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Background: Posterior long spinal fusion was the common procedure for adult
spinal deformity (ASD). Although the application of sacropelvic fixation (SPF), the
incidence of pseudoarthrosis and implant failure is still high in long spinal fusion
extending to lumbosacral junction (LSJ). To address these mechanical
complications, advanced SPF technique by multiple pelvic screws or multirod
construct has been recommended. This was the first study to compare the
biomechanical performance of combining multiple pelvic screws and multirod
construct to other advanced SPF constructs for the augmentation of LSJ in long
spinal fusion surgery through finite element (FE) analysis.

Methods: An intact lumbopelvic FE model based on computed tomography
images of a healthy adult male volunteer was constructed and validated. The
intact model was modified to develop five instrumented models, all of which had
bilateral pedicle screw (PS) fixation from L1 to S1 with posterior lumbar interbody
fusion and different SPF constructs, including No-SPF, bilateral single S2-alar-iliac
(S2AI) screw and single rod (SS-SR), bilateral multiple S2AI screws and single rod
(MS-SR), bilateral single S2AI screw and multiple rods (SS-MR), and bilateral
multiple S2AI screws and multiple rods (MS-MR). The range of motion (ROM)
and stress on instrumentation, cages, sacrum, and S1 superior endplate (SEP) in
flexion (FL), extension (EX), lateral bending (LB), and axial rotation (AR) were
compared among models.

Results: Compared with intact model and No-SPF, the ROM of global
lumbopelvis, LSJ, and sacroiliac joint (SIJ) was decreased in SS-SR, MS-SR, SS-
MR, and MS-MR in all directions. Compared with SS-SR, the ROM of global
lumbopelvis and LSJ of MS-SR, SS-MR, and MS-MR further decreased, while
the ROM of SIJ was only decreased in MS-SR and MS-MR. The stress on
instrumentation, cages, S1-SEP, and sacrum decreased in SS-SR, compared
with no-SPF. Compared with SS-SR, the stress in EX and AR further decreased
in SS-MR and MS-SR. The most significantly decreased ROM and stress were
observed in MS-MR.

Conclusion: Both multiple pelvic screws and multirod construct could increase
the mechanical stability of LSJ and reduce stress on instrumentation, cages, S1-
SEP, and sacrum. The MS-MR construct was the most adequate to reduce the risk
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of lumbosacral pseudarthrosis, implant failure, and sacrum fracture. This study may
provide surgeons with important evidence for the application of MS-MR construct
in the clinical settings.

KEYWORDS

sacropelvic fixation, multiple screw, multirod construct, lumbosacral junction, finite
element, Biomechanics, spinal fusion, spinal deformity

Introduction

Adult spinal deformity (ASD) is a heterogeneous spectrum of
abnormalities causing spinal malalignment in sagittal and coronal
plane (Kim et al., 2020). With prolonged life expectancy, the
prevalence of ASD is up to 68% in the elderly population (Ames
et al., 2016). Patients with ASD commonly complain of low back
pain, radiculopathy, disability, and poor health-related quality of life
(HRQoL) (Pellisé et al., 2015; Yang et al., 2023). As a reliable and
lasting solution, surgical treatment for ASD has gained popularity in
the last decade (Safaee et al., 2020). The primary goals of surgery are
to improve HRQoL through restoration of spinal alignment and
resolution of neurological deficit.

Posterior long spinal fusion was the most common surgical
procedure for ASD. However, if the construct was extended to the
sacrum, a high incidence of mechanical complications including
pseudoarthrosis (19.0%–83.0%) and implant failure (23.7%–56.0%)
has been reported due to the sacral cancellous nature, complex
anatomy, and substantial shear forces at the lumbosacral junction
(LSJ) (Kim et al., 2006a; Kim et al., 2006b; Kim et al., 2010; Finger
et al., 2014; Guler et al., 2015; Hallager et al., 2017; Eastlack et al.,
2022). Strategies for addressing this concern predominantly
included anterior column support and sacropelvic fixation (SPF)

to enhance the fusion rate at the LSJ and increase construct stiffness.
SPF traditionally involves iliac screw or S2-alar-iliac (S2AI) screw.
S2AI fixation has increased in prevalence in recent years owing to
various advantages over iliac screw placements (Jain et al., 2016;
Hasan et al., 2020). S2AI screw could get a stronger anchor through
additional purchase in the sacrum and sacroiliac joint (SIJ). Also,
S2AI was in-line with S1 screws; therefore, the need for medial-to-
lateral connectors could be avoided.

