired with 96 rays. The evaluation metrics of
the model did not improve when the number of rays was increased
to 128. An even higher number of rays led to increased memory
consumption that was beyond the capabilities of our systems.
Moreover, we tuned the learning rate in conjunction with
different model depths. The detailed results are provided in
Supplementary Table S1. Based on our analysis, increasing the
model depth to four resulted in memory issues. Additionally,
when using a learning rate of 0.1 and 0.01, the model did not
show any improvement as the loss fluctuated and remained
relatively constant (refer to Supplementary Figure S7, S8). We
observed that the model achieved the best performance with a
learning rate of 0.0003 and a U-Net depth of two. As can be
seen from Supplementary Table S1, reducing the learning rate to
0.0001 gained 1% in validation accuracy, but the training accuracy
was reduced by 3%.Moreover, the model trained with a learning rate
of 0.0003 achieved a lower training loss (0.5042) compared to the
model trained with a learning rate of 0.0001 (0.5576) while the
validation loss remained almost the same (0.6744 and 0.6713).
Therefore, the learning rate of 0.0003 performed better in terms
of training and is the value of choice. Our selection was further
confirmed by the testing accuracy: 80% with the learning rate of
0.0003% and 77% with the learning rate of 0.0001.

By initialising the model with pre-trained weights from the
StarDist model Rasse et al. (2020) along with the optimal
hyperparameters mentioned earlier, all the accuracies of the

models were reduced. Specifically, the training, validation, and
test accuracies were approximately 2%, 3%, and 4% lower than
the values when training the model from scratch. This decline in
performance can be attributed to the significant influence of initial
weights on the convergence of neural networks. Ill-suited weight
initialisation might hinder the model’s ability to adapt and learn
effectively from the new dataset (Glorot and Bengio, 2010; Sutskever
et al., 2013).

We chose fitted ellipsoid images as the ground truth data because
they were in good agreement with the manual segmentation (see
Supplementary Figure S9) and StarDist is specialised for objects with
blob-like characteristics. Alternatively, we used the images after
applying the auto-threshold (see an example in Supplementary
Figure S1) as ground truth. However, they produced poor
predictions because the cells could have holes, rugged shapes or
were incomplete close to the image boundary because several cells
were not dyed completely. The training in StarDist involves fitting the
ground-truth labels with star-convex polyhedra. Eventually, we
concluded that the deep learning-based segmentation using StarDist
yielded sufficiently good results to prepare geometries for the FEM
simulations. Strikingly, the deep learning prediction using the trained
model took less than three minutes on a standard workstation while the
advanced classical technique, including the pre-processing and
ellipsoidal fitting, took approximately 15 minutes to process one
image. By utilising the HAUMEA HPC cluster’s post-processing
node, the prediction time for the deep learning method was reduced
to less than one minute, whereas the classical method required
seven minutes to process one image.

3.1.3 Generating FEMmesh based on deep learning
predictions

The STL geometries generated from deep-learning-predicted
images maintained the total volume and surface area with errors of
less than 0.1% (Table 2). However, simplification is necessary to
convert the generated STL meshes into CAD models. Table 1
provides the number of faces for the original STL geometry, as
well as its simplified and smoothened version. The initial STL
geometries were remeshed to generate an isotropic mesh. This
process maintains the original volume and surface area. To
ensure successful tetrahedral meshing, the obtained meshes were
subjected to smoothening and subsequently simplified. Smoothing
primarily contributed to a reduction in the surface area, while
simplification was mainly responsible for a decrease in volume.
As shown in Table 2, the final CAD models’ total cell area and
volume decreased by approximately 15% and 5% with respect to
those values from the deep learning predicted images. Smoothening
the stepped structure of the STL geometry and the shape edges at the
top and bottom of the cells due to the reconstruction of the marching
cube algorithm from 3D stack images led to a large surface
reduction. Nonetheless, the smoothening and simplification steps
are inevitable to achieve FEM meshes.

