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The biosensor is an instrument that converts the concentration of biomarkers into
electrical signals for detection. Biosensing technology is non-invasive, lightweight,
automated, and biocompatible in nature. These features have significantly
advanced medical diagnosis, particularly in the diagnosis of mental disorder in
recent years. The traditional method of diagnosing mental disorders is time-
intensive, expensive, and subject to individual interpretation. It involves a
combination of the clinical experience by the psychiatrist and the physical
symptoms and self-reported scales provided by the patient. Biosensors on the
other hand can objectively and continually detect disease states by monitoring
abnormal data in biomarkers. Hence, this paper reviews the application of
biosensors in the detection of mental diseases, and the diagnostic methods are
divided into five sub-themes of biosensors based on vision, EEG signal, EOG signal,
and multi-signal. A prospective application in clinical diagnosis is also discussed.

KEYWORDS

biosensors, mental diseases, eye-tracking, EEG signals, EOG signals, virtual reality,
diagnosis method

1 Introduction

Biosensors are instruments that apply bio-sensing elements to collect information
recorded through specific biological, physical, and chemical changes, which are
converted into measurable signals (Vigneshvar et al., 2016). These properties that can be
detected include changes in pH, gas, mass, electron transport, heat transport, and absorption
and release of specific ions (Velasco-Garcia and Mottram, 2003; Zhang et al., 2021a).
Biosensors have been utilized successfully in many areas, such as biological signal
monitoring, environmental surveying, motion observation, gas analysis, health tracking
(Zhang et al., 2021a; Liu et al., 2021; Zhang et al., 2022), and in the field of medical
applications and healthcare (Guo et al., 2021; Wang et al., 2022). The advancement of
biotechnology and new materials have paved the way for the development of advance
biosensors that aid the detection of mental diseases (Zhang et al., 2021b). Being noninvasive,
low-cost, wearable, sensitive, and dynamic in monitoring, endow the detection technologies
with increasing accuracy, response rate, deformability, and biocompatibility (Guo et al.,
2019; Yang et al., 2019). This makes them of great value for healthcare practitioners in the
treatment of mental diseases.
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Mental diseases are disorders that affect cognition, emotion,
volition, and behaviors (Hyman et al., 2006). Episodes of mental
disease can severely interfere with learning and social skills. Mental
diseases often begin early in life and are often chronic relapsing
processes (Hyman et al., 2006). According to the World Mental
Health Report, about 1 billion people worldwide have mental
diseases (Freeman, 2022). The outbreak of COVID-19 has also
exacerbated this phenomenon (Li et al., 2020). It is difficult for
some patients with mental diseases and chronic diseases to receive
continuous treatment during COVID-19, which may lead to relapse
of mental diseases and exacerbation of negative emotions
(Psychiatry CSo, 2020; Bo et al., 2021). Additionally, symptoms
of depression and anxiety have also increased in children and
adolescents (Racine et al., 2020). Therefore, research related to
mental diseases has received increasing attention. There is a wide
range of mental diseases, including Alzheimer’s disease, depression,
schizophrenia, autism spectrum disorder, and various personality
disorders (Busfield, 2011). The traditional diagnosis of mental
diseases requires multiple physical indicators, combined with self-
rating scales and nursing reports from guardians and psychiatrists
(Möricke et al., 2016; Römhild et al., 2018). Furthermore, the bias of
subjective judgment may lead to misdiagnosis, which affects the
treatment of the diseases (Huang et al., 2017). Therefore, diagnosing
mental disorders around the world is difficult. Compared with
traditional diagnostic techniques, biosensors can quantify the
qualitative expression of the brain by detecting biomarkers, and
avoid cultural and language differences of the subjects (Hidalgo-
Mazzei et al., 2018).

Biomarkers are defined as biological characteristics measurable
in biological media (such as human tissues, cells, or fluids) as
indicators of normal biological processes, pathogenic processes,
or pharmacological responses to therapeutic interventions
(Mayeux, 2004). Mental diseases are often accompanied by the
impairment of some functions, e.g., impaired visual attention
processing, social dysfunction, and restrictive, repetitive behaviors
(Schmidt et al., 2011; Edition FJAPA, 2013). Abnormality of these
biomarkers can be measured by biosensors to distinguish the
presence and absence of disease states (Schmidt et al., 2011),
which provides a more convenient and effective tool for rapid
diagnosis. These bio-sensors utilize cutting-edge technology to
not only collect and compare biological data, such as eye-
tracking data, electroencephalography (EEG), electrooculogram
(EOG), and cognition and behavior in virtual reality (VR), but
also employ machine learning algorithms to extract biometrics for
the more objective results and higher accuracy (Burdea and Coiffet,
2003; Plitt et al., 2015; Ibrahim et al., 2018; Yaneva et al., 2018;
Yamagata et al., 2019; Zhao et al., 2021). The multiple-signal sensors
combined with machine learning were found to be a relatively novel
trend, which offer a more comprehensive understanding of
participant responses. However, the pre-preparation and
collection operations of a single biosensor are already relatively
cumbersome. The popularization of large-scale mental disease
screening and telemedicine requires a more efficient, higher-
precision and wearable multi-signal integrated sensor in the future.

This review summarizes the research trend of biosensors
towards the detection of mental diseases. The review focuses on
five objective quantification methods of the field, namely vision-
based, EEG signal, EOG signal, VR-based, and multiple-signal

sensors. Vision-based sensors detect mental diseases associated
with abnormal visual attention through eye-tracking devices. EEG
and EOG signals can detect mental diseases associated with
abnormal brain and eye signals. In addition, VR-based sensors
offer more possibilities for detecting mental disease associated
with impaired spatial navigation and memory. The use of
multiple-signal sensor can improve diagnosis accuracy and
efficiency. The review also describes detection devices, signal
processing methods, and disease assessment techniques in detail.
The future research directions and application prospects are also
covered in this review.

2 Mental diseases

2.1 AD (Alzheimer’s disease) and MCI (mild
cognitive impairment)

Alzheimer’s disease, whose chief symptoms are memory
impairment, attention deficit, and executive dysfunction, is one of
the most common neurodegenerative diseases worldwide that lead
to dementia (Tschanz et al., 2006; Belleville et al., 2007). According
to the Alzheimer’s Association, more than 10 percent of people over
65 in the United States suffer from this kind of disease, and the
proportion reaches nearly half among people over 85 (Meek et al.,
1998). As the ageing of the population, the prevalence of Alzheimer’s
disease is predicted to increase twice before 2050 (Mattson, 2004).
However, until now, there is still no effective cure for Alzheimer’s
disease, and medicines can relieve the symptoms to some extent
(Dauwels et al., 2010). Mild cognitive impairment (MCI) is the
intermediate stage between the cognitive decline associated with
normal ageing and early AD (Gauthier et al., 2006). Hence, early
detection of MCI is significant in preventing AD. The traditional
diagnostic methods for Alzheimer’s disease need to combine other
techniques, including medicinal history analysis, neurological tests,
blood tests, and psychological tests, which are highly tedious,
subjective, and expensive (Sunderland et al., 2006; Weiner
MJTjon et al., 2009). Currently, more efficient and accurate
diagnostic approaches are badly needed.

2.2 ASD (autism spectrum disorder)

Autism spectrum disorder is a neurodevelopmental disorder
characterized by social communication disorders and repetitive
behaviors (Edition FJAPA, 2013). Autism affects more than
70 million people worldwide, and about 1 in 68 children suffer
from this disorder (Wang et al., 2013). The cause of ASD is still
unknown. According to available scientific evidence from theWorld
Health Organization, many factors can lead to ASD in children,
including abnormal brain development and neural reorganization in
early childhood (Black et al., 2017). O date, the diagnosis of ASD has
typically been based on observation of daily functionality and
behavioral characteristics of patients. The Diagnostic and
Statistical Manual for Autism (DSM-V) provides diagnostic
criteria for referencing clinical symptoms. Other ancillary
assessment tools, including behavioral scale tests, checklists, and
questionnaires, supplement diagnostic results (PEREIRA et al.,
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2007). The standards to diagnose ASD are incredibly complex and
diverse, resulting in dysfunctions with variation among individuals.
Hence, these evaluation methods are not objective due to no reliable
biomarkers. Furthermore, more accurate and objective clinical
detection methods towards ASD are badly needed.

2.3 Depression

Depression is a common mood disorder. The data published by
the World Health Organization showed that more than 300 million
people worldwide suffer from depression (Organization, 2017).
Depression results from various factors, including the interaction
of social, psychological, and biological factors, and thus the causes of
depression are complex. Depression is different from short-lived
sadness in everyday life. The process of depression is recurrent,
including periods with symptomatic episodes and periods of
recovery. During a depressive episode, patients feel a low mood,
anhedonia, and low energy. In the worst cases, depression can even
lead to suicide. The people who experienced depressed moods
almost every day or for at least 2 weeks were diagnosed with
depression according to the DSM-IV classification (Wong and
Licinio, 2001). However, in developing countries, people with
depression are often not detected as early as possible (Chisholm
et al., 2016). To this end, the researchers are trying to identify
biometric markers that could be used to distinguish depression
patients from healthy individuals in primary care. Among the
biometric markers, attention bias has become the optimal marker
and has been applied in various works. Studies of attention bias in
clinical disorders have inferred attention bias by assessing reaction
time. Studies have shown that people with depression focus more on
negative stimuli than positive ones (Klawohn et al., 2020).

2.4 Schizophrenia

Schizophrenia is a multi-attribute chronic disease, resulting in
sensory perception, thinking, emotion, volitional behavior, and
cognitive dysfunction in the brain. These symptoms vary widely
among patients. Existing instruments are not powerful enough to
fully assess the mental states of patients. The traditional detection of
schizophrenia is based on a diagnosis from the psychiatrist and
supplemented by Computed Tomography (CT) diagnosis, Magnetic
Resonance Imageing (MRI) diagnosis, and Positron Emission
Computed Tomography (PET) diagnosis (Andreasen, 1995).
Therefore, detection methods independent of schizophrenic drugs
and the mental states of patients are being explored.

