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We report on the use of a lab-on-CMOS biosensor platform for quantitatively
tracking the proliferation of RAW264.7murine Balb/cmacrophages.We show that
macrophage proliferation correlates linearly with an average capacitance growth
factor resulting from capacitance measurements at a plurality of electrodes
dispersed in a sensing area of interest. We further show a temporal model that
captures the cell number evolution in the area over long periods (e.g., 30 h). The
model links the cell numbers and the average capacitance growth factor to
describe the observed cell proliferation.
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1 Introduction

Macrophages are innate immune cells that specialized inflammatory functions related to
damage detection, pathogen recognition, clearance, and wound healing (Wynn et al., 2013).
To perform these heterogeneous functions, macrophages undergo polarization whereby cells
produce a specialized phenotype in response to environmental stimuli. Tissue-resident
macrophages become polarized during the progression of infectious disease and chronic
diseases like cancer, neurodegeneration, and autoimmunity (Williams et al., 2018; Ma et al.,
2019; Reis-Sobreiro et al., 2021). As such, drug targeting for the purpose of re-polarizing
macrophages is a major basic and translational research area.

Macrophage inflammatory functions can be detrimental and contribute to disease
progression. For instance, atherosclerotic plaque progression and rupture can be fueled
by macrophage-mediated inflammation (Tang et al., 2015). In another example, tumor-
associated macrophages (TAMs) can produce chemokines that in turn promote tumor
metastasis, immune escape, and lung metastasis in breast cancer (Zheng et al., 2023). In yet
another example, the inflammatory responses involving infiltration and activation of liver
macrophages can play a vital role in acute liver failure (Cai et al., 2023). Thus, in the
management of the aforementioned diseases, attenuating local macrophage proliferation can
be an appealing therapeutic target.

To facilitate in vitro studies of macrophage proliferation and to provide a tool for label-
free and real-time mechanistic investigations, we present herein an electronic microsystem,
specifically, a lab-on-CMOS platform, that achieves real time macrophage proliferation
monitoring using a capacitance-sensing bioelectronic interface. A lab-on-CMOS device is a
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platform that integrates lab-on-a-chip technology with
complementary metal-oxide semiconductor (CMOS) chips for
biosensing (Roussel et al., 2006; Christen and Andreou, 2007;
Sawan et al., 2010; Ghallab and Ismail, 2014; Yin et al., 2016;
Mason and Wan, 2017; Li et al., 2018; Lin et al., 2022). The
chips can feature circuits that are configured to transduce
biophysical and biochemical events to the electrical domain and
signal processing hardware for measurement, conditioning, and
reporting. The biological species under test, in our case the
macrophages and their liquid media, are applied directly on the
chip’s surface where a plurality of sensors are disposed. Other parts
of the chip are isolated from the cell media using a custom-designed
package configured to preserve the chip’s electrical integrity while it
is operating in a wet environment.

Our chip’s transduction mechanism is based on interfacial
capacitance sensing (Forouhi et al., 2018; Forouhi et al., 2019).
The principle of operation of interfacial capacitance sensing is like
that of electrical cell-substrate impedance sensing (ECIS)
(Susloparova et al., 2013; 2015; Hu et al., 2021). ECIS measures
changes in impedance at a sensing electrode as a function of
frequency and time, whereas interfacial capacitance biosensing
tracks changes in capacitance at the sensing electrode as a
function of time (Hedayatipour et al., 2019).

While both methods can yield the same information about a cell
culture overlying a set of sensing electrodes, capacitance sensing
circuit architectures are simpler to implement because the complex
current sourcing and wide band frequency scanning circuitry
typically used in ECIS schemes are not needed to sense changes
in capacitance (Hedayatipour et al., 2019). Rather, simpler
topologies can be employed to convert the sensed capacitance
into a voltage, a current, a frequency, or a pulse width (Ferlito
et al., 2020).