Although the application of SPF, the incidence of implant failure
is still unsatisfactory, with reported rates ranging from 12.0% to
46.9% (Park et al., 2021b; Gao et al., 2021). In recent cohort studies,
advanced SPF technique by multiple pelvic screws or multirod
construct has been recommended following long spinal fusion to
stabilize the LSJ further, protect the primary rod and screws, and
reduce the persistent motion of SIJ (Uotani et al., 2021; Lee et al.,
2022a; Lee et al., 2022b). However, there was only one small-size
cohort study reporting the application of combining the multiple
pelvic screws and multirod construct, without any control groups
(Shen et al., 2018). Whether this kind of construct could further
decrease the risk of mechanical complications remains unknown.
Understanding the biomechanical advantages of this construct could
provide surgeons with some valuable guidance to solve the arising
problems of mechanical complications in long spinal fusion surgery.

FIGURE 1
The intact lumbopelvic finite element model.
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This was the first study to compare the biomechanical
performance of combining the multiple pelvic screws and
multirod construct to other advanced SPF constructs for the
augmentation of LSJ in long spinal fusion surgery through finite
element (FE) analysis.

Materials and methods

Construction of the intact FE model

A healthy 30-year male volunteer (175 cm tall and 68 kg) was
recruited. History of low back pain, leg pain, spinal degeneration,
deformity, infection, trauma, tumours, and abnormality of bone
mass was ruled out. The study protocol was approved by the
Research Ethics Committee of Beijing Chao-Yang Hospital (2022-
11-02-4), and informed consent was obtained from the participant.
A 128-slice spiral computed tomography (CT) scan (SOMATOM
Definition AS+, Siemens, Germany) from L1 to pelvic with a
thickness of 0.625 mm was performed for the participant. The
tomographic images were imported into Mimics Research 21.0
(Materialise, Belgium) for three-dimensional (3D) reconstruction in
Digital Imaging and Communications in Medicine format (DICOM).
Through region growing, threshold segmentation, and manual mask
editing, a basic 3D lumbopelvic contour model was generated and
stored in STL format. Subsequently, the above data were imported into
Geomagic Studio 12 (Geomagic, United States) to construct the bony
contour of lumbopelvic model by smoothing, denoising, and reverse-
engineering, and the geometric model was saves as STP format. Next,
Hypermesh 17.0 (Altair Engineering, United States) was used for pre-
processing procedures of FE analysis, including meshing, material
properties assignment, definition of interaction, and application of
loading and boundary conditions.

The lumbopelvic geometric model was composed of the
vertebral body, intervertebral disc, and posterior elements.

The vertebral body included cortical bone, cancellous bone,
and cartilaginous endplates. The intervertebral disc was
consisted of nucleus pulposus and annulus fibrosus, a ground
matrix reinforced by fibres. The thickness of the cortical bone
and endplate was set as 1.0 mm and 0.5 mm, respectively. The
nucleus pulposus accounted for around 50% of the
intervertebral disc volume, and the thickness of the articular
cartilage was assumed to be 0.2 mm. A frictionless surface
contact between facet joints was assigned, and the SIJ
interaction was modelled as surface-to-surface contact with a
frictional coefficient of 0.4 (Kiapour et al., 2020). Ligaments
included anterior longitudinal ligament, posterior longitudinal
ligament, ligamentum flavum, capsular ligament,
intertransverse ligament, interspinous ligament, supraspinous
ligament, anterior sacroiliac ligament, posterior sacroiliac
ligament, interosseous sacroiliac ligament, sacrospinous
ligament, sacrotuberous ligament, superior pubic ligament,
arcuate pubic ligament, inguinal ligament, and the iliolumbar
ligament were generated using hyper-elastic, tension-only, two-
node Truss elements (T3D2). The insertion locations of
ligaments were referenced from the anatomical attachment
points. The intact FE model included 173,636 nodes and
738,423 elements (Figure 1). The properties of all
components in the lumbopelvic model were listed in Table 1
and Table 2, according to the literature (Hakim and King, 1979;
Shirazi-Adl et al., 1984; Dalstra and Huiskes, 1995; Zheng et al.,
1997; Kawahara et al., 2003; Rohlmann et al., 2006; Phillips
et al., 2007; Schmidt et al., 2007; Shi et al., 2014; Sohn et al.,
2018).