2.5 Sleep disorder

Sleep quality is an essential indicator for assessing human
homeostasis. Sleep disorder is a kind of mental disease associated
with severe medical, psychological, and social obstacles (Silber et al.,
2007). Another widely used method is polysomnographic (PSG),
which uses a variety of electrodes and sensors to record about ten
signals during sleep (Yildirim et al., 2019). This method is complex
and expensive. Therefore, it is necessary to develop a new automated

sleep disorder detection system that can help doctors assess the sleep
stages of patients more efficiently and accurately. When people fall
asleep, their eye movements tend to slow down and their EOG
values tend to be lower (Carskadon and Dement, 2005). The EOG
signals help distinguish between rapid eye movement and non-rapid
eye movement. Due to the significant progress made in object
detection by deep learning technology (LeCun et al., 2015),
various subjective diagnosis methods based on the EOG signals
have been proposed.

2.6 Epilepsy

Epilepsy is a chronic brain disease in which neuronal activity is
abnormally synchronized or excessive, characterized by transient
and recurrent seizures. Frontal lobe epilepsy (TLE) is a standard
focal epilepsy diagnosed by advanced imaging examination and
EEG. Most TLE patients are associated with memory deficit and
attention disorder (Blackwood et al., 1994; Bocquillon et al., 2009).
Traditional diagnosis of epilepsy is based on patient and eyewitness
descriptions and video recordings of seizures. Unfortunately, it is
common for seizures to be misdiagnosed as other disorders, e.g.,
convulsive syncope (Bocquillon et al., 2009). Consequently, there is a
need for an accurate way to discriminate epilepsy.

Vision-based sensors can detect AD, ASD and depression.
Depression and ASD also can be diagnosed by EEG sensors, as
well as epilepsy, schizophrenia, and epilepsy. EOG sensors are
capable of diagnosing schizophrenia and sleep disorders which
are detectable by EEG signal sensors. VR-based sensors can
detect mental diseases including all of the above except sleep
disorders. Multiple-signal sensors can diagnose all of the above
mental diseases.

3 Applications

3.1 Vision-based sensors

Eye-tracking is the process of measuring individual eye
movements and gaze positions to reflect gaze behavior. Usually,
when a person gazes at an object, attention is shifted to a specific
point in order to be able to examine in detail the image occupying
the direction of the gaze center (Kennedy, 2016). As shown in
Figure 1, the prevalently used eye-tracking technologies are table-
mounted and head-mounted video-based eye-trackers (Hutton,
2019; Carter and Luke, 2020). The eye trackers can record forms
of eye movements, including fixations, saccades, and other types
(blinks, smooth pursuits, and vergence) bymeasuring the position of
infrared corneal reflection relative to the pupil (Rayner, 2009; Carter
and Luke, 2020). In the eye-tracking task, participants are required
to gaze at images (i.e., pictures, videos, and web pages) (Zhao et al.,
2021) in order to provide information about the attention allocation
of a person in a visual scene (Ashraf et al., 2018). Multiple attempts
to diagnose mental diseases based on eye-tracking technologies have
shown a bright future in clinical diagnosis.

The selective attention is defined as the ability to screen out
relevant and applicable information (Levinoff et al., 2004). Given
that selective attention, associated with activity in neurotransmitter
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FIGURE 1
(i) The portable video-based eye-tracker (A) The operator (B) The Participant (Hutton, 2019). (iiA) The head-mounted video-based eye-tracker
(Gotardi et al., 2020). (B) The participant wears the eye-tracker (Kapp et al., 2021). (iiiA) The forms of eyemovements in the reading scene (B) The saccades
and fixations in images (Carter and Luke, 2020).
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function, is impaired in the early stages of AD (Perry and Hodges,
1999; Rangel-Gomez and MJJop, 2016). The study of selective
attention to new stimuli can provide new insight into the

cognition and attention of AD patients. Chau et al. proposed a
non-verbal and non-invasive diagnostic method to predict cognitive
decline from mild to moderate AD patients by estimating the

FIGURE 2
(i) The slides started with four new images, and after 10.5 s switched to the next slide with two new images and two duplicate images (Chau et al.,
2017). (iiA) The scan path of ASD participants during the task of reading the BBC website (Yaneva et al., 2018). (B) The analysis of visual gaze features is
based on four areas of interest, including eyes, mouth, whole face and whole body (Zhao et al., 2021). (iii) The sad and neutral facial expressions in the left
4 × 4 grid and the happy and neutral facial expressions in right 4 × 4 grid (Klawohn et al., 2020).
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novelty preference of patients (Chau et al., 2017). The binocular eye-
tracking systems recorded the eye gaze data, including the position,
time, and frequency when AD patients viewed novel and repeated
images on slides (Figures 2i. These visual scanning parameters were
processed by automatic classification algorithms to estimate novelty
preference. Standardized Mini-Mental Status Examination
(SMMSE) and Conners Continuous Performance Test (CPT)
were used to assess the cognition and attention of patients
separately. The results showed that impaired people have less
attention or preference for novel images than the control group.

Yaneva et al. (2018) described an unobtrusive method for
detecting ASD through two everyday tasks: browsing and
searching web information (Figures 2ii,A). Six web pages were
randomly presented to 36 participants (16 ASD patients and
16 non-ASD controls) and their gaze data were collected by an
eye-tracker in 2 minutes. Five gaze features (i.e., time viewed %, time
viewed sec, time to first view, fixations and revisits) and five non-
gaze features (i.e., participant gender, AOI ID, correct answer AOI,
media ID, and level of visual complexity) were used to train a
machine learning classifier to identify whether participants had ASD
by Logistic Regression (LR) with 100-fold cross-validation. The basic
principle of this method is to reveal the different attention-shifting
mechanisms of two groups based on the new alternative marker of
attention differences. The preliminary result showed that the search
task elicited higher differences between the two groups than the
browsing task. The classifier achieved 0.75 classification accuracy,
which could be proved effective in detecting ASD. In addition to the
web task, Zhao et al. (2021) proposed another approach for
diagnosing ASD based on eye-tracking data from face-to-face
conversations. Participants wearing a head-mounted eye-tracker
had a conversation with a female interviewer (see Figures 2iiB).
The four arranged informal sessions included general questions,
hobbies, yes-no questions, and questions from respondents.
Afterwards, the visual fixation features and session length
features from the eye-tracking data were extracted to determine
which of the four machine learning classifiers had optimal
classification accuracy by implementing forward feature selection.
The classifiers include Support Vector Machine (SVM), Linear
Discriminant Analysis, Decision Tree, and Random Forest (RF).
The results proved that all classifiers reached a maximum
classification accuracy of more than 84%, and the SVM classifier
achieved the highest classification accuracy of 92.31%.
Consequently, children with ASD can be preliminarily diagnosed
in daily life through face-to-face conversations.

Sanchez et al. further elaborated on the role of attentional bias in
diagnosing depression (Sanchez et al., 2013). They designed an eye-
tracking task to evaluate the disengagement of attention from
emotional stimuli and test whether mood changes during and
after stimulation in depressed patients are associated with visual
dissociation difficulties. 19 participants with Major Depression
Disorder and 16 healthy participants were free to view emotional
(i.e., happy, sad, and angry) and neutral faces. Eye-tracking devices
synchronously record the initial orientation, fixation frequency, and
fixation time during 3,000 ms. In the subsequent engagement-
disengagement task, an attention interval was also recorded when
moving from emotional to neutral faces. Studies have found that
people with depression took longer to eliminate depression-related
emotions, e.g., sad faces. In other words, with the increase in

depression, the disengagement from negative information
becomes slow. Therefore, negative attention disengagement
difficulties can be regarded as a critical feature of depression.
Ferrari et al. replicated the above Sanchez experiment and further
proposed the attentional bias modification (ABM) tasks (Ferrari
et al., 2016). The ABM tasks, containing positive training (PT) and
negative training (NT), were designed to evaluate and train the
components that interfere with attention in depression. The
participants included 78 female and 17 male college students and
were assigned to PT (n = 48) or NT (n = 47) in a double-blind
fashion. In the PT, the test continued when the participants
separated from negative pictures and gazed at the positive
pictures for 1000 ms. In contrast, in the NT, participants were
asked to sustain attention to negative pictures for 1000 ms and
focus away from positive ones. The results showed that participants
gazed at the positive images longer and disengaged from the negative
images more quickly in the PT. However, there is no change in
attentional processes in the NT. The two groups showed no
difference in emotional responses and recovery from stress. This
disengagement training was supposed to increase attentional bias
towards positive information and facilitate disengagement from
negative information, which has significant relevance for the
treatment of depression. To investigate the relationship between
attention bias and other influencing factors. Lu et al. (2017)
proposed a free-viewing eye movement task to compare the
differences in attentional bias between depressed patients and
healthy subjects at different ages. The trials were divided into
two groups: happy-neutral faces and sad-neutral faces. The
participants were also divided into two groups: young
(18–30 years old) and middle-aged (31–55 years old). Compared
with healthy subjects, depressed patients tended to pay less attention
to the positive stimuli and more to the negative stimuli. Among
major depressive disorder (MDD) patients, the middle-aged group
had less positive attention bias than the younger group, and there
was no difference in negative attention bias between the two groups.
This study further demonstrated that emotional bias in depression
was correlated with age. The complex visual arrays were employed
by Klawohn et al. (2020) to examine the attention bias of depressed
patients to facial expressions. Participants were free to view two sets
of four-by-four arrays of facial expressions (see Figures 2iii). The
first group was made up of sad and neutral faces, and the other of
happy and neutral faces. At the same time, Eyelink 1000 + recorded
the dwell time of participants on different facial expressions.
Compared to healthy individuals, depressed individuals spend
more time gazing at sad faces, which indicates an abnormal
attentional bias to negative stimuli. Moreover, healthy and
depressed groups had higher dwell times on happy expressions.
Besides, the study further demonstrated that attentional bias to
negative stimuli was not associated with the severity and chronicity
of depression but associated with external environmental factors,
including childhood trauma and sad events in contemporary life.