Capacitance sensing bioelectronics is well-established. For
example, it is used in the biopharmaceutical industry to improve
scale-up cell culture processes (Konakovsky et al., 2015; Reinecke
et al., 2017; Metze et al., 2020). This includes using capacitance-
sensing probes to study and detect biomass and viable cell
concentrations in suspensions and to determine how close to
confluency a batch is. However, these use cases typically do not
include adherent cell lines and much less the ability to detect cell
counts from capacitance measurements.

Lab-on-CMOS capacitance sensors have also been
demonstrated previously (Forouhi et al., 2019). They are
advantageous because they allow smaller sample volumes to be
analyzed. And, a plurality of analysis functions and signal processing
can be integrated on the CMOS chip, which makes these
microsystems ideal for point-of-care applications. Their use has
been shown in drug cytotoxicity assays (Nabovati et al., 2019),
potency assays for chemotherapeutic agents (Senevirathna et al.,
2019a), viral infection assays (Abdelhamid et al., 2022), oral cell
analysis (Osouli Tabrizi et al., 2022), and nanoparticle-mediated
activation of neutrophils (Bunnfors et al., 2020).

Furthermore, the cell coverage of an electrode and its
relationship with the elicited capacitance change at the electrode
has been studied in order to quantify the relationship between
measured capacitance and cell density in a capacitance sensing
lab-on-CMOS device (Senevirathna et al., 2019a). For example,
Senevirathna et al. showed that the measured capacitance at an

electrode was correlated with the cell coverage at that electrode (B. P.
Senevirathna et al., 2019b). Further, Renegar et al. developed a
framework based on deep neural network image segmentation
techniques to study the correlation between the measured
capacitance and the coverage of single cells at an electrode
(Renegar et al., 2022).

These works offer compelling evidence that biophysical
phenomena (e.g., cell spreading and coverage) modulate
interfacial capacitance. Furthermore, we have previously shown
that the culture conditions that modulate cell proliferation rates
yield differential capacitance responses. For example, we have
shown cells cultured with growth rates inhibitors such as
chemotherapeutics (Senevirathna et al., 2019b) and tumor-
treating fields (Gilpin et al., 2022).

In the present study, we demonstrate a methodology for deriving
a temporal model that can track the evolution of the number of cells
in a wide area based on an average capacitance inferred from
measurements originating from a plurality of electrodes disposed
inside the area. This is unlike the aforementioned studies, which
focused on local effects at the electrode sites. In contrast, we show
herein that in sustained cell culture growth conditions, the set of
sensing electrodes can be considered as one electrode registering an
average capacitance growth factor over the course of the culture. We
further show that this average capacitance growth factor and the cell
counts registered over the area can be linked via a temporal model
that tracks the evolution of the cell numbers inside the area of
interest. This model and the data analysis techniques featured in this
paper lay the groundwork for a generalized framework for gaining
insights from capacitance sensors using multiple electrodes over a
wide sensing area.

2 Materials and methods

2.1 Lab-on-CMOS biosensing platform

The biosensing platform used in this study included a
microsystem configured for measuring cell proliferation and
migration (Senevirathna et al., 2016; Senevirathna et al., 2019c;
Gilpin et al., 2022). At its core, the microsystem included an
application-specific integrated circuit (ASIC) fabricated in a
0.35 µm CMOS technology. The ASIC chip included
16 capacitance-to-frequency (CTF) sensors structured in a 4 ×
4 array of integrated biosensor pixels with a spatial pitch of
196 × 186 μm. Each pixel included an interdigitated electrode
structure with a sensing area of 30 × 30 μm2 and dedicated
circuitry for transducing cell adsorption, movement, or life cycle
events (e.g., mitosis) into an electrical signal. The electrodes were
isolated from the cell media using the CMOS process’ native
passivation layer. The sensors measure the capacitance at the cell
interface, and they generate a digital signal that is outputted to an
off-chip microcontroller via an on-chip I2C interface. The sensors’
principle of operation is described below, referring to Figures 1A–C.