We tested three different smoothing techniques in PyMeshLab,
including Laplacian smoothing (surface preserving), Taubin smoothing,
and two steps smoothing that included normal smoothing and vertex
reposition. Among these techniques, the Taubin algorithmwas themost
suitable for preserving the cell volume. Crucially, it is the only technique
that allows for successful FEM meshing. Moreover, two simplification
methods available in PyMeshLab, edge collapse for marching cube
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meshes and quadric edge collapse decimation, were evaluated. The latter
was found to be more effective in preserving the original surface area
and volume of the STL mesh. The smoothened and simplified STL
geometries using various smoothing techniques are illustrated in
Figure 6.

The convergence of FEMmeshes generated from deep-learning-
based geometries was observed as the numerical simulation
produced consistent results (with relative differences less than
0.05% as shown in Supplementary Figure S20) upon increasing
the number of elements in the mesh through the use of smaller mesh
sizes. The time required to convert the original STL generated from
deep learning prediction to a CAD model is approximately five
minutes while creating a CAD model from ellipsoid parameters
derived from the classical segmentation approach takes less than
one minute. Thus, using a deep learning approach on a standard
workstation, creating a CAD model from the original image takes
about eight minutes, whereas using the classical segmentation
approach takes around 16 minutes.

3.2 Numerically estimated dielectric
properties

Numerical models were generated from the four samples that
were used to test the trained deep learning model in the previous

section. The models are named after their source and sample
number and were chosen from different cartilage zones,
i.e., animal 1 sample 1 top zone (A1S1), animal 2 sample 1 top
zone (A2S1), animal 4 sample 1 deep zone (A4S1) and animal
5 sample 2 middle zone (A5S2). For every sample, two models were
generated: one using the deep learning geometry and the other one
using the geometry obtained by ellipsoid fitting.

The computed conductivity and relative permittivity using
different segmentation methods are shown in Figure 7 and in
Table 3. Additionally, Supplementary Figure S19 illustrates the
relative difference in computed dielectric properties for each
sample. All samples reveal a dispersion around 1 MHz, which is
expressed by an increase of the conductivity and an increase of the
permittivity. The dispersion in this frequency range is called β-
dispersion and is a consequence of interfacial polarisation at the cell
membrane (Kuang and Nelson, 1998). A small dispersion can be
observed between 100 MHz and 1 GHz. The permittivity
approaches a fixed value at high frequencies for all samples,
which indicates that the cells do not have an impact in this
frequency region. At frequencies below 1 MHz, differences
between the individual samples but also between the
segmentation methods can be observed. We observed that
irrespective of the selected segmentation method, a higher
volume ratio leads to a larger permittivity and a lower
conductivity. This result is in alignment with analytical equations

TABLE 2 The total cell volume and surface area from deep-learning predicted images, the relative difference in total cell volume and area from the STL geometry
generated from deep learning prediction and the final CAD geometry.

Sample Deep learning predicted image Original STL geometry
Relative difference/%

CAD geometry
Relative difference/%

Volume/µm3 Surface area/µm2 in volume in surface area in volume in surface area

A1S1 462,210 232,446 0.07 0.04 5.94 14.91

A2S1 257,590 129,761 0.07 0.04 4.93 14.41

A4S1 234,963 104,809 0.07 0.04 4.24 15.78

A5S2 128,271 63,716 0.14 0.05 5.25 15.59

FIGURE 6
From left to right: The zoomed-in images of the A5S2 STL geometry generated from the voxel size of the deep learning predicted image with
1,411,760 faces, the simplified geometry employing two steps smoothing, Laplacian smoothing and Taubin smoothing. After smoothing and simplifying,
the STL geometry has 12,590 faces. The Taubin algorithm produced the smoothest cell surface, facilitating FEMmeshing. In the middle panels, the mesh
failure’s culprits are visible: the edges at the top of the cell, which are marked by the red ellipse.
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FIGURE 7
The computed dielectric properties using the deep learning approach (straight line and denoted by DL) and the classical approach (line with
markers). The relative difference between the results obtained by the two approaches is shown in Supplementary Figure S19.