It is evident that vision-based sensors can be utilized to assess
attentional biases in mental diseases. Table 1 provides a good
overview summary of examples of the use of vision-based sensors
for mental disease diagnosis. People with AD and depression pay
less attention to positive and new things. And negative information
affect people with depression for a longer period. People with ASD
lose sight of the whole and focus on the details. Deep learning was
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used to diagnose AD and ASD patients and achieved the highest
accuracy rate of 92.31%. Gaze-based devices, i.e., eye trackers, have
the advantages of being non-invasive and wearable, and eye-tracking
data are easily collected. However, the presence of blink and jitter in
eye movement data introduces noise and errors for diagnosis. In
addition, this method has some limitations including long
preparation time, fragility, and non-myopic participants.

3.2 EEG signal sensors

Brain function is based on electrical signals among neurons in
the brain. Due to the mood, mental state and attention being all
controlled by different brain regions, mental diseases caused by
brain damage can be diagnosed by EEG (Liu et al., 2013). EEG is a
non-invasive, effective tool for measuring the electric activities of
the brain and monitoring the changes in brain functions at rest or
during stimulation. The principle is to measure tiny fluctuations
in the electrical current between the skin and the sensor
electrodes, amplify the current and perform filtering (Sullivan
et al., 2007). The American clinical neurophysiology society
recommends collecting brain electromagnetic activity through
10–20 and 10–10 electrode placement systems (Figures 3ii
(Acharya et al., 2016). The capital letters F, C, T, P, and O
stand for frontal, central, temporal, posterior, and occipital,
respectively, and represent where the electrodes are attached
to the skull. The numbers indicate the left and right sides of
the brain (Abhang et al., 2016). When collecting EEG data, people
should wear an EEG device to maintain a consistent electrical
connection between the electrodes of the sensor and the scalp,

which can be achieved by various methods (Figures 3i, iii),
including dry EEG devices, saline solution EEG devices, and
soft gel-based EEG devices (Soufineyestani et al., 2020). The dry
EEG devices do not require any saline and gel, or even direct
connection to the scalp, enabling a shorter up-front setup time
than wet EEG devices. As computer-aided diagnosis (CAD) has
become an important part of the medical industry, some
researchers have attempted to diagnose mental diseases by
using machine learning techniques to extract features from
EEG signals (Khare and Bajaj, 2020; Khare et al., 2020).

As shown in Figures 3iv, collecting raw EEG signals involves
many activities and methods, including Event-Related Potential,
Emotion Recognition, Sleep Stage Scores, Motor Imagery, Seizure
Detection Mental Workload. According to the frequency range of
EEG signals, the central frequencies of human brain waves can be
divided into Alpha, Beta, Delta, Gamma, and Theta bands (Liu et al.,
2013). The methods of preprocessing include Adaptive Filter,
Surface Laplacian, Independent Component Analysis, Common
Spatial Patterns, Common Average Reference, Surface Laplacian,
and Principal Component Analysis, which purpose is to improve the
signal-to-noise ratio, remove artefacts, interference, and noise, and
retain the pure EEG signal. After preprocessing the EEG data,
various features are extracted. Wavelet Transform, Fast Fourier
Transform, Principal Component Analysis, Independent
Component Analysis, Power Spectrum Density, Autoregressive
Method, Eigenvectors, and time-frequency Distribution can be
utilized. Artificial intelligence and machine learning models,
including K Nearest Neighbors, Support Vector Machine, Deep
Learning, Artificial Neural Network, Linear Discriminant Analysis,
and Naive Bayes, were used to calculate and analyze these features to

TABLE 1 Examples of vision-based sensors towardsmental disease diagnosis. SMMSE, mini-mental status examination; CPT, conners continuous performance test;
AD, alzheimer’s diseases; LR, logistic regression; SVM, support vector machine; PT, positive training; NT, negative training; MDD, major depressive disorder.

Bio-
sensors

Mental
diseases

Equipment/
Technology

Diagnostic
standards

Assessment
standards

Results Advantages Ref

Vision-Based
sensors

Alzheimer’s
diseases

Binocular eye-tracking
system

The novelty preference
for new and repeated

images

SMMSE and CPT AD patients have less
novelty preference

Non-invasive, non-
verbal

Chau et al.
(2017)

Autism
spectrum
disorder

Gazepoint GP3 video-
based eye-tracker

Features of gaze and
non-gaze from the web-

related tasks

LR 75% accuracy Large-scale detection
and unobtrusive

tasks

Yaneva
et al.
(2018)

Tobii Pro Glasses 2 Features of visual
fixation and session

length

SVM 92.31% accuracy Diagnosis through
face-to-face
conversations

Zhao et al.
(2021)

Depression Tobii tx-120 eye-tracker
system

Difficulties in
Attentional

disengagement

Time of disengaging
attention

People with
depression spend

more time

Easy to assess data Sanchez
et al.
(2013)

The eye-tracking system
by the iView 9 Hi-Speed

system from SMI

Attentional bias in the
PT and NT

Time of
disengagement

People with high
levels of depression

have difficulty
disengaging

Repetition training
has therapeutic

relevance

Ferrari
et al.
(2016)

Tobii T120 Eye-tracker Attentional bias in
different facial

expressions/Different
age groups

Happiness and
sadness bias scores

Middle-aged MDD
patients have a low

preference for
positive faces

Proved that
emotional bias is
related to age

Lu et al.
(2017)

Eyelink 1000+ Attentional bias in sad-
neutral and happy-
neutral groups

Dwell-times Patients dwell on sad
things for a long time

Free-viewing
technique

Klawohn
et al.
(2020)
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FIGURE 3
(iA)Dry EEG devices. (B) Saline solution EEG devices. (C) Soft gel-based EEG devices (Soufineyestani et al., 2020). (ii) The position and name of each
electrode in the 10 ± 20 system (Soufineyestani et al., 2020). (iii) Real-time EEG signal recording system (Liu et al., 2013). (ivA) The methods of signal
acquisition. (B) The types and techniques of signal processing. (C)Methods of feature extraction. (D)Machine learning algorithms (Sachadev et al., 2022).
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FIGURE 4
(iA) EWT filter bank. (B) The decomposed rhythms from the left and right hemispheres of the normal and depressed groups. (C) The AUC values of
SVM and KNN classifiers (Akbari et al., 2021b). (iiA) The samples of normal and depressed RPS for the left and right hemispheres. (B) Quantified the
geometric features of the RPS pattern of EEG signals in 2D space (Akbari et al., 2021a). (iii) 2D-IMFs of EEG signals in depression (Sadiq et al., 2021).
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classify healthy people and patients (Sachadev et al., 2022).
Presently, EEG can diagnose AD, sleep disorders, and brain
tumours (Cai et al., 2020; Duan et al., 2020; Akbari et al., 2021a).
Recent studies have focused on detecting ASD, depression, epilepsy
and schizophrenia.

Social communication is based mainly on nonverbal behavior to
understand the intentions of others, e.g., gestures, actions, and
emotions. These past studies provides evidence that people with
ASD often have difficulty with social communication and
recognition of facial emotions (Black et al., 2017; Tawhid et al.,
2020). According to these symptoms, Paula et al. (2017) proposed an
approach to diagnosing ASD by analyzing the changes in high-
frequency EEG as children observe three different facial expressions
(happy, neutral, and angry). In this visual stimulation task, photos
with different expressions were played for 3 s each with intervals of
0.5–1.0 s controlled by Mangold Vision 3.9. The EEG-1200
measured EEG data about neural activity caused by the stimulus,
and eye-Tech TM3 ensured that participants viewed fixed points
and visual stimuli during this time. The EDF Browser converted
each subject’s raw EEG data into ASCII format. Python
programming language and MATLAB code were applied to
process these EEG data. Their mean and standard deviation
could be calculated to observe changes in local field potentials
associated with events. After comparing EEG data from
8 children with ASD and 8 healthy children, the study found
that the ASD group presented a more vital power spectrum in
high frequencies (above 30 HZ) compared to controls in some
regions, including the frontal, occipital, and mid-parietal regions
of the brain. The EEG signals of the occipital and central parietal
regions showed significant differences. The central region and
parietal lobe presented similar patterns. Consequently, the
findings demonstrated that the EEG activity of children with and
without ASD showed different quantitative patterns of the power
spectrum when observing facial expressions. Another effective
diagnostic system was developed by Tawhid et al. (2020), which
can automatically identify ASD based on a 2D spectrogram images
of EEG signals. The novelty of the study is in the conversion of EEG
signals into time-frequency based spectrogram images. The
preprocessed EEG signal was converted into a two-dimensional
(2D) image by short-time Fourier transform. Then used ternary
CENTRIST to extract texture features. 10-fold cross-validation by
the SVM classifier yielded an average classification accuracy (ACC)
of 95.25%, a sensitivity of 97.07%, and a specificity of 90.95%.