The input capacitance to the electrode is labeled ΔCSENSED, and
it consists of two capacitances. The first is the electrode’s intrinsic
capacitance, which is variable, and the second is a fixed parasitic
capacitance that exists between the electrode and a reference node of
the circuit. The effective capacitance Ci+ at node x, which consists of
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the parallel combination of the two aforementioned capacitances, is
mapped to a frequency f (Ci+). In a cell assay using this sensor, for
example, during the sedimentation phase when a cell gets close to
the interdigitated electrode, ΔCSENSED changes from its baseline
value as a result of perturbations in the coupling field established by
the electrode fingers; these perturbations change the electrode’s
intrinsic capacitance. The frequency of the test signal is
continually monitored, and it is used to calculate a relative
change in capacitance, and this change in capacitance is
subsequently correlated with cell activity.

2.2 System integration and experimental
setup

The microsystem included an integrative package capable of
maintaining the chip’s electrical integrity while allowing liquid
samples to be applied onto its sensing surface. The packaging
procedure employed was described in previous publications
(Dandin et al., 2009; Datta-Chaudhuri et al., 2014; Gilpin et al.,
2022). Briefly, it included attaching the ASIC die directly onto a PCB
daughter board, which included a redistribution pad frame. Once
attached to the PCB, the die’s I/O pads were wire-bonded directly to
the leads of the redistribution pad frame. The wire-bonds were
encapsulated with an impermeable epoxy. A subsequent
encapsulation step was employed, extending the encapsulant
from the edge of the chip to the edge of the redistribution
platform in order to make a platform onto which additional
structures could be built. A cell culture-compliant dish was then
glued to the resulting epoxy platform. Within the cell culture dish, a
second chamber was made using a 1 cm spectroscopy cuvette. Two
holes were machined at the base of the cuvette in order to allow fluid
exchange between the cuvette and the outer dish. The cells were
plated inside the cuvette, and cell media was used to fill the dish with
enough fluid to cause the cuvette to be filled to the brim, at which
point a glass cover slip was placed on top of the cuvette.

This two-chamber arrangement was used in order to minimize
fluid evaporation over the sensing area as well as to maintain a

constant focus for imaging (Senevirathna et al., 2019a). The two-
chamber arrangement utilizes no active medium perfusion. Rather,
the setup is merely a culture well that includes an inner
compartment and an outer compartment. The ports allow the
medium to fill up both compartments. The inner compartment is
filled to the brim, and it is subsequently covered using glass cover
slip during the experiment. This approach provides the benefit of
having a smaller evaporation rate in the inner compartment relative
to the evaporation rate in the outer compartment. Because the
region of interest is inside the inner compartment, this means
that during the experiment, the optical path seen by the
microscope does not change rapidly due to medium evaporation.

All experiments were conducted in a cell culture incubator at
37°C and under 5% CO2. A bright field upright optical microscope
was placed inside the incubator to monitor the cells on top of the
chip. Microscopy images were obtained every 5 min over the
duration of the experiment (typically 24–48 h) using a C-mount
digital camera attached to the microscope. The data acquired from
the chip and the images were automatically uploaded to a
decentralized cloud environment where image processing and
data analytics were performed using custom algorithms. Figure 2
illustrates the various components of the system.

2.3 Cell culture

Murine Balb/c Raw 264.7 macrophages from an immortalized
cell line were purchased (ATCC) and cultured in a T75 flask with
culture media containing DMEM (ThermoFisher Scientific) without
phenol red and with a pH buffer (HEPES) having 10% FBS (VWR).
Culture media was removed from the T75 flask, and 7 mL of sterile
PBS was added to the culture flask and incubated for 5 min to wash
the cells. The PBS was removed, and 7 mL of media was added to the
flask. A cell scraper (VWR) was used to resuspend the cells in the
media. A volume of 5 mL containing the cells was added to a 15 mL
centrifuge tube and centrifuged for 5 min. The supernatant was
removed, 2 mL of fresh media was added to the centrifuge tube, and
the cells were resuspended and added to a new T75 flask with 8 mL