TABLE 3 Relative difference in the computed relative permittivity and conductivity from deep learning mesh and fitted ellipsoid mesh concerning total cell
volume.

Sample Total cell volume/µm3 Maximum relative difference/%

Deep learning geometry Fitted ellipsoid geometry Relative difference/% Relative permittivity Conductivity

A1S1 434,741 487,942 10.9 18.4 0.5

A2S1 244,898 257,139 4.8 19.2 0.1

A4S1 224,994 280,629 19.8 26.4 1.0

A5S2 121,793 160,341 24.0 33.3 0.9

FIGURE 8
The computed impedance of the A2S1 sample using the deep learning approach (dashed line and denoted byDL) and the classical approach (straight
line). The relative difference of the real part of the impedance was around 5%. Note that the relative difference of the imaginary part is not always
computed because it tends to approach zero at lower frequencies. Below 1 MHz, an apparent deviation between the two computed imaginary parts can
be observed.
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describing the dielectric properties of cell suspensions (Asami,
2002). The difference in the volume ratio also explains the
deviations with regard to the segmentation method. While the
relative difference between the results obtained by the two
segmentation methods of the permittivity is approximately
20%–35%, the relative difference in the conductivity is always
below 1%. The reason for this observation lies in the small
variation of the conductivity. The conductivity is dominated by
the conductivity of the extracellular medium but not crucially
influenced by the cells (Zimmermann, 2022). A better indicator
for the comparison of the segmentation methods is the impedance.
At frequencies below 1 MHz, the impedance is mostly real-valued
(see an example in Figure 8). The relative difference of the real part
of the impedance was for all samples about 5%–10% (Supplementary
Figure S16, S17, S18). This is above the measurement resolution of a
high-resolution impedance spectrometer and could thus be in
general measured.

As the focus of this work is on the use of deep learning approaches
for the model generation, we paid special attention to the complexity of
the model generation. The classical segmentation approach has
significant disadvantages regarding the meshing workflow. In
particular, the intersection of objects has to be checked one-by-one,
which is a time-consuming task. For example, checking 500 cells
necessitates 124,750 checks. Moreover, the geometrical representation
of intersecting cells can require edges that are much smaller than the
characteristic size of the model. Together with the occurrence of small
voids between touching cells, the classical segmentation approach can
lead to low-quality mesh elements or even a failure in the meshing
process. The suggested fix by filling the void with spheres requires a
careful choice of the radius and possible manual interaction. A
low-quality mesh usually leads to a slow convergence of the FEM
solver. Furthermore, we experienced problems with generating a
distributed mesh when low-quality elements were present. A
distributed mesh is required for an MPI-parallel run on the HPC
cluster. As the low-quality elements are linked to the cell geometry,
we could not further improve the mesh quality of the A2S1 sample
generated by the classical approach. Consequently, we could not run the
simulation using MPI but had to resort to a shared-memory run on a
single computation node. Hence, computing the dielectric properties on
this mesh took more than five hours for 2,030,984 degrees of freedom
(DOFs). On the other hand, the deep learning-based mesh generation
did not suffer from this drawback as a high-qualitymesh could always be
obtained from the STL mesh describing the cell surfaces. As a result, all
computations could be conducted using MPI, which significantly
reduces the computational time compared to the shared-memory

computation (see details in Table 4). For example, models with a
similar number of DOFs could be solved in a couple of minutes.

3.3 Uncertainty quantification and sensitivity
analysis

We performed a UQ analysis with regard to geometrical
uncertainties (case 1, compare Section 2) in a unit-cell geometry. The
mean conductivity and permittivity of this configuration together with
the 90% prediction interval are shown in Figure 9. The results are shown
together with the first order Sobol indices, which measure the individual
contribution of an uncertain parameter (Tennøe et al., 2018). We
excluded parameters that did not have a Sobol index greater than
0.05 over the entire frequency range. Based on the excluded
parameters, our results reveal that the position of the cell does not
influence the model output. The chosen UQ approach probed a
minimum distance of 4.5 µm between the cells and a maximum
distance of 22.5 µm. Our results suggest that the distance between
the two cells does not impact the computed dielectric properties. For
a tissue similar to cartilage with a small volume fraction, this finding is
expected to hold true. However, the result cannot be generalised to other
tissues with a higher cell density.

The variations in the numerically estimated dielectric properties
can be attributed to variations in the cell volume over a wide
frequency range. The cell orientation, as expressed by the angle
with respect to its original orientation, plays a minor role. It has an
impact around the β-dispersion where the prediction interval is not
significantly widened. In sum, the cell volume is the parameter that
dominantly influences the dielectric properties. Again, the
uncertainty of the conductivity is small (less than 1% of the
mean value) because the cells have a small impact on the overall
conductivity. However, the permittivity changes drastically and the
prediction interval includes a 25% variation of the mean value in the
sub-MHz range. At higher frequencies, the permittivity is not
impacted by the cell geometry.

The second UQ analysis aimed at understanding the influence of
the membrane thickness and the cellular dielectric properties on the
numerical result. An initial analysis showed that the conductivity of
the cartilaginous tissue strongly depends on the changes in the
extracellular conductivity (refer to Supplementary Figure S13, S14).
The permittivity is, however, also influenced by other parameters.
To understand the influence of the cellular parameters in greater
detail, we fixed the dielectric properties of the extracellular medium
that overshadowed the contribution of the other parameters. This

TABLE 4 The number of degrees of freedom (DOFs) and the computational time of different sample geometries obtained from deep learning and the classical fitted
ellipsoid approach.

Sample DOFs Computational time/minute

Deep learning geometry Fitted ellipsoid geometry Deep learning geometry Fitted ellipsoid geometry

A1S1 3,863,123 2,289,160 18.2 8.8

A2S1 3,301,823 2,030,984 8.2 314

A4S1 2,655,629 2,625,668 6.9 7.5

A5S2 1,705,226 748,175 3.5 1.5
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approach is supported by the fact that the extracellular properties
could in principle be inferred from measurements of decellularised
tissue with high accuracy, which would reduce their uncertainty
drastically. The UQ analysis without the extracellular parameters
shows a narrow 90% prediction interval of the computed
conductivity before it widens from the start of the β-dispersion at
about 1 MHz (Figure 10). At high frequencies, it roughly ranges
from 0.96 Sm−1 to 1 Sm−1, which is again a very small deviation
from the mean value. On the other hand, the 90% prediction interval
of the estimated relative permittivity ranges from about 200 to
1,800 before the β-dispersion narrows significantly at high

frequencies. This was to be expected as there was also no
deviation between the different cartilage samples (Figure 7).

The frequency-dependent first-order Sobol indices reveal that
up to 100 kHz, the cartilage conductivity depends on the membrane
conductivity. The corresponding change in the impedance, however,
is very small so it is questionable if this change could be measured
(see Supplementary Figure S15). Around the β-dispersion, the
membrane thickness and the membrane permittivity have the
largest influence. At higher frequencies above 10 MHz, the
cytoplasm conductivity is the sole parameter with a significant
influence on the tissue conductivity. The tissue permittivity is

FIGURE 9
Mean value and 90% prediction interval of the conductivity (left) and the permittivity (right) are demonstrated over a frequency range. The
frequency-dependent first order Sobol indices are presented for parameters with a Sobol index ofmore than 0.05. The assumptions for the UQ analysis of
the geometrical parameter, namely, x, y, z position, volume and cell angle, are given in Supplementary Table S3. Note that the other cellular dielectric
properties were set at a constant.