Currently, EEG is also a popular tool to investigate the presence
of depression biomarkers. Previous studies have demonstrated that
the EEG signals of depressive patients presented as unpredictable
and have lower morphological complexity (Sharma et al., 2018;
Sadiq et al., 2020). Sadiq et al. designed a user-friendly method based
on centered correntropy (CC) of rhythms in empirical wavelet
transform (EWT) to classify EEG signals in people with
22 depression and 22 non-depression subjects (Akbari et al.,
2021b). The non-stationary EEG signals were decomposed into
rhythms by EWT (Figures 4i,A), and the EWT filter bank was
created. CC was calculated from the decomposed delta, theta, alpha,
beta, and gamma rhythms, regarded as the discrimination feature,
and then fed to SVM and KNN (K Nearest Neighbors) classifiers
(Figures 4i,B, C). The area under the receiver operating
characteristic curve (AUC) quantifies the ability to classify

depression and standard EEG signals. The AUC values of the
SVM classifier with radial basis function kernel and KNN
classifier with city block and Euclidian were compared to prove
the performance of the two classifiers. The proposed method
ultimately achieved 98.76% ACC in a 10-fold cross-validation
strategy. Subsequently, Sadiq et al. further employed
reconstructed phase space (RPS) of EEG signals and geometrical
features for depression detection (Akbari et al., 2021a). The method
of classification and evaluation of the selected features was the same
as the previous experiment, which used SVM and KNN classifier.
The difference was in the processing stage. The EEG signals of the
left and right hemispheres were plotted by PRS in 2D space (Figures
4ii), and 34 nonlinear geometrical features were extracted from these
characteristics. Four optimization algorithms, Ant Colony
Optimization (ACO), Grey Wolf Optimization (GWO), Genetic
Algorithm (GA), and Particle Swarm Optimization (PSO), were
used to reduce the feature vectors, and the performance was
compared. GA achieved better performance due to a 58.8%
reduction in feature vector arrays. The framework using the PSO
algorithm and SVM classifier finally achieved 99.3% ACC and a
Matthews correlation coefficient (MCC) of 0.98 in the right and
0.95 in the left hemispheres. Therefore, it could be concluded that
EEG signals can be used as biomarkers to detect depression.
Furthermore, EEG signals from the right hemisphere are more
critical for detecting depression than those from the left. In the
following work, Sadiq et al. (2021) found a novel CAD system to
detect depression automatically. In this study, bipolar channels
“FP1-T3" and “FP2-T4" from the left and right brain were used
to collect EEG records for 10 min at 256 Hz sampling frequency. By
new 2D modelling of intrinsic mode functions (2D-IMFs) (Figures
4iii), Binary Particle Swarm Optimization (B-PSO) algorithm, and
KNN classifier, depression and epilepsy could be classified and
diagnosed. As a result, this system possessed various advantages,
including time-saving, a high classification accuracy of 93.35%, and
multirole adaptability. This work provided a novel way to diagnose
two mental diseases with one algorithm.

Another EEG signal classification method for the diagnosis of
epilepsy was proposed by Akbari and Esmaili (2020). The novelty of
this approach lies in the use of second-order difference maps and
phase-space reconstruction to map EEG signals in 2D space.
500 interictal, ictal and normal EEG signals were extracted with
6 features in different aspects of distance in Cartesian space. These
features are named circle area, area of the octagon, summation of
vectors length, ircular radius in triangles, triangle area and centroid
to centroid, respectively. More regular geometries appear in 2D
projections of interictal and normal EEG signals. At the same time,
the edges of the 2D EEG projection signals in the ictal group
appeared clearer than those in the other two groups. This
method achieves 99.3% ACC under the 10-fold cross-validation
strategy through SVM and KNN classifiers. The same method was
also applied to the diagnosis of schizophrenia by Akbari et al.
(2021c). EEG samples included 14 subjects with schizophrenia
and 14 controls. Recorded on a 10–20 system with 19 EEG
channels. Fifteen graph features were extracted to evaluate the
chaotic behavior of phase space dynamics. The results showed
that the KNN classifier with City-block distance achieved 94.80%
ACC under the 10-fold cross-validation strategy. Another machine
learning classifier for diagnosing schizophrenia based on EEG
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signals of event-related potentials (ERP) was designed by Zhang
(2019) The EEG signal of motor actions was shown to be one of the
biomarkers for identifying schizophrenia (Ford et al., 2014). Hence,
the characteristics of the EEG signals of 49 schizophrenia patients
and 32 healthy controls were captured by the sensory tasks
including button pressing or/and auditory. The results proved
that the highest classification accuracy of 81.1% was achieved by
the RF algorithm.

The different diagnostic methods based on EEG signals are shown
in Table 2. Greater activation in the frontal, occipital, parietal, and
central regions could be considered diagnostic criteria for ASD. CADS
(i.e., Fast Fourier Transform, Wavelet Transform) were utilized to
reduce the complexity of EEG signals. And automatic classification
was realized by machine learning methods (i.e., SVM, KNN, Ternary
CENTRIST and RF) for extracting features of EEG signals. The
classification accuracies for both depression and epilepsy were as
high as 99.3%. And the diagnostic accuracy rate of schizophrenia
reached 94.8%. Furthermore, the goal of simultaneous diagnosis of
two mental diseases (epilepsy and depression) was achieved by EEG.
The experiments in Table 2 are all based on short-range EEG.
Although this method is relatively quick and low cost, there are
limitations in the ability to capture the abnormal brain waves of
patients during the onset. In the future, 24-h monitoring and mobile
brain-computer interface (BCI) will gradually become potential

directions for general EEG applications (Chi et al., 2012; Amaral
et al., 2018).

3.3 EOG signal sensors

The electrooculogram sensor is another tool that can detect mental
diseases. Both EOG and EEG use an array of electrodes to capture
signals (Kaur, 2021). EOG is a method of sensing eye movement that
measures the retinal electrostatic potential between the retinal pigment
epithelium and photoreceptor cells. EOG signals are recorded by
placing a series of skin electrodes on the lateral and medial canthus
(or above and below the eyelids) of each eye, which measure horizontal
(or vertical) eye movements. Moreover, ground electrodes are attached
to the earlobe or forehead (Figure 5) (Bulling et al., 2011; Creel, 2019).
Measuring EOG signals requires patients to acclimatize in a well-lit
room for at least 30 min. Before the test, there was a light acclimation
period of about 10 min. After the electrodes are attached, there are
15 min of dark and bright light phases. The movement of the eyes
creates a voltage fluctuation of approximately 2–5 mV between the
electrodes on either side of the eye, which is plotted on the computer
(Creel, 2019).

The abnormality of smooth pursuit eye movement (SPEM) was
demonstrated as a genetic marker of schizophrenia in preliminary

TABLE 2 Examples of EEG signal sensors towards mental diseases diagnosis. ERP: event related potential; ASD, autism spectrum disorder; Ternary CENTRIST, a
texture classifier; CC, correntropy; ACC, average classification accuracy; KNN, k nearest neighbors; EWT, empirical wavelet transforms; B-PSO, binary particle
swarm optimization; RF, random forest.

Bio-
sensors

Mental
diseases

Equipment/
Technology

Diagnostic
standards

Assessment
standards

Results Advantages Ref

EEG signal
sensors

Autism
spectrum
disorder

EEG-1200 and ERP Attentional bias in
angry, happy, and

neutral faces

High-frequency
(above 30 HZ) EEG

variations

ASD group has
strong activation in
the center-parietal,
occipital and frontal

area

Showed quantitative
differences in two

groups

Paula
et al.
(2017)

A g.tec EEG cap with
Ag/AgCl electrodes

Time-frequency based
spectrogram images

Ternary CENTRIST
and SVM

95.25% ACC High accuracy and
sensitivity for ASD

diagnosis

Tawhid
et al.
(2020)

Depression Recorded from both
hemispheres by a
bipolar montage

The CC of the rhythms
decomposed by EWT

SVM and KNN 99.05%, 98.47%, and
98.76% ACC

Reduced pre-
processing, rhythm
extraction, and

algorithm complexity

Akbari
et al.

(2021b)

Bipolar channels
(FP1-T3 and FP2-T4

channels)

34 geometrical features
were extracted
from RPS

SVM and KNN 99.3% ACC Fast and inexpensive,
high classification

accuracy

Akbari
et al.

(2021a)

The significant features
were selected by B-PSO

KNN 93.35% ACC Diagnostic two mental
diseases by one unified

algorithm

Sadiq
et al.
(2021)

Epilepsy 500 EEG signals from
Bonn university

database

Features were extracted
on different aspects of
distance in Cartesian

space

SVM and KNN 99.3% ACC High accuracy,
sensitivity and
specificity

Akbari
and

Esmaili
(2020)

Schizophrenia 10–20 EEG montage
with 19 EEG channels

KNN 94.80% ACC Fully automatic and
inexpensive

Akbari
et al.

(2021c)

ERP EEG signals with
nine selected
electrodes

Three sensory tasks RF 81.1% Fast, simple and
effective

Zhang
(2019)
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experiments (Siever et al., 1985; Matsue et al., 1994). Moreover, the
same dysfunction is present in first-degree relatives of
schizophrenics (Holzman et al., 1974). Kathmann et al. (2003)
described a method to evaluate the integrity of the SPEM system
by comparing the eye velocity and target velocity. The study subjects
included 103 schizophrenic patients, 53 relatives of patients and
72 healthy controls. In the eye-tracking task, the movement of white
circles was tracked by subjects, which was combined with auditory
and visual distraction tasks. At the same time, horizontal eye
movements were recorded by EOG. The pursuit gain, the velocity
of eye movement divided by the velocity of target movement,
showed noteworthy gain deficits in both schizophrenia and
affective disorders. And unaffected biological relatives of
schizophrenia patients had lower pursuit gain than healthy
subjects. This finding further supported that deficit in the gain of
SPEM could be regarded as a phenotypic marker of genetic

predisposition to schizophrenia. In addition to the abnormity of
SPEM, Quality Extinction Test (QET) is another indicator that can
identify the damage to the parietal and frontal lobes (Scarone et al.,
1982). Scarone et al. reported a higher incidence of left-side
extinctions on QET in patients with schizophrenia (Scarone
et al., 1982; Scarone et al., 1983). Accordingly, this research team
further performed a method to simultaneously investigate two
features of central nervous system disorder in schizophrenia,
namely abnormalities of SPEM and abnormalities of QET
(represented by loss of touch). The results of the experiment
indicated that more patients with left-side extinctions had SPEM
abnormalities, which suggested that simultaneous impairment of
these two psychophysiological indicators can be applied to detect
schizophrenics (Scarone et al., 1987). Besides, Lencer et al. (2000)
tried to determine whether genetic factors influenced families with
sporadic schizophrenia (single occurrences of schizophrenia) by

FIGURE 5
(i) The wearable EOG equipment (Majaranta and Bulling, 2014). (ii) Position of electrode for recording EOG signal (v: vertical, h: horizontal, and r:
reference) (Bulling et al., 2011; Creel, 2019). (iii) EOG eye movements were recorded in three phases (Creel, 2019).
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dysfunction of smooth pursuit performance. The saccade
amplitudes, saccade rates, and gains of three kinds of family
including 8 families with sporadic schizophrenia (n = 44),
8 families with multiple occurrences of the disease (n = 66), and
9 healthy families (n = 77) were recorded by infrared eye-tracker.
The amplitudes and rates of saccades and gain values in families with
sporadic schizophrenia significantly differed from healthy controls
at 30°/sec triangle-wave stimulation, but not from familial-
schizophrenia families. In addition, target direction significantly
affected smooth-pursuit maintenance in families with familial and
sporadic schizophrenia. The results supported the hypothesis that
genetic factors may be indicated in sporadic-schizophrenia families.