FIGURE 1
(A) System architecture of a CMOS capacitance sensor. The sensor consists of 16 individually-addressable capacitance-to-frequency pixels, and
each pixel includes a ring oscillator circuit. (B) Top view of an interdigitated electrode. (C) Cross-sectional view showing the sensor’s transduction
mechanism.
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of fresh media. From a mixture having an estimated cell density of
2,80,000 cells/mL, we pipetted 7 mL of the cell solution so that the
starting number of cells seeded in the microsystem was ~2 million.
We note that upon seeding the cells at that density in the
microsystem’s analysis well, only a small fraction of the starting
cell population fell in the area spanned by the electrode array, and
the starting number of cells around the electrode array was sufficient
to register sustained cell culture growth. As such, for each of the five
experiments featured in this paper, the starting cell density of
280,000 cells/mL was used to ensure that there were enough cells
in the sensing area to conduct our proliferation experiments over a
30-h period.

2.4 Data collection and analysis

The data yielded by the experiments consisted of a time series
dataset originating from measurements from the 16 sensors

comprised on the chip and of an imaging dataset originating
from micrographs acquired by the camera attached to the
microscope. The time series data consisted of capacitance change
measurements (ΔC) from all the electrodes, performed every 29 s.
As noted previously, the imaging dataset was generated by taking an
image of the cell culture every 5 min. Both datasets were time-
stamped automatically by the control program, and experiments
were typically conducted for 48 h. Exemplary data from each dataset
are shown and discussed in detail in the following subsections and in
the Supplementary Information document accompanying the paper.

2.4.1 Imaging dataset
Figure 3 shows a subset of post-processed images from the

imaging dataset, with a white box enclosing the region of interest
(ROI), i.e., the sensing area spanned by the 4 × 4 electrode array.
Prior to cell counting, the images were post-processed using image
processing packages available in python (Open CV, matplotlib, and
numpy). Post-processing included contrast enhancement,

FIGURE 2
(A) The experimental setup includes an incubator maintained at 37°C and 5% CO2 and in which a microscope and a camera are mounted. The
microsystem is mounted on a daughter board and subsequently connected to a mother board that includes a microcontroller and additional ancillary
circuits for data acquisition and control. (B) Cross-sectional view of the integrative package used in the study. A two-well system is used in order to
maintain a constant focus and minimize evaporation. (C) Photograph of the microsystem.

FIGURE 3
(A,B) Photomicrographs of the microchip at two different times after macrophages are plated thereon in a cell medium. (C). Markers showing cells
identified by the computer vision code used to estimate the number of cells in the ROI. Additional details about the computer vision code are provided in
the Supplementary Information document accompanying the paper.
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sharpening, and applying a false color scheme. These post-
processing steps were conducted to enhance image quality in
order to better visualize the cells adhered to microchip’s surface
and further to facilitate the automatic detection and counting of cells
using a custom-designed Python algorithm for cell identification
and pattern classification. This algorithm is further described in
detail below.

Cell counting was effected using a custom template matching
algorithm developed in Python. Briefly, the algorithm first included
post-processing the images of the dataset, as described above.
Second, using a reference image with cells present in the ROI, a
template was extracted by overlapping each cell in the image with its
center aligned to the others and taking an average intensity. The
template served as a correlation filter which the algorithm attempts
to retrieve in subsequent images in the dataset. When a high
correlation between a feature in an image and a template was
obtained, the algorithm flagged the location as likely having a
cell, and it marked the image with a graphical indicator (e.g., a

red square, as shown in Figure 4) at that location (Kim and de
Araújo, 2007; Bolme et al., 2009). To count the cells in the image, the
algorithm reported the number of indicators registered upon parsing
the ROI on a pixel-by-pixel basis. A result of the cell counting
algorithm is shown in Figure 3C for one representative image.