FIGURE 10
Mean value and 90% prediction interval of the conductivity (left) and the permittivity (right) are demonstrated over a frequency range. The
frequency-dependent first order Sobol indices are presented for parameters with a Sobol index of more than 0.05. We neglected the uncertainty in the
dielectric properties of the ECM and used fixed values. The assumptions for the UQ analysis of the other cellular dielectric parameter and the membrane
thickness are given in Supplementary Table S3. Note that the cell volume, angle and position were set at a constant.
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primarily influenced by the membrane permittivity at low
frequencies and by the cytoplasm permittivity around the β-
dispersion (Figure 10). While the cytoplasm permittivity exhibits
a large Sobol index at high frequencies, the corresponding
uncertainty of the permittivity is negligibly small.

An aspect that we have not covered in detail is the induced
transmembrane potential. It may be used as an indicator for an effect
of the electrical stimulation but its predictive quality is not entirely
clear (Zimmermann et al., 2022a). Here, we computed the
transmembrane potential for the average parameters of the UQ
configuration (Figure 11).

4 Discussion

Osteoarthritis is a growing challenge in an ageing society.
Cartilage tissue engineering is pursued as a possible cure but a
viable treatment recipe is still elusive (Huey et al., 2012). In this
work, we focused on the development of numerical models covering
the interaction of electric fields and cartilage. Electric fields can be
used in two ways with regard to cartilage tissue engineering:
monitoring of the tissue state by assessing the dielectric
properties and electrical stimulation to foster, for example,
chondrogenesis.

The developed automated numerical workflow takes fluorescent
microscopic images as an input and derives detailed tissue-specific
3D geometries. The geometries can be used in FEM simulations to
estimate the dielectric properties of cartilage and also the local
electric field. This is an important step forward to understand the
interaction of electric fields and cartilage. It is in particular
promising that the algorithm yields results for state-of-the-art

fluorescence microscopy images within minutes if proper
computational resources are available.

The first critical step of automated model generation is image
segmentation. First, we established a batch processing of the 3D
images using an established open-source software. This improves on
previous studies that used custom Matlab scripts (Bennetts et al.,
2014). The presented approach performs a number of pre-
processing and cleaning steps before segmenting the image.
Ellipsoids are then fitted to the segmented images. While this
routine can be performed on a standard workstation, its
automation is difficult due to noise or other imaging artefacts.
Furthermore, the original approach proposed by Bennetts et al.
(2014) has not covered the solution of meshing issues caused by
intersecting cells. We found that intersecting cells pose a severe
limitation for the algorithm as the combination of multiple ellipsoids
can lead to irregular, ill-conditioned shapes.

Thus, machine learning and artificial intelligence-based
solutions were tested to avoid the time-consuming pre-processing
steps and directly segment the image. Initially, traditional machine
learning algorithms were tested. It turned out that the performance
of the classifier on noisy images after training is inadequate. Thus,
traditional machine learning did not offer substantial benefits over
the classical approach. A fine tuning of traditional machine learning
could in principle be possible but is time-consuming and possibly
computationally expensive.

Secondly, we investigated pre-trained deep learning models,
i.e., models that were trained on imaging data of other cells and
different dyes, imaging routines, etc. With this approach, we
experienced a problem also referred to as ‘domain shift’ or
‘dataset shift’ problem (Uhlmann et al., 2022). We observed
an underperformance and the generation of artefacts of the

FIGURE 11
Real part of transmembrane potential (TMP) at 1 kHz for the average configuration of UQ (Case 2) given in Supplementary Table S3. In particular,
dm = 7 nm, σm = 0.8 μSm−1, σbuf = 1 Sm−1, σcyt = 0.48 Sm−1, εmr � 5.8, εbufr � 80, εcytr � 60. The geometry was generated from the deep learning prediction
of A4S1, and the applied voltage drop was 1 V.
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pre-trained models as they had to deal with new, unseen data. We
attribute the encountered problem to a lack of pre-trained models
for fluorescence microscopy 3D images in the public domain. To
the best of our knowledge, accessible, high-quality fluorescence
microscopy images are not widely available, and thus the pre-
trained models could not be utilised to segment our images.

Hence, we switched to training from scratch using pre-defined
model architecture and transfer learning, i.e., we trained an existing
model with our own data. We chose deep learning algorithms
because they can achieve state-of-the-art performance in 3D cell
segmentation tasks and often outperform conventional machine
learning algorithms (Caicedo et al., 2019; Prakash et al., 2020). Most
importantly, we used original, unprocessed images directly as inputs,
which eliminates the need for pre-processing as required by the
classical approach. Our observations indicate that learning from
scratch slightly outperforms transfer learning because using all pre-
trained weights as starting points might lead to inappropriate or
suboptimal initialisation of weights. Another way to improve the
performance of transfer learning is to freeze the initial layers of the
pre-trained model and leave only the final layers to be replaced and
trained for the target task. Unfortunately, the StarDist
implementation lacks this functionality at present. We found that
our problem is solved sufficiently well if images segmented by the
classical approach are used as the ground truth. In contrast to
manually segmented images, they feature a well-defined ellipsoidal
cell shape. This choice of the ground truth supports training in
StarDist, which is a software specialised in blob-like cell shapes and
features a minimal number of user-chosen parameters. As a result,
even noisy images could be reliably segmented. However, the total
number of cells was lower than those obtained from the classical
method, resulting in a lower average cell volume. This affected the
predicted impedance and dielectric properties. As the manual
segmentation is biased because it relies on the expertise of the
human who segments the image, the combination of impedance
spectroscopy and fluorescence imaging together with full sample
models can lead to a better reliability of the segmented images.
During the acquisition of z-stacks in 3D fluorescence microscopy,
the images can be stretched in z-direction due to a mismatch in the
refractive index between the immersion medium and the samples
(Diel et al., 2020). The uncorrected elongation along the z-axis can
have an impact on the accurate estimation of the cell volume.
Consequently, this can impact the FEM solutions. Our imaging
data was not corrected and we can thus unfortunately not quantify
the related uncertainty. In future research, the z-correction can be
accomplished by using fluorescent beads with known geometries to
mitigate volumetric measurement errors and minimize the loss of
axial resolution. To address this issue, a practical tool in ImageJ, as
proposed by Diel et al. (2020), can be employed.

In general, the segmentation by the trained deep learning model
is significantly faster than the classical segmentation approach
involving multiple processing steps. A drawback of deep learning
segmentation is the computational requirements. A powerful GPU
and a relatively large amount of memory are required to perform the
training. The training itself also takes a considerable amount of time.
On the other hand, the trained model can then be shipped and
performs its task in a fraction of the required training time.

In a nutshell, we presented two competing approaches that can
be successfully used to segment 3D fluorescence microscopy images

of cartilage reliably in an automated manner. Both approaches were
benchmarked against the average cell volume obtained by manual
segmentation and performed well. If only a small number of images
is available, researchers should use the classical segmentation
approach as it can run on standard workstations and the
increased processing time should not pose a problem. As soon as
more images are available, the deep learning approach should be
chosen. For that, a more powerful computer with a cutting-edge
GPU should be used. About 20 images that are segmented by the
classical approach are sufficient to train StarDist. Alternatively, our
trained model could be tried but could suffer from ‘domain shift’
issues. Given the new data, our trained model can potentially serve
as a valuable starting point to significantly reduce the training time.
The average cell volume and its changes can already serve to detect
joint inflammation or the initiation of osteoarthritis (Dore et al.,
2010; Lv et al., 2019; Rim et al., 2020).

In this work, we are also concerned with an advanced
biophysical model of the interaction between electric fields
and cartilage. To build such a model, it is required to convert
the image into a CAD geometry that is subsequently meshed.
The deep learning-based workflow offers several benefits
because the fast segmentation already leads to a surface mesh.
The produced surface mesh was usually of high quality or could
be fast and reliably optimised. In contrast, the classical approach
required time-consuming post-processing of the CAD geometry
and sometimes led to inferior mesh quality, which hampers
automation. Moreover, a low mesh quality negatively impacts
FEM solvers and leads to slower numerical convergence.
Currently, another challenge is the cells that intersect with
the image boundary due to a limited spatial resolution of the
imaging approach. A possible alternative could be images
obtained with tomography approaches that are capable of
capturing entire cartilage samples (Wieland et al., 2021).
Furthermore, the STL geometry creation step in the new
approach allows for directly generating cell geometry of any
shape from segmented images, eliminating the need for ellipsoid
approximation. In order to convert STL geometry into CAD
models, it is necessary to simplify and smooth the STL geometry.
Despite thorough exploration of various algorithms, it is
inevitable that this process will lead to a reduction in both
the volume and surface area of the cell in the final CAD
models. Smoothing the stair-like structure during surface
reconstruction reduced cell surface area by approximately
15% while preserving cell volume within an acceptable
biological error (about 5%). In future research, it could be
attempted to use the STL geometries directly in Netgen. This
approach would permit higher-order (i.e., curved) surface
meshes.

We used the dielectric properties of the cartilage samples to
compare both segmentation approaches. We could not find
significant differences between the two approaches. Nevertheless,
small deviations could be observed. We could correlate them to
differences in the volume ratio of the geometries derived from the
two segmentation approaches. A UQ analysis revealed that indeed
the cell volume is the most influential parameter. In general, this
finding implies two main conclusions. Firstly, an accurate
segmentation of cellular images is required to reliably compare
measured to predicted impedances. Secondly, it is most likely
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possible to estimate the cell volume from impedance measurements
of cartilage samples. The latter is an important result because
impedance measurements are significantly cheaper and faster
than 3D imaging approaches and do not require dyes, i.e., are
non-invasive. Thus, they could be used to monitor the in-vivo
growth of artificial cartilage tissue.

A first step towards this goal is still the realisation of impedance
spectroscopy experiments together with 3D fluorescence imaging. In
this work, we used a simplistic parallel-plate capacitor geometry to
apply the electric fields. In an experiment, such an electrode
geometry would negatively impact the image acquisition. Instead,
interdigitated electrodes integrated into cell culture wells could be
used (Haas et al., 2010; Wolf et al., 2013). Thanks to the flexibility of
the geometry preparation in Netgen/NGSolve, we expect no
significant challenges in integrating different electrode geometries
according to the experiment into our model. It will be the subject of
future research to develop validated and calibrated electrode models
combined with cell geometries derived from 3D images. Moreover,
the approach will be extended to multicolour images to include not
only the cell membrane. In principle, the cell volume could be scaled
to include, for example, the pericellular matrix and nuclei in the final
geometry. However, intersecting and touching cells found in real
samples prevent in our experiences such an approach without
manual interaction.

In addition to impedance spectroscopy, electrical stimulation for
cartilage repair and regeneration can be studied with our approach.
In future research, the numerical models of electrical stimulation
can be coupled to impedance measurements to enable a so-called
‘digital twin’ (Zimmermann et al., 2021). The then-available
accurate description of the electric fields the cells are exposed to
can be expected to explain, which electrical stimulation protocol
should be used as currently various waveforms, frequencies and
amplitudes are considered (Vaca-González et al., 2017; Krueger
et al., 2021; Zhou et al., 2023). Additionally, more data to improve
the presented workflow will be generated. As the field of automated
image segmentation is moving fast, we expect a growing number of
data sets and improved software. Ultimately, the progress in the field
will lead to more effective and reliable deep learning models for
biomedical applications.

5 Conclusion

Overall, our study provides valuable insights into the
development of an automated FEM mesh generation process
from 3D cell images. The advantages and disadvantages of using
artificial intelligence for volumetric image segmentation from
fluorescence microscopy were emphasised. Employing deep
learning-based mesh generation allows for high-quality meshes
without the requirement for CAD geometry post-processing and
reduces overall computational time. The findings of this study are
significant for researchers and engineers working on large-scale
FEM simulations based on 3D images of cell structures and
biological tissues. With further optimisation and an increased

data size, it can be expected that almost instant processing
(i.e., segmentation and numerical analysis) of the imaging data
can become feasible. This can pave the way for sample-specific
interventions to foster, for example, cartilage tissue engineering
approaches.
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