Due to the development of deep learning, research on the
automatic detection of sleep disorders through EOG has been
gradually carried out. Rahman et al. (2018) developed a dynamic
and automatic sleep scoring system based on single-channel EOG. In
this work, EOG signals of 38 patients in different stages of sleep,
namely Awake, S1, S2, S3, S4, and REM (rapid eye movement)
(Rechtschaffen AJBis, 1968), were extracted from three public
databases (SLEEP-EDF, SLEEP-EDFX, and ISRUC-SLEEP). And
these signals were decomposed by Discrete Wavelet Transform
(DWT) in order to extract highly discriminatory features from
them, e.g., Moment-based Measures. After that, Neighborhood
Component Analysis, a feature reduction technique, was employed
to reduce features and compact the model. RF, SVM, and RUSBoot
(Random Under-Sampling Boosting) algorithms were used to classify
the data from the three databases in different classification stages,
respectively. The proposed method had higher accuracy compared
with other sleep stage classification techniques based on single-
channel EEG, single-channel EOG, and dual-channel EOG, and
made significant progress in the S1 sleep stage, which is difficult to
detect visually. Besides, Tasnim et al. (2019) designed another sleep
state classification method based on single-channel EOG. The raw

data were obtained from the SLEEP-EDF database, which was divided
into 6 Sleep stages as above. The features of EOG signals were
extracted and reduced through Variational Mode Decomposition
and Neighborhood Component Analysis to obtain meaningful
statistical features like Spectral Entropy Measures. In the training
model stage, three widely used classifiers, RUSBoost, RF, and KNN,
were used. It has been found that the proposed algorithm achieves
96.537%, 93.05%, 90.57%, 89.21%, and 88.083% overall accuracy in
the classification stage of from 2-class to 6-class sleep, respectively,
and 65.092% accuracy in the S1. In the work of Sharma et al. (2022), a
system for the automatic recognition of sleep disorders based on a
single-modal EOG signal was proposed. Besides, the EMG signal was
also recorded. The database used in the study was the PhysioNet
database, which contained the records of 16 healthy patients and
92 patients with sleep disorders. DWT was used to decompose EOG
and EMG signals and extract Hjorth parameters (HOP) features.
Highly discriminative HOP features were sent to different
classifiers including SVM, Boosted Tree (BT), and Ensemble
Bagged Tree Classification (EBTC). Among them, the EBTC
classifier with 10-fold cross-validation technology showed the
best performance, achieving 94.3% accuracy when using the deep
sleep stage data.

Schizophrenia and sleep disorders can be diagnosed based on
the EOG signal. As shown in Table 3. Schizophrenia patients and
their unaffected relatives showed significantly lower pursuit gain and
left-sided patients showed abnormal SPEM. In addition, machine
learning methods including RUSBoost, EBTC, RF, SVM and
KNN were used to extract the features of eye signals during
sleep, and the highest accuracy rate reached 96.537%. EOG
devices are lightweight, easy to wear, and can even capture eye
signals during sleep. However, a significant amount of time is
required for pre-examination preparation and pre-adaptation
before the examination.

TABLE 3 Examples of EOG signal sensors towards mental diseases diagnosis. SPEM, smooth pursuit eye movement; QET, quality extinction test; RF, random forest;
RUSBoot, random under-sampling boosting; BT, boosted tree; EBTC, ensemble bagged tree classification; REM, rapid eye movement.

Bio-
sensors

Mental
diseases

Equipment/
Technology

Diagnostic
standards

Assessment
standards

Results Advantages Ref

EOG signal
sensors

Schizophrenia Silver-silver chloride
electrodes

Intactness Pursuit gain Low pursuit gains in
patients and their
unaffected relatives

The family specificity
of schizophrenia was

further verified

Kathmann
et al. (2003)

Eye movement and
neuropsychological

tests

SPEM and QET
characteristics

Abnormal SPEMs
were more present in

left-side
extinguishers

Investigated
simultaneously two

indices

Scarone
et al. (1987)

High-resolution
infrared reflection

oculography

Eye-tracking
dysfunction

Gains, rates, and
amplitudes of

saccades

Genetic factors exist
in families with
schizophrenia

Further precisely
define the

schizophrenia
phenotype

Lencer et al.
(2000)

Sleep disorder ISRUC-SLEEP,
SLEEP-EDFX, and

SLEEP-EDF databases

Awake, S1, S2, S3,
S4 and REM

SVM, RF, and
RUSBoot

Superior accuracy in
RUSBoost

Low cost Rahman
et al. (2018)

Sleep-EDF database RUSBoost, RF,
and KNN

88.083%–96.537%
overall accuracies
and 65.092%
accuracy in S1

Significantly improved
accuracy and
efficiency

Tasnim et al.
(2019)

PhysioNet database Awake, N1, N2,
N3 and REM

SVM, BT, and EBTC 94.3% Portable and
automated device

Sharma et al.
(2022)
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3.4 VR-based sensors

Emerging VR applications, which are intended for navigation
and orientation, cognitive and memory functions, facial
identification, and other instrumental activities of daily life, have
exhibited practical uses in neuropsychological assessments (García-
Betances et al., 2015). Compared with the three methods mentioned
in Section 3.1 and Section 3.3, more kinds of mental disease can be
diagnosed through VR. VR transmits information from real life to
the virtual world, providing the possibility for people to perform
activities in the virtual space (Goharinejad et al., 2022). From a
research perspective, the use of VR allows for the repetition of
clinical practice and continuous data collection in a virtual world
(Tieri et al., 2018), and provides excellent visual and auditory
immersion and interaction during tasks (Climent et al., 2021).
According to different degrees of immersion, VR can be divided
into fully immersive, semi-immersive and non-immersive. Fully
immersive VR devices are typically equipped with head-mounted
displays (HMDs), data gloves, gesture control armbands, gamepads,
and speakers (Figure 6), placing participants inside a virtual
environment for the highest level of immersion. Semi-immersive
VR presents a visual virtual environment through a relatively large
flat-screen display. In non-immersive systems, participants interact
using traditional PC monitors, keyboards, and mice (Kim et al.,
2009; Anthes et al., 2016; Mehrfard et al., 2019; Yeung et al., 2021).

In the early stages, numerous researchers used VR to diagnose
the impairment of daily activities in AD. Allain et al. (2014) assessed
daily mobility impairment in AD patients through a non-immersive
virtual coffee task. Performance evaluation includes five indicators:
Time to completion, accomplishment score, omission errors score,
commission errors score and total errors. The results showed that

AD patients fared worse than healthy controls. Yamaguchi et al.
(2012) developed a dual-modality VR platform for training AD
patients on toast and coffee tasks. AD patients had more omissions,
mistakes, and repetitive behaviors during tasks than controls,
demonstrating deficits in daily activities in AD patients.
However, AD patients achieved performance levels similar to
controls in a short period of time after learning. In recent years,
increasing evidence has shown that impaired spatial navigation and
orientation deficits are important biomarkers for cognitive
assessment in patients with MCI. Patients exhibited impairments
in the ability to use egocentric (eye/head/body-based) and non-
centric (map-based) navigational strategies, which were associated
with impaired memory and decreased attention early in AD
(Coughlan et al., 2018a; Coughlan et al., 2018b; Puthusseryppady
et al., 2020). Serino et al. (2015) designed a non-immersive VR-
based procedure to assess the ability for encoding, storing, and
synchronizing different spatial representations. Participants
included 15 amnestic MCI patients, 15 AD patients, and
15 healthy people as controls. The task required them to
memorize the location of the plant and be able to find it later
from other directions (the plant location was not marked). The
results of the experiment suggested that patients with amnestic MCI
have deficits in the ability to encode and store non-central
viewpoint-independent representations. AD patients have specific
deficits in storing non-central viewpoint-independent
representations and synchronizing them with non-central
viewpoint-related representations. Plancher et al. (2012) assessed
central and episodic memory of participants based on a virtual active
exploration task (as a car driver) and a passive exploration task (as a
passenger). The results verified that spatial non-central memory
could diagnose amnestic MCI patients.