2.4.2 Time series dataset
The time series data set included measurements from the

capacitance sensors comprised in the array. A measurement was
taken every 29 s, yielding 16 data points (one for each electrode), and
for the duration of the experiment. The change in capacitance was
calculated by subtracting an initial measurement of capacitance
prior to the start of the experiment from each of the
instantaneous measurements obtained during the experiment.
Figure 4A.) shows the resulting measurement traces across the
array for the macrophage growth experiment depicted in Figure 3.

Contrary to previous works on integrated capacitance data for
cell measurements where cell coverage of the electrode was
correlated with the measured capacitance, in this study, we
consider the average capacitance obtained from all the electrodes
in the array and seek to correlate it with cell growth. We argue that
this average capacitance can be considered as an overall indicator of
cell growth in the ROI, where each electrode serves to sample the
ROI spatially, and we seek to establish a temporal model that links
cell numbers and the average capacitance.

Furthermore, to obtain a capacitance curve that characterizes
capacitance growth in the ROI for a given period of time, we utilize
the trend of the data rather than instantaneous average capacitance
data. This means local temporal variations in capacitance due to
Brownian motion, cell movements in the vicinity of the electrodes,
and detector noise are averaged out. To obtain this trend, we fitted
the average data with a Savitsky-Golay (SG) filter of the third order,
with a frame length equal to n-1, where n is even and is the number

FIGURE 4
(A) Time series data obtained from a macrophage growth
experiment. The traces corresponds to the measurements from the
sensor array, and each color corresponds to one electrode in the ROI.
(B) Average capacitance data (gray) were obtained by averaging
the measurements from all the pixels. The solid black trace is a trend-
preserving fit that is obtained using a Savitsky-Golay filter.

FIGURE 5
Capacitance growth factor (S) histogram for the time series
capacitance dataset. This histogram shows the extent of capacitance
growth factors over the entire electrode array as well as the number of
occurrences of measured capacitance growth factors in the
dataset. The distribution’s mean is Savg = 3.38 aF/h, with a standard
deviation of σ = 16.57 aF/h. The parameter Savg is the average
capacitance growth registered during the experiment.
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of points in the average capacitance time series (Savitzky and Golay,
1964). Figure 4B shows the results of the fit, which were obtained
using Matlab. This fit captures the trend of the capacitance
registered in the ROI over the course of an experiment for a
period of ~30 h.

To compute a single capacitance growth metric, one may
simply perform a piece-wise linear approximation of the SG fit
and estimate therefrom a capacitance growth factor S (in ΔC/hour)
for each segment, S being the slope of the segment. An average
capacitance growth parameter Savg may be computed by averaging
all the slopes. The piece-wise linear approximation may be
performed by dividing the SG trace in 1-h overlapping
segments, with a half-hour overlap between segments.
Subsequently, a linear regression may be conducted on each
segment to estimate the average capacitance growth factors S,
from which Savg may be computed. Alternatively, a histogram of
all the slopes calculated from SG fits of each pixel trace may be
constructed, and the mean value of the resulting distribution can
be used as the average capacitance growth parameter Savg. The
standard deviation of the distribution provides an appreciation for
the deviation away from the mean capacitance growth factor
registered during the experiment.

The latter method was used, and its results are shown in
Figure 5. The capacitance growth factors obtained for the entire
dataset were binned to form a histogram that highlighted the
diversity of capacitance growth factors across the ROI, and the
mean of this distribution provided an average capacitance growth
factor estimate over the ROI, denoted Savg. For the featured dataset,
the average capacitance growth factor Savg was 3.38 aF/hr, with a
standard deviation of 16.57 aF/hr. Here we assume that the
distribution may be approximated as a normal distribution with
the same mean and standard deviation. Our rationale for this

assumption, along with normality tests are reported in the
Supplementary Information document accompanying this paper.

3 Results

We conducted several growth experiments and analyzed their
results using the methods discussed above. We feature herein five
representative experiments where macrophages were cultured on
the chip and left to proliferate for 48 h. The first 30 h of each
experiment were considered for studying macrophage growth
dynamics and for correlating measured capacitance results with
cell counts estimated via imaging. This time frame was chosen
empirically based on observations that the ROI would saturate with
cells beyond 30 h, thus resulting in a reduced cell growth rate in the
ROI. Figure 6 illustrates the average SG fits for each of the five
experiments starting from t = 0 to t = 30 h.