Generation of the instrumented model

The instrumented model was posterior bilateral pedicle screw
fixation from L1 to S1 with posterior lumbar interbody fusion

TABLE 1 Material properties of the lumbopelvic finite element model.

Components Young’s modulus (MPa) Poisson’s ratio Element type Reference

Lumbar vertebra cortical bone 12000 0.30 C3D8R Kawahara et al. (2003)

Lumbar vertebra cancellous bone 100 0.30 C3D4

Sacrum cortical bone 6140 0.30 C3D6 Hakim and King (1979)

Sacrum cancellous bone 1400 0.30 C3D4

Ilium cortical bone 17000 0.30 C3D6 Dalstra and Huiskes (1995)

Ilium cancellous bone 132 0.20 C3D4

Sacrum cartilage 54 0.40 C3D8H Sohn et al. (2018)

Ilium cartilage 54 0.40 C3D8H

Pubic symphysis 5 0.45 C3D10 Shi et al. (2014)

Endplate 100 0.30 C3D4 Shirazi-Adl et al. (1984)

Annulus fiber 450 0.30 T3D2

Annulus matrix C10 = 0.18, C01 = 0.045 0.30 C3D8H Schmidt et al. (2007)

Nucleus pulposus C10 = 0.12, C01 = 0.03 0.50 C3D8H
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(PLIF) and SPF. There was no any facetectomy, laminectomy, or
discectomy from L1 to L4. Regarding to PLIF, resections of the
spinous processes, laminectomy, and inferior facetectomy were
performed at L5. The intervertebral disc and endplates of L5/
S1 were removed, and two cube-shaped fusion cages were
implanted. The instrumentation for SPF was different among
the instrumented models (Figure 2).

(1) No-SPF: SPF was not performed and only bilateral pedicle
screws were inserted at S1.

(2) Bilateral single S2AI screw and single rod (SS-SR): The primary
rod was anchored to single S2AI screw, and there was no any
accessory rods.

(3) Bilateral multiple S2AI screws and single rod (MS-SR): The
primary rod was anchored to dual S2AI screws, and there was
no any accessory rods.

(4) Bilateral single S2AI screw and multiple rods (SS-MR): The
primary rod was anchored to S1-PS. Medial accessory rod was
used, with distal end anchored to single S2AI screw and
proximal end connected to the ipsilateral primary rod by
rod-rod connector.

(5) Bilateral multiple S2AI screws and multiple rods (MS-MR): The
primary rod was anchored to S1-PS. Medial accessory rod was
used, with distal end anchored to dual S2AI screws and
proximal end connected to the ipsilateral primary rod by
rod-rod connector.

SolidWorks (Dassault Systems, United States) was used to design
and assemble the screws, rods, cages, and connecters in instrumented
models. The rods were simulated by fitting lines passing though centres

of screw caps. C3D8Rwas applied tomesh these implants. Ti6Al4V and
PEEK were assigned to the materials of the posterior instrumentation
and cages, respectively. The contact surface of screw-rod, screw-
vertebral body, and cage-endplate were set as tie constraints.

Validation of the intact FE model

The ROM of each lumbar segment and SIJ in this intact FE model
was compared to the data in several in vitro studies under equivalent
loading conditions (Panjabi et al., 1994; Lindsey et al., 2014; Cook et al.,
2015; Cross et al., 2018; Ntilikina et al., 2020; Sayed et al., 2021). For the
validation of ROMof each lumbar segment, the S1was constrained, and
pure moments of 7.5 Nm in flexion (FL), extension (EX), lateral
bending (LB), and axial rotation (AR) were applied to the superior
endplate (SEP) of L1. For the validation of ROM of SIJ, the right ilium
was fixed, and puremoments of 7.5 Nm in six directionswere applied to
L4-SEP.

The intradiscal pressