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Lead (Pb) is one of the most common heavy metal pollutants in the environment,
which can indirectly or directly threaten human health. Lead immobilization by
apatite can reduce the effectiveness of Pb cations via the formation of
pyromorphite (Pyro). However, the formation of Pyro is always depending on
the release of phosphorus (P) from apatite. Phosphate-solubilizing fungi (PSF) can
secrete large amounts of organic acid to promote the release of P from apatite.
Although the combination of PSF and apatite has shown a huge potential in Pb
remediation, this pathway needs to be more attention, especially for organic acid
secretion by PSF. This researchmainly reviews the possible pathway to strengthen
Pb immobilization by PSF and apatite. Meanwhile, the limitation of this approach is
also reviewed, with the aim of a better stabilizing effect of Pb in the environment
and promoting the development of these remediation technologies.
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1 Introduction

Lead (Pb) is one of the most important heavy metal pollutions in the environment, which
has strong biological toxicity, wide distribution, and strong accumulation capacity (Arduini
et al., 2010). The completely remove of Pb cations from soil is relatively long and complex
due to the hidden and lagging performance (Shen et al., 2015). In-suit immobilization of Pb
is an efficient pathway to reduce the toxicity of Pb in soil (Chen et al., 2006). Phosphate can
effectively transfer Pb cations to highly insoluble Pb minerals via the phosphorus (P) release
(Li et al., 2016b; Tian et al., 2018). However, the process of P release is unsustainable and
easily chelates with metal cations in soil, e.g., Ca2+, Fe3+, etc (Tian et al., 2021a). The
combination of phosphate solubilizing fungi (PSF) and phosphate is an effective and
sustainable pathway in Pb in suit immobilization (Shao et al., 2021). As a new approach
in Pb remediation, this technology needs to be more attention nowadays.
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2 Mechanism of Pb remediation by
phosphate solubilizing fungi and
phosphate

In current, phosphate is generally recognized as an excellent
material in Pb remediation. The P released from phosphate can react
with Pb to form highly insoluble pyromorphite (Pyro) Figure 1. Pyro
is highly stable and has a low Ksp value (<10–85), which can
significantly reduce Pb toxicity and mobility in soil (Arnich et al.,
2003; Chaturvedi et al., 2007; Cheyns et al., 2012). In engineering,
field and indoor leaching simulation tests, phosphates can convert
Pb from high-activity forms to insoluble forms (John et al., 2001;
Chen et al., 20231). The application of phosphate can reduce 12%–
92% available Pb content in soil, and the toxicity characteristic
leaching procedure Pb (TCLP-Pb) concentration can decrease from
82 mg/L to less than 5 mg/L (Melamed et al., 2003; Cao et al., 2009;
Cui et al., 2010). The reaction formula between P and Pb is as follows
(Park and Bolan, 2013):

10Pb2+ + 6H2PO
−
4 + 2X− �Pb10 PO4( )6X2 + 12H+ X � OH,Cl, F( )

Formation of stable Pbminerals( ) (1)

An acidic environment can significantly enhance phosphate
dissolution and improve the release of P (Whitelaw, 1999; Singh
and Reddy, 2011). However, the addition of chemical acid (e.g.,
sulfuric acid) is unsustainable and harmful to soil health. Oxalic
acid is more efficient than sulfuric acid in phosphate dissolution
(Mendes et al., 2020). Therefore, the utilization of oxalic acid
and phosphate is a better choice in Pb remediation. Phosphate
solubilizing fungi (PSF) can secrete large amounts of oxalic acid
and promote the release of P from insoluble phosphate (Li et al.,
2016a). Compare with bacteria, PSF not only maintains the
ability of oxalic acid secretion but also can extend in soil via

the mycelium. For example, the PSF of Aspergillus niger can
promote the dissolution of FAp and carbonate in soil via the
hypha extension and oxalic acid secretion (Tian et al., 2021b). In
addition, the PSF of A. niger, Penicillium oxalicum, and
Penicillium aurantiogriseum, etc., also has a strong ability to
secrete oxalic acid (Tian et al., 2021a; Hu et al., 2022; Wang et al.,
2022). Therefore, the combination of PSF and phosphate is a
considerable pathway in Pb remediation.

The application of PSF and phosphate have been successfully
applied in Pb remediation. A. niger and P. oxalicum combined with
FAp can significantly remove more than 90% Pb cations in an
aqueous solution via the formation of lead oxalate and Pyro (Li et al.,
2016b; Tian et al., 2018). Meanwhile, Pb remediation in soil by this
combination not only promotes the formation of lead oxalate but
also increased the soil available P content (Tian et al., 2022b; Meng
et al., 2022). In addition, the released P can be also isolated by PSF
and not easily absorbed by plants, promoting the Pb remediation
process (Menezes-Blackburb et al., 2016). However, the secretion of
oxalic acid by PSF is usually influenced by different factors, such as
pH, nutrients, phosphate types, and Pb concentration (Tian et al.,
2019; Feng et al., 2022). Therefore, the appropriate technology and
conditions are needed in Pb remediation by PSF and phosphate.

3 Effect factors in Pb remediation by
PSF and phosphate

3.1 Pb tolerance of phosphate solubilizing
fungi

Pb remediation by PSF is usually affected by different Pb
toxicity. The excessive concentration of Pb cations can limit the
growth of fungi and reduce their bioremediation efficiency (Ye et al.,

FIGURE 1
Lead remeditaion by phosphate solubilizing fungi and phosphate via the secretion of organic acid.
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2018). However, the tolerance of Pb toxicity in PSF is different. A.
niger has a higher Pb tolerance than P. oxalicum (Tian et al., 2018;
Tian et al., 2019). A. niger can survive under 1,500 mg/L Pb
concentration and maintain the ability of oxalic acid secretion
(Tian et al., 2019). However, the PSF of P. oxalicum only resists
1,000 mg/L Pb concentration, and the secretion of oxalic acid is
almost lost under 1,500 mg/L Pb concentration (Tian et al., 2019).
Therefore, A. niger has a high Pb tolerance and is efficient in Pb
remediation.

3.2 Suitable phosphate types in Pb
remediation

The type of phosphate affects the efficiency of Pb remediation
mainly due to the P release capacity (Tian et al., 2021a). Hence
selecting an appropriate phosphate is important in Pb remediation.
The use of phosphates in Pb remediation usually contains water-
soluble phosphates (WSP) and insoluble phosphates (IPs), including
potassium dihydrogen phosphate, sodium dihydrogen phosphate
and hydroxyapatite, fluorapatite bioapatite, etc. WSP has a high
solubility of P and is efficient in Pb remediation. However, the use of
WSP is easy to cause eutrophication of water and the excessive P can
be fixed by metal cations in soil. Compared with WSP, IPs are more
stable and need to mix with PSF in Pb remediation (Li et al., 2016b).
PSF combined with IP can promote the continuous release of P via
the secretion of organic acid and is suitable for long-term Pb
remediation. However, the different IPs can affect the secretion
of organic acid by PSF. For example, calcium phosphate (Ca-P) can
stimulate A. niger to secrete more oxalic acid (Tian et al., 2021a). In
addition, the dissolution of Ca-P is more efficient than Fe-P by A.
niger. Therefore, Ca-P is the best choice in Pb remediation by PSF.

3.3 Effects of nutrients on PSF in Pb
remediation

The different nutrients can significantly influence the secretion
of organic acid by PSF and hence affect Pb remediation by
phosphate. In the case of oxalate, the secretion of oxalate by PSF
is affected by different environmental factors, such as carbon (C)
source, nitrogen (N) source, environmental pH, etc (Palmieri et al.,
2019). Nitrogen is a key factor affecting the metabolism of A. niger
and the dissolution of phosphate rock (Paulo et al., 1988; Tian et al.,
2018). Compare with ammonium and urea, nitrate can significantly
increase the secretion of oxalate by A. niger and reduce the Pb
concentration in Pb remediation with Ca-P (Feng et al., 2022). For
nitrogen, nitrate is the suitable resource in Pb remediation by PSF
and phosphate.

4 Ways to improve lead remediation

4.1 Application of fertilizers in Pb
remediation

PSF and phosphate complex have been used to produce
phosphate-based biofertilizers, which not only increase the P

content in the soil but also function in Pb remediation (da Silva
et al., 2017). The application of PSM biofertilizer can significantly
increase crop yield and soil available P content, reducing the 50%
phosphate fertilizer input (Fitriatin et al., 2017). Phosphate rock
combined with PSF (P. oxalicum) can replace chemical fertilizers,
and increase crop yield. In addition, the application of PSM
biofertilizer and phosphate can also reduce the Pb concentrations
in soil. For example, the combination of phosphogypsum (PG) and
biofertilizer (containing A. niger) can reduce soil Pb concentration
from 365 mg/kg to 302 mg/kg (Meng et al., 2022). PG not only
provide a sufficient P source for the growth of A. niger in highly
contaminated soils but also strengthens the formation of insoluble
Pb minerals. Therefore, adding phosphate and PSF as fertilizer is an
effective attempt at long-term Pb remediation.

4.2 Application the suitable nutrients

Nitrogen sources can significantly affect the secretion of organic
acids of A. niger, which could affect phosphate dissolution and Pb
remediation (Gadd et al., 2014). The decomposition of inputted urea
can produce carbon dioxide and form carbonates, which inhibits the
growth of A. niger and the secretion of organic acids (Cinthya et al.,
2006; Su et al., 2021). Ammonium and nitrates are more efficient in
Pb remediation by A. niger and phosphate (Feng et al., 2022). In
addition, calcium can stimulate A. niger to secrete more organic
acids, hence the calcium-based nitrogen fertilizer is more suitable for
Pb remediation by PSF and phosphate (Tian et al., 2021a). In
addition, other microorganisms such as Rhodotorula
mucilaginosa (Rho) can secrete large amounts of extracellular
polymers (EPS) to form EPS-Pb in Pb toxicity resistance (Li
et al., 2019). The addition of phosphate can significantly promote
the secretion of EPS by Rho (Tian et al., 2022a). The Pb remove ratio
in Rho and phosphate reached 99.9% (Tian et al., 2022a). In
addition, the polysaccharides and other nutrients contained in
EPS can support the growth of PSF. Therefore, EPS can be
applied as a synergist in Pb remediation by PSF and phosphate.

5 Discussion

In summary, the combination of PSF and phosphate in Pb
remediation is an effective way in current research. On the one hand,
PSF can secrete oxalic acid to promote the release of P from
phosphate, and the released P can react with Pb cations to form
highly insoluble pyromorphite. On the other hand, the secreted
oxalic acid by PSF can also react with Pb to form insoluble lead
oxalate Figure 1. However, this pathway is also limited due to the
long-time dissolution of phosphate and the formation of insoluble
Pb minerals. Increasing the secretion of oxalic acid by PSF is the key
factor in Pb remediation by the combination of phosphate. Hence,
the ability of oxalic acid secretion by PSF should be considered in a
different environment. In the future, the enhancement of the micro-
interface process in Pb remediation by PSF and phosphate should be
explored, especially in strengthening the participation of oxalic acid.
Improving the production of oxalic acid via the different pathways
can promote Pb remediation faster and completely to reduce Pb
toxicity. In addition, to obtain the best Pb remediation purpose in
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the environment, choosing the suitable PSF and phosphate are
needed in practical application.
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