Cell counts were estimated for each experiment using our
custom Python code. To do so, a subset of images from the
imaging dataset was chosen. The time stamps for each image
were extracted, and the number of cells in the ROI was estimated
by the algorithms. Furthermore, the values of the average
capacitance data at the same time stamps were extracted from
the time series dataset. Our results show that the natural
logarithm of the cell counts was highly correlated with the
average capacitance and that the correlation was linear. Figure 7
shows the correlation results for Experiment 1. Similar results were
obtained for Experiments 2–5, but they are omitted here for
conciseness. The data for these additional experiments are
reported in the Supplementary Information document
accompanying this paper.

This finding, specifically, that the logarithm of cell counts and
average capacitance follow a linear relationship, lays the foundation

FIGURE 6
SG trends for five experiments. The high cell culture growth
phase is assumed to be within the first 30 h. Different average
capacitance growth factors Savg were registered across the five
experiments. The experiments are labeled 1 through 5 and color
is used to distinguish them. The Supplementary Information
document features an experiment where cell medium only was used,
and this experiment revealed no increase in average capacitance as
shown here for the five macrophage proliferation experiments.

FIGURE 7
Correlation plots of estimated cell counts (in natural logarithm
scale) and the measured average capacitance. Pearson’s correlation
coefficients r and its corresponding p-value for Experiment 1 are r =
0.96 and p < 10–8. Correlation plots for Experiments 2–5 are
reported in the Supplementary Information document accompanying
the paper.
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for a time-dependent model that can be used to predict future cell
numbers or to calculate the instantaneous number of cells in the
ROI, after sufficient capacitance measurements and images have
been collected.

To construct a temporal model that relates cell numbers and
capacitance, we first used a linear regression to fit a line between the
logarithm of the measured number of cells and the measured
average capacitance data for the ROI, and we write Eq. 1, which
captures this log-linear relationship. Here, Nm is the number of cells,
α is the slope of the line, ΔCm is the average capacitance of the ROI,
and K is the intercept of the line.

ln Nm( ) � αΔCm + K (1)
ln Nm( )

t
� αΔCm

t
+ K

t
(2)

Savg � ΔCm

t
(3)

ln Nm( ) � αSavgt + K (4)
eln Nm( ) � eαSavgt+K (5)

Nm � AeαSavgt, whereA � eK (6)
Eq. 1 is normalized by the variable t, yielding Eq. 2, which

introduces the time dependence in the model. Here, the implicit
assumption that is made is that the log-linear relationship between
the number of cells and the measured average capacitance is itself
time-invariant. Specifically, we assume that neither α nor K has a
time dependence. We will discuss in the following section situations
under which this assumption fails and in which, consequently, the
proposed model cannot accurately capture the temporal evolution of
the cell population within the ROI.

In Eq. 3, we assume that the term ΔCm/t is the average
capacitance growth factor Savg. As previously noted, the Savg
factor is a measure of the average rate of change of the
capacitance for a normally distributed set of average rates across
the ROI. Thus, our assumption here is justified since that for any
given capacitance growth rate ΔCm/t, there is a roughly 70%
probability that this rate is within one standard deviation of the
mean of the distribution. This, of course, is because the distribution
is assumed to be Gaussian, as shown in Figure 5. Lastly, there is
another caveat. For distributions with large standard deviations, Eq.
2 is less likely to hold. However, we posit that datasets with large
standard deviations would fall in the category for which the model
would not hold anyway, as we shall discuss later.

Equations 4, 5 show the intermediate steps that lead to Eq. 6,
which broadly states that the number of cells in the ROI follows an
exponential dependence time, and where the argument of the
exponential includes experimentally determined constants α, A,
and Savg. Predictably, simply fitting Eq. 6 to the measured cell
counts as a function of time does not work. This is readily
observable when one considers that the constant A depends on
the y-intercept of the linear fit. As such, at t = 0, Eq. 6 is likely to
predict the cell count erroneously. In other words, the intercept may
differ enough from the actual value and bias the exponential away
from the measured data.

Thus, we posit that Eq. 6 is a generalized temporal model that
links measured capacitance growth factor and measured cell
numbers. Consequently, Eq. 6 must be updated further in order
to obtain an experiment-specific model that depends on

independent variables that are particular to the experiment.
These independent variables consist of time, which is already
captured in Eq. 6, and two other independent variables which are
the cell numbers at two specific times. The latter two variables form
boundary conditions for Eq. 6. The first boundary condition is N0,
i.e., the number of cells at time t0, and the second boundary
condition is Nf, the number of cells at time tn, where n is strictly
positive. The particular model is formulated in Eq. 7. The constants
Γ and β can be determined using the boundary conditions shown in
Eqs 8, 9, provided N0 and Nf are known. The parameters α and Savg
are determined experimentally using the imaging and time series
datasets for the time interval (t0, tn).

Nm � ΓeαSavg t + β (7)
ΓeαSavgt0 + β � N0 (8)
ΓeαSavgtn + β � Nf (9)

We tested the particular temporal model against the cell count
measurements for each of the five experiments. Good agreement was
found between the estimated cell counts and the temporal model, as
can be seen in Figure 8, which shows the model for Experiment 1.
The goodness of the model was evaluated using an adjusted-R2

coefficient of determination, where the number of independent
variables was k = 3.

Table 1 summarizes the measured results for the five
experiments. We report the Savg parameters computed for each of
the five experiments and the Pearson correlation coefficient and its
associated p-value, which assess the correlation between measured
capacitance and measured cell numbers. Further, we report the R2

and the adjusted R2 values of the proposed model. Table 1 also
reports the doubling time calculated from the model.

We caution here that our measured doubling time may not
equate to the cell line’s doubling time. Specifically, our measured
doubling time only accounts for the time it takes for the initial

FIGURE 8
Temporal model linking cell numbers and capacitance. The
model utilizes the average measured capacitance growth Savg to
account for the cell numbers at time t ∈ (t0 = 0, tf = 30) for Experiment
1. t ∈ Temporal model plots for Experiments 2–5 are reported in
the Supplementary Information document accompanying the paper.
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number of cells inside the ROI to double, and it is calculated based on
our temporal model and confirmed by the imaging data. Therefore,
it only accounts for the measured activity inside the ROI, and thus it
is not a measure of the cell line’s characteristics. In other words,
because the number of cells in the ROI is small (e.g., there are only a
few hundreds to a thousand cells in the ROI, from the two million
that were seeded initially), the doubling time estimated with such a
small sample lacks the statistical significance to conclude that the cell
line would have the same doubling. Rather, our measurement
merely provides a metric for analyzing the cell number evolution
inside the ROI during the experiment. This number varies from
experiment to experiment, and, for example, as shown in Table 1, in
some cases, the number of cells in the ROI does not double during
the observation period (Experiment 5).

4 Discussion and conclusion

This study demonstrated a system configured for tracking
macrophage proliferation in real time in an area spanned by
multiple capacitance sensing electrodes in situ during their
culture on an electronic chip. While cell culture on electronic
chips has been shown before, particularly on capacitance sensing
chips, several novel contributions stem from our work. We
demonstrate that a set of electrodes that are sparsely disposed
within a region of interest can serve to monitor cell proliferation
kinetics temporally over the entire region. Specifically, we show that
an average capacitance growth factor measured by all the electrodes
in the area is a linkage factor for a model that relates cell numbers to
measured capacitance. This model (shown in Eqs 7–9 accurately
tracks cell proliferation in the ROI, provided that the number of cells
is known at two distinct times.