FIGURE 6
(i) The most prominent HMDs. (A) The Samsung GearVRInnovator Edition. (B) The Sony PlayStation VR. (C) The Google Cardboard. (ii) The most
typical controllers. (A) The Oculus Half Moon. (B) The Glove ONE. (C) The Myo gesture control armband (Anthes et al., 2016).
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The emergence of advance VR equipment and technology
allowed for a type of spatial immersion termed “telepresence".
Howett et al. examined differences in entorhinal cortex-based
navigation (Figures 7i) in 45 MCI patients versus 44 healthy
controls based on immersive VR integration testing (Howett
et al., 2019). Navigation performance correlated with MRI

measurements of entorhinal cortex volume. Classification
accuracy on a path integration task was compared with cognitive
tests in early AD. Performance on the task was evaluated using three
outcome metrics, including absolute distance error, scaled angle
error, and scaled linear error. Statistical analysis used linear mixed
effects models. It turned out that the MCI group showed

FIGURE 7
(iA) Participants were asked to walk to positions 1, 2, and 3 (marked) in sequence during the VR task and return to the unmarked 1 by memory. (B)
Participants wear VR devices. (C) The participant tried to go back to 1 without the marker (Howett et al., 2019). (iiA) The based A3C navigation network
structure (GA3C_LSTM) were used to simulate healthy individuals with normal cognitive levels. (B) Details on the size of each layer. (C) The Noise
Navigation Network (GA3C_Noise) Models Cognitively Impaired MCI Patients. (D) The Dememory Navigation Network (GA3C_FF) simulates
dementia patients with partial and complete loss of short-term memory (Jiang et al., 2020).
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significantly more errors in the navigation task. Furthermore, the
pathway integration task demonstrated higher diagnostic sensitivity
and specificity in diagnosing AD patients than the best cognitive
tests. Puthusseryppady et al. (2022) further correlated performance
on a VR navigation test with performance on community navigation
to see if spatial disorientation could be predicted. The tests were
divided into three parts. The Virtual Supermarket Test (VST) was a
spatial navigation test on an iPad that assesses egocentric
orientation, concentric orientation, and heading. Sea Hero Quest
(SHQ) was a mobile game that measures the ability to navigate
space. The Detour Navigation Test (DNT) was a round-trip route
test based on a highly familiar environment. Participants will use
egocentric and non-centric navigation strategies during the round
trip. Compared with controls, AD patients showed impairments in
the VST, SHQ, and DNT. The experiment also reflected the future
VR-based diagnostic technology will be applied in everyday
electronic products. With the popularity of computerization, the
combination of wearable devices, deep learning and VR can provide
a low-cost, automated way for disease screening and prediction
(Tarnanas et al., 2014). Jiang et al. (2020) developed a 3D maze
procedure to assess and train the navigation and cognitive abilities of
AD patients and healthy individuals. The program was based on the
asynchronous advantage actor-critic algorithm (A3C) to train the
agent to simulate the cognitive degradation process of AD patients.
And combine the neural network with the pathogenesis of AD
patients to reveal the underlying mechanism leading to AD. As
shown in Figures 7ii, behavior data in navigation was collected and
analyzed through three models. Results showed that patient-
mimicking navigation models were inferior to those representing
healthy individuals in terms of average number of steps, path
efficiency, and decision-evaluation ability.

In addition to AD, depression (Gould et al., 2007; Voinescu
et al., 2023) and epilepsy (Grewe et al., 2014) can also be diagnosed
by VR-based methods through spatial memory and navigation
ability. Voinescu et al. (2023) assessed impairment of attention
and inhibition in depressed patients via the Nesplora virtual
aquarium. Participants were required to pay attention to and
respond to the correct stimulus (fish) during the 18-min task.
The stimuli included auditory and visual, with the aim of
exploring the relationship of attentional deficits to specific
sensory processing. The results demonstrated that the depressed
patients had omissions and errors in the visual stimuli, but not in the
auditory stimuli. And the outcomes of Nesplora aquarium were
found to be highly correlated with those of standardized
neuropsychological measures. In contrast to the diagnostic
approach above, ASD (Cai et al., 2013; Kim et al., 2015) and
schizophrenia (Freeman, 2008; Dyck et al., 2010) were diagnosed
through VR tasks based on social impairment and emotional
blunting. In the experiment by Kim et al. (2015), 42 participants
(19 ASD children and 23 healthy controls) used a joystick to adjust
the social distance from a virtual object while trying to identify
different emotions expressed by the virtual avatar. The VR emotion
sensitivity test (V-REST) (Kim et al., 2010) included six emotions,
avatars of male and female gender, and four levels of emotional
intensity. The observation was that both the ASD children and the
control group showed relatively high accuracy in identifying happy
emotions. On the other hand, interpersonal distance can be affected
by social anxiety (March et al., 1997). Therefore, participants were

instructed to use a joystick to adjust the distance to the avatar.
Compared with controls, ASD patients showed less tendency to
move towards avatars of happy emotions and to a greater extent
away from avatars of negative emotions. However, most of the
researches on diagnosing ASD, depression, schizophrenia, and
epilepsy through VR technology were published around a decade
ago (Dechsling et al., 2021). In recent years, the direction of research
combining VR and mental diseases has shifted from diagnosis to
treatment. Multiple research projects have reported the efficacy of
VR-based training (Herrero and Lorenzo, 2020; Dellazizzo et al.,
2021; Yen and Chiu, 2021). In addition, augmented reality (AR), as a
relatively new concept, provides an effective experimental basis for
further understanding and treatment of mental diseases (Lorenzo
et al., 2019; Rohrbach et al., 2019).

In essence, VR-based sensors create countless possibilities for
immersing participants in virtual tasks, such as navigation, social,
and daily activity-related tasks as illustrated in Table 4. Through
these virtual tasks, schizophrenia, epilepsy, depression, ASD, and
AD can be distinguished from healthy controls. In the task, the
computer application can modify the simulated environment
according to the responses and actions of participants (Riva
et al., 2020). Hence, the interaction with the virtual object can be
repeated and adjusted countless times. However, creating engaging
VR experiences is a highly complex challenge. The interaction of
mainstream VR devices is currently based on handles, which
requires participants to invest a certain amount of learning costs.
The degree of cooperation of the participants can affect the results of
experiment. Overly complex tasks can frustrate participants.
Therefore, it is necessary to provide a more convenient spatial
interaction mode to control virtual objects through eye control,
voice and gestures, etc. In addition, older participants, especially
those with AD, were more likely to feel dizzy and nauseated when
using VR. Technical limitations and a failure to comprehend user
perception and interaction during the design process are the reasons
behind these poor experiences (Jerald, 2015). Perhaps blurring the
boundaries between VR and AR and allowing users to adjust the
degree of virtual and real can lead to a more ideal experience.

3.5 Multiple-signal sensors

In recent years, studies have made significant progress in
detecting mental diseases using three biosensors including vision-
based, EEG signal, and EOG signal sensors. In addition to the single
use of these biosensors, some researchers combine them to achieve
higher detection accuracy and efficiency. Multi-signal sensors collect
data in the same manner as the sensors described above alone. Eye
movement data, EEG and EOG signals were collected through
multiple tasks, including dynamic visual tasks, EEG and EEG
recording tasks. The features of multiple signals are extracted and
classified by machine learning algorithms for higher accuracy.

Based on the underlying characteristics of MCI including
impaired visual attention and abnormal EEG rhythm, Jiang et al.
designed a rapid and automatic MCI detection approach for primary
care (Jiang et al., 2019a). This detection approach included a
dynamic visual tracking task and an EEG recording task (Figures
8i). In the visual tracking trial, subjects were asked to gaze at a purple
ball moving counterclockwise, following its moving direction and
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TABLE 4 Examples of virtual-environment-based sensors towards mental diseases diagnosis. VST, virtual supermarket test. SHQ, sea hero quest. DNT, detour navigation test. A3C, asynchronous advantage actor-critic. GA3C_
Noise and GA3C_FF models, models simulating mild cognitive impairment and Alzheimer’s patients, respectively.

Bio-
sensors

Mental diseases Equipment/
Technology

Diagnostic standards Assessment standards Results Advantages Ref

VR-based
sensors

Alzheimer’s diseases
and Mild cognitive

impairment

17-inch laptop and mouse Manipulation in coffee task Time to completion,
accomplishment score, commission
errors score, omission errors score

and total errors

Patients did worse than the control
group

Initial support for the utility of
VR task

Allain et al. (2014)

Notebook PC, mouse, and
headset

Manipulation in toast task
and coffee task

Total time to complete tasks, total
number of actions including

omissions, and commission errors

Patients performed worse, but after
learning they could perform similarly

to controls

Effective training platform Yamaguchi et al.
(2012)

ACER ASPIRE portable
computer and Logitech
Rumble F510 gamepad

Found the location of
unmarked plants

Abilities to encode, store and
synchronize different spatial

representations

MCI patients had deficits in the
abilities

Provided initial insights into the
cognitive basis of patients

Serino et al. (2015)

PC laptop computer Tasks of virtual driving and
riding in cars

Center information, context
information and quality of binding

Patients had worse spatial memory
scores

The damage of heterocentric
spatial memory can be used as an

early diagnostic clue

Plancher et al.
(2012)

HTC Vive iVR kit and
32 channel Siemens 3 T

Prisma scanners

Absolute distance error Absolute distance error, proportional
angular error, and proportional

linear error

Patients made more errors in
navigation

Higher diagnostic sensitivity and
specificity

Howett et al. (2019)

IPad and mobile phone VR navigation (VST and
SHQ) and community
navigation (DNT)

Non-centric and egocentric
navigation strategies

patients showed impairments in
navigation tasks

Games could be disease screening
tools

Puthusseryppady
et al. (2022)

Navigation tasks in a 3D
maze

A3C algorithm GA3C_Noise and GA3C_FF models
perform worse in navigation

Helped patients long-term assess
their navigational abilities

Jiang et al. (2020)

Autism spectrum
disorder

320-degree spherical 3D
screen

The task of communicating
with virtual dolphins
through hand gestures

Social behavior Female patients refused to interact
with dolphins more than male

Encourage patients to interact
with dolphins in novelty ways

Cai et al. (2013)

A Pentium PC, LCD
monitor and joystick

VR emotion sensitivity test Interpersonal distance and accuracy
of emotional recognition

Patients showed less tendency to
move toward the avatar of a happy

mood

Integrated multiple emotional
expressions (face, gesture, voice)

and social distance

Kim et al. (2015)

Depression Virtual town navigation task
and traditional spatial

memory task

Performance in two tasks Patients found fewer locations during
navigation tasks

Proved that hippocampus related
spatial memory deficits can be
used as biological indicators

Gould et al. (2007)

Galaxy S7 smartphone and
Gear VR headset

Nesplora aquarium attention
test

The reaction of visual and auditory
stimuli

Effectively predicted symptoms of
depression and anxiety

Included visual and auditory
attention

Voinescu et al.
(2023)

Schizophrenia Emotions on natural and
virtual faces

Whether the patient has trouble
recognizing emotions

The patients had obstacle in
emotional recognition of the
emotions expressed by natural

characters and virtual characters.

The animation and parameters of
the avatar can be easily adjusted

Dyck et al. (2010)

Epilepsy The task of space navigation
in virtual supermarket

Quantity of products purchased
correctly, and time spent

Patients showed significant
impairment in learning and

purchasing

The eight-day test provided more
comprehensive information

Grewe et al. (2014)
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avoiding being disturbed by two other small balls. Eye movement
features including the blink time, blink frequency, fixation time, and
sustained attention span, were recorded during the trial. The EEG
signals were detected and filtered by two dry sensors in the resting
state. Forty features (12 eye movement-based features and 28 EEG-
based features) were extracted by using linear and nonlinear analysis
in the combined EEG and eye movement methods. The features
associated with delta and alpha EEG dysrhythmia and impaired
visual attention were screened by LR analysis. The final MCI
screening model generated by the whole detection procedure had
a high accuracy rate of 97.8%. This combined screening model can
automatically complete the diagnostic tasks in just 5 min and suit for
large-scale disease diagnosis, which is more efficient than the
traditional lengthy test methods. Based on the above research,
Jiang et al. (2019b) team further developed a Deep Belief
Network (DBN) model (Figures 8ii) for more efficient early
detection of MCI patients. DBN network consists of one input
layer, several hidden layers, and one output layer with the functions
of learning features and achieving classification. Feature extraction
includes recording neuropsychological test scores and EEG and eye
signal features using linear and nonlinear approaches in
physiological tests. The collected eye dynamics and EEG-signal-
based features were input into the DBN network, which were
processed by two hidden layers to become more representative
features. The output layer gave the ultimate result of whether the
participant has MCI. In this study, the DBN model can select and
classify features and simplify features in the hidden layer, which
reached an 89.87% accuracy rate of detection results. Early screening
forMCI has great significance in clinical application in primary care,
which could reduce the number of people with AD or delay the
development of AD.

Kang et al. (2020) designed a machine-learning approach to
identify children with autism by eye-tracking data and EEG data.
The subjects were 3 to 6-year-old children. Eye-tracking data were
recorded when they gazed at faces of own race and other-race
strangers. Eight areas of interest (AOI) including eye, left eye, eye,
nose, mouth, whole face, body, and background were selected to
quantify the fixation. Power spectrum analysis was used to detect the
abnormal rhythm fluctuation of EEG in autistic children. The
minimum-redundancy-maximum-relevance (MRMR) feature
selection method was used for the feature selection of EEG, and
the SVM classifier was combined to classify patients and normal
controls. The results showed that the classification pattern combined
the features of eye movement tracking and EEG had a higher
classification rate than the single pattern, up to 85.44%. This
study demonstrated that the multi-modal and multi-feature
fusion classification approach provided a promising classification
accuracy for future ASD diagnosis.

Many automatic detection methods based on biological signals
have been proposed previously, however, their accuracy still needs to
be improved. For practical clinical application, Zhu et al. (2019)
further proposed a Content-Based Ensemble Model (CBEM) to
enhance the accuracy of depression detection. The integrated
model was composed of several classifiers. Two different
experimental datasets were collected from the free-viewing eye-
tracking task and the task-state EEG, respectively, and the
stimulation consisted of different emotional faces. The data
samples were divided into data subsets according to data types,

and then the majority vote of the subsets was used to predict the
labels of the subjects. The CBEM model applied to the two
experiments separately achieved 82.5% accuracy (eye-tracking)
and 92.73 percent accuracy (EEG). In general, CBEM achieved
better classification results than traditional classification methods.
Ding et al. designed another multi-modal machine learning method
to diagnose depression. In a free-gaze task, participants viewed sets
of images involving four emotional stimuli (positive, neutral,
anxious, and threatening) (Ding et al., 2019). Tobii Eye-tracker
4C was applied to record visual gaze data. Frontal EEG signals were
collected by MUSE EEG Headband, during which participants were
required to watch eight short videos involving positive, neutral, and
anxious emotions. Meanwhile, the Grove-GSR monitor, a
biofeedback device, was used to record skin conductance.
Galvanic skin response (GSR) is a fluctuation in skin electrical
resistance caused by changes in sweat gland activity or the
sympathetic nervous system and is often used to detect mood
(Nourbakhsh et al., 2012). The features of three types of input
data were extracted, and three machine learning algorithms,
including RF, SVM, and LR, were used to establish the
classification model. The f1 score is the harmonic average of the
accuracy and recall of the binary classification analysis. According to
the results, the highest f1 classification score was obtained by the LR
algorithm, which achieved 79.63% accuracy, 76.67% precision,
85.19% recall, and 80.70% f1 score, respectively. This study
integrated three physiological parameters and achieved a high
classification score overall, suggesting that multi-modal fusion
could improve the performance of the classification model.

The P300 waveform is a neuro-evoked potential component of
EEG, which reflects the biological electrical activity generated in
response to specific cognitive, sensory or motor events. P300 delay is
sensitive towards cognitive impairment and can be used to detect
schizophrenia (Zhang Y. et al., 2021c). Blackwood et al. (1994) used
P300 auditory ERP and SPEM, two characteristic markers of
schizophrenia, to test their association with schizophrenia and
functional psychosis. A total of 20 families were recruited for the
genetic linkage study, each with at least two diagnosed
schizophrenics. Most households were found to have one or two
anomalies in their measurements. P300 latency and eye-tracking
measurements were normally distributed in schizophrenia patients
and controls but bimodal in families. Abnormalities in SPEM and/or
ERP occur in family members with schizophrenia, and about half of
non-schizophrenic relatives present data abnormalities. This
experiment demonstrated the potential role of indicators of
psychophysiological abnormalities in genetic research.

In previous studies, traditional memory scales, named
Wechsler Memory Scale (WMS), were used to evaluate the
memory of patients with epilepsy (Wechsler, 1945). However,
such scales failed to separate the effects of visual attention on the
evaluation process, which also means that behavioral and
associative processing are confused. To address this problem,
Zhu et al. (2021) developed an automated computer-based
platform for exploring the correlation between memory
performance and visual attention in patients with TLE and
separated the effects of visual attention on memory tasks by
eye-tracker and EEG. The task consisted of a WSM assessment
(Digital Span Backward and Visual Recognition tasks), cognitive
oculomotor games, and all-day video EEG recordings. After
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FIGURE 8
(iA) Visual stimulus task. (B) The viewing distance. (C) The experimental procedures for the visual tracking task consisted of 2 min of EEG recording
and 3 min of eyemovement recording. (D) The blue dots represent the movement of the task ball. The green dots and the red dots represent the locus of
fixation distribution in the healthy MCI group, respectively. (E) The AUC of various MCI detection models (Jiang et al., 2019a). (iiA) The experimental
procedures consisted of 12 min of testing, 2 min of device calibration, 2 min of EEG recording and 3 min of eye movement recording. (B) The
structure of the DBNmodel. The neuropsychological, EEG, and eyemovement feature vectors were input. The features of raw input vectors were learned
through RBM1 and RBM2 in order to classify MCI and healthy samples (Jiang et al., 2019b).

Frontiers in Bioengineering and Biotechnology frontiersin.org19

Zheng et al. 10.3389/fbioe.2023.1190211

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1190211


analysis, the results showed that the TLE patients performed
worse than normal subjects in the abilities of verbal memory and
visual recognition. It was further confirmed that TLE patients
spent longer searching for the target in the memory visual-
stimulation games. And they also had more visit counts and
first fixation time on the AOI during the recall process.
Combined with the characteristics of bilateral temporal
epileptic discharge (IEDs), the memory performance of TLE
patients was negatively correlated with the temporal lobe peak
during sleep. In general, patients with TLE have defects in short-
term memory. A measuring platform combining a wearable eye-
tracker and VEEG can be long-time monitoring of memory
performance and visual attention in TLE.

Application examples for multi-signal sensors are listed in
Table 5. Through combining multiple non-invasive neural signal
recording methods, more mental diseases could be diagnosed.
Besides, compared or combined more than two diagnostic
methods by machine learning could improve the accuracy. For
example, 97.8% accuracy was achieved in the diagnosis of MCI by
combining eye-tracking data and EEG signals. Although the
screening model integrated by multiple classifiers can
complete the diagnosis of MCI in as little as 5 min.
Essentially, the data collection process of multi-signal-based
sensors is the same as that of a single sensor, still requiring
long preparation and collection times and redundant steps.
Therefore, the wearable multi-signal integrated sensors with
shorter time consumption will have great potential to become
a development trend in the future.

4 Conclusion and future perspective

In this review, biological pathways to diagnose mental disorders are
classified into five categories: visual-based, EEG signal, EOG signal, VR-
based andmultiple-signal sensors. The vision-based sensors capture the
signals of eye movements through eye-tracking devices. Both EEG and
EOG signals sensors apply electrode arrays to capture signals. VR-based
sensors collect user responses and behaviors by immersing them in a
virtual 3D environment. The multiple-signal sensors are a combination
of two to three above biosensors.

The vision-based sensors quantify the bias of attention by eye-
tracking data. The rationale is to reveal the different attention-
shifting mechanisms between patients and controls by comparing
the time of gaze and disengagement in stimulus tasks (e.g., pictures,
web pages, facial expressions, and communication) in two groups.
Currently, eye-tracking technology can identify AD, depression, and
ASD, which suggests that vision can be used as a promising
biomarker to detect mental diseases. Patients with AD and
depression showed a less attentional preference for novel and
positive things in the experiments. Depressed patients spent more
time disengaging from negative information, and the severity of the
disorder was positively correlated with disengagement time. People
with ASD tend to focus on details and ignore the whole. The
accuracy rate of diagnosing ASD patients in face-to-face
communication experiments reached 92.31%, indicating the
potential of screening mental diseases in daily communication in
the future. The vision-based method has the benefits of being non-
invasive, easy to obtain data and wearable. However, a limitation of

TABLE 5 Examples of multiple-signal sensors towards mental diseases diagnosis. DBN, deep belief network; CBEM, content-based ensemble model; AOI, areas of
interest; ERP, event-related potential.

Bio-
sensors

Mental
diseases

Equipment/
Technology

Diagnostic
standards

Assessment
standards

Results Advantages Ref

Multiple-
signal
sensors

Mild cognitive
impairment

MindWave
MW001 and Tobii

TX-300

Visual attention
processing and EEG

rhythms

LR 97.8% accuracy Allow head
movement,

automatic and
quickly

Jiang et al.
(2019a)

MindWave
MW001 and eye-

tracker

Neuropsychological, EEG,
and eye movement

features

DBN 89.87% accuracy Low-cost and
automatic

Jiang et al.
(2019b)

Autism
spectrum
disorder

128-channel HydroCel
Sensor Net System and

Tobii TX300 eye-
tracking system

Eight AOI areas towards
faces of own race and
other-race people

SVM 85.44% accuracy Multi-feature and
multi-modal fusion

Kang et al.
(2020)

Depression EyeLink 1000 Eye
Tracker and

P300 stimulator

Various emotional faces CBEM 92.73% accuracy Higher accuracy of
classification

Zhu et al.
(2019)

Tobii Eye-tracker 4C,
MUSE EEG Headband,
and grove-GSR monitor

Four emotional stimuli SVM, RF, and LR 79.63% accuracy Low-cost and
portable

Ding et al.
(2019)

Schizophrenia P300 stimulator and
silver-silver chloride

electrodes

The two-tone auditory
discrimination and eye

movement tasks

ERP and SPEM Abnormalities
occur in family
members with
schizophrenia

Proved that
schizophrenia has a
genetic component

Blackwood
et al. (1994)

Epilepsy WMS, Tobii Glass II,
and 580-G2CGSS
VEEG monitoring

system

WSM assessment,
cognitive oculomotor
games, and EEG

recordings

memory
performance and
visual attention

Negatively
correlated with the
temporal lobe peak

Long-term
monitoring

Zhu et al.
(2021)
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this method is that the inherent shaking and blinking of the eye
make it difficult to extract accurate data. And the movement of the
head is easy to cause data interruption. In addition to this, additional
preparation time is necessary, e.g., the need for optimal lighting
conditions. Patients wearing spectacles or contact lenses not being
measured is also a problem and may affect the representativeness of
the sample.

In addition to the vision-based method, patients with ASD and
depression also can be diagnosed by EEG signals because of abnormal
neuronal activity in their brains. And patients with epilepsy and
schizophrenia can also be diagnosed by EEG. ASD patients
exhibited stronger activation in the frontal, central, parietal, and
occipital regions when viewing faces with different emotions than
healthy controls, which is related to abnormalities in attention,
emotion, and executive function. The acquisition of EEG data from
the left and right hemispheres only requires the patient to be at rest for
10 min rather than visual stimulation. Due to the complex, non-
stationary and nonlinear characteristics of EEG signals, several
computer-aided diagnosis systems (CADS) were proposed to
evaluate the data. The performance of CADS directly depends on
how features are extracted and classified by machine learning
techniques. The complexity of EEG signals could be reduced by fast
Fourier transform and wavelet transform, etc. Moreover, machine
learning methods, e.g., SVM and KNN can realize automatic
classification of epilepsy and depression, with less computation and
higher classification accuracy (99.3% ACC). And screening
schizophrenia patients by RF classifier achieved 94% accuracy. In
addition, two brain diseases (depression and epilepsy) could be
diagnosed at the same time, which means the technology to screen
for two or more mental disorders at the same time could be available in
the future. However, the EEG signal-basedmethod is not nearly perfect.
For example, not all patients have abnormal EEG performance at all
times. Patients may appear completely normal on short EEG tests,
which can lead to errors in experimental results. Long-range EEG
measurement is more conducive to detecting abnormal signals. But the
disadvantage is that brain waves are easily disturbed by many factors.
And the EEG signal of the patient is difficult to detect inactivity. Scalp
EEG signal acquisition also faces more difficulties. For example, it is
necessary to solve the obstruction caused by the hair so that it can stably
collect signals.

EOG is a technique for measuring eye movement and eye
position based on changes in retinal resting potential under light
and dark adaptation. Wearing the EOG device requires only one
silver chloride electrode on the skin of the inner and outer canthus.
Compared with other electrical signal detection technologies
described above, EOG is lightweight, wearable, and easy to
operate. In addition to these advantages, EOG signals can be
detected in patients with eye closure, as well as in young
uncooperative patients or those with nystagmus. The method for
diagnosing schizophrenic patients by EOG signals is based on the
abnormal biomarkers of QET and SPEM. However, these methods
were proposed about 20 years ago. As machine learning becomes a
mainstream statistical tool, it is now more common to diagnose
schizophrenia in combination with EEG signals. In contrast,
research on the diagnosis of schizophrenia based on EOG signals
has hardly progressed in recent years. The results confirmed that
schizophrenic patients and their unaffected relatives showed
significantly lower pursuit gain, and more patients with left-side

extinction showed abnormal SPEM. An interesting finding is that
the research progress in diagnosing sleep disorders is inverse to that
of schizophrenia. The early diagnosis methods of sleep disorders
were mainly based on EEG signals, but the progress is mainly based
on EOG signals combined with deep learning in recent years. Sleep
disorders are diagnosed by using EOG and machine learning
methods to extract features and score different sleep stages.
However, the process of detecting EOG requires a long period of
dark adaptation and light adaptation, which is limited to lighting
conditions. And EOG signals are less sensitive than
electromyography (EMG).

By utilizing a range of visual, auditory, tactile, and olfactory
stimuli, VR technology allows users to immerse themselves in a
virtual environment, offering a unique method for diagnosing
mental diseases. Innovative VR-based sensors addressed the
challenges of diagnosing AD, ASD, depression, schizophrenia,
and epilepsy, and focused on deficits in navigation and spatial
memory, daily activities and attention, facial emotion recognition,
and social skills. For identified these biomarkers, VR could provide
an ideal virtual environment. Compared with other biosensors, VR
had the advantages of being reproducible and programmable. In the
virtual environment, researchers could easily control variables and
repeat experiments, and also allowed the existence of interference or
noise. In addition to visual stimuli, the VR-based tests also included
auditory stimuli. Even the sense of smell could potentially be used in
experiments, which was the advantage that several other sensors do
not have. Due to the development of wireless HMDs and mobile
electronic devices and wireless communication technology, VR-
based 24-h medical monitoring applications would be a common
trend. However, VR technology also had some disadvantages. The
elderly people were prone to dizziness in the virtual environment,
and it was difficult for them to master the use of joysticks, etc. A
more ideal spatial interaction experience, such as implanting voice,
gesture, and eye controls, or allowing users to adjust the degree of
virtuality and reality are possible solutions.

The multiple-signal sensors combine features acquired by a variety
of non-invasive neural signal recording methods (vision, EEG, and
EOG), and automatically performs the screening of mental diseases
through an ensemble model composed of multiple classifiers. This
integrated approach can detect a wider range of diseases and avoid the
drawbacks of a single approach. For example, biological signals that are
not visually detectable can be detected by EEG. In addition, the
verification of more than two detection methods can improve the
accuracy of diagnosis to a certain extent. However, the greater variety of
data collected means patients take longer in the diagnosis process.
Therefore, more comfortable and integrated wearable devices will be a
big trend in the future.

The results of this review can be utilized in other engineering
sciences, e.g., multi-signal biosensors, wearable devices, machine
learning, telemedicine, etc. The mental diseases are currently
diagnosed based on different biomarkers. The biosensors
acquired bio-signals from patients and healthy controls during
the stimulation task. Multi-signal sensors based on integrated
classifiers provide a more efficient and accurate screening mode.
Although the screening model can automatically complete the
diagnosis within 5 min, the collection of different data still
requires multiple different sensors in different tasks, which makes
the participants feel very tedious in the data collection process. In the
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future, more novel biosensors with higher accuracy, efficiency and
integration will be developed. For example, it may be possible to add
eye-tracking and EOG signal collection functions to VR/AR head-
mounted display devices, so that multiple signals can be collected in
one task and one device. In addition, due to the intermittent nature
of the onset of mental diseases, a short diagnosis (10 minutes) is not
representative of the daily onset of patients. With the promotion of
micro biosensor devices, Wearable fabrics, flexible electronics, and
other technologies, smaller and more comfortable wearable
biosensors will achieve real-time monitoring throughout the day
in daily life. In addition to the visual signals, eye signals, brain signals
and VR reviewed in this paper, biosensors can also monitor many
physiological parameters, e.g., lactic acid and glucose in sweat
metabolites, electrocardiogram, and body temperature. A
diagnostic approach that combines several biosensors may
become mainstream in the future, leading to the diagnosis of a
wider range of mental disorders. Combining deep learning and
artificial intelligencemethods, feature extraction and classification of
physical and biochemical data of the human body are implemented
to achieve automated and large-scale diagnosis and new technology
for simultaneous screening of multiple mental diseases. Diagnosis
methods based on EEG signals and multi-signals are more
commonly combined with machine learning in recent years,
including algorithms such as SVM, KNN, RF, and LR, etc., which
provide a higher accuracy rate for the screening of mental diseases.
Currently, all of the above diagnostic approaches are based in a
laboratory setting. The development of radio communication
technology has greatly supported the diagnostic functions
associated with medical devices. Data can be sent directly from
the medical testing device to a remote health center or hospital.
Doctors will be able to conduct remote consultations and guidance
through virtual reality technology, and patients wearing testing
devices will be able to put on their own devices and perform the
diagnosis process at home.
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