One of the model’s key determinants is the degree of correlation
that exists between the measured cell counts and the average
capacitance when estimating the parameter α in Eq. 7. Recall that
this parameter is the rate of change of the number of cells as a function
measured capacitance, and we assumed that it was constant and time-
invariant, and thus that capacitance and the logarithm of the cell
numbers were linearly correlated. These conditions must be met in
order to ensure that the temporal model accurately describes cell
culture growth in the ROI.

However, there are several conditions under which the degree of
correlation between average capacitance and cell numbers may be
reduced, which would reduce the accuracy of the model shown in

Eqs 7–9. For instance, when the ROI experiences non-negligible cell
migration, whether in or out of the ROI, there may be a non-linear
correlation between measured capacitance and measured cell
numbers. This scenario would likely invalidate the assumption
that the parameter α is constant and time-invariant, and Eqs 7–9
would thus not be adequate to describe the cell dynamics within the
ROI. Such a scenario may cause a larger spread around a mean
capacitance growth factor, since electrodes that are closer to the
migration sites in the ROI may experience a much greater or much
lower average growth factor, depending on the direction of the
migration.

In yet other situations, the correlation between the two
measured variables may be reduced. For example, the degree of
sparsity of the electrodes inside the ROI may significantly reduce the
correlation between the observed capacitance and the number of
cells inside the ROI. This is because the farther apart the electrodes
are, the more localized their individual responses are. As such,
measured capacitance would only correlate with small groups of
cells that are in the vicinity of the electrodes. Conversely, in ROIs
that are densely populated with electrodes, it is more likely to obtain
high correlations, and thus, this should be a design goal in future
capacitance-sensing lab-on-CMOS devices. However, increasing
electrode density has practical implications for performance: the
closer electrodes are placed, the more a single electrode serves as a
parasitic load to its nearest neighbors. This would reduce electrode
sensitivity. As such, there is a density-to-sensitivity trade-off that
must be mitigated at the circuit design phase.

The lab-on-CMOS platform featured in this paper is suited for
label-free studies of two-dimensional cell cultures. It has been used
in two-dimensional cell studies for quantitatively characterizing
the potency of external stimuli on cells under study. For instance,
Senevirthna et al. showed a capacitance-based study for assessing
the potency of a chemotherapeutic agent (cisplatin) on two types of
ovarian cancer cell cultures, with one culture featuring cells that
were sensitive to the chemotherapy and the other cells that were
less sensitive to it. The study revealed a differential capacitance
response between the two cultures, indicating a difference in
proliferation activity, consistent with the respective sensitivities
of the two types of cells to the chemotherapy. Furthermore, Gilpin
et al. showed that capacitance sensing could be used to monitor the
real time effect of tumor-treating fields (TTFields) on breast cancer
cells, thereby providing a simple tool for conducting efficacy
studies of different TTField regimens on breast cancer cells.
And, Bunnfors et al. showed that capacitance sensing could be

TABLE 1 Summary of experimental results and statistics for the five experiments. The last column of the table shows the estimated doubling time td based on the
proposed model. In Experiment 5, the cells did not double in number inside the ROI during the 30-h period.

Experiment ID Savg
(aF/hr)

σ
(aF/hr)

rc, n p-value R2 adj. R2 td
(hr)

1 3.38 16.57 0.96 1.09E-9 0.97 0.96 26

2 4.19 20.43 0.96 5.11E-10 0.83 0.79 20

3 2.87 25.15 0.94 1.66E-6 0.93 0.91 21

4 8.83 10.53 0.94 8.31E-7 0.93 0.91 28

5 11.77 7.49 0.96 1.61E-8 0.87 0.83 —
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used to track the nanoparticle-triggered activation of human
neutrophil granulocytes.

The present work will augment the capabilities of capacitance
sensor systems by providing a sensor analytics framework that can
be integrated in hardware or software as part of a lab-on-CMOS
digital signal processing (DSP) core. In this context, the proposed
model may be used periodically and selectively, i.e., on chosen time
segments during data acquisition, to predict short-term cell
populations swings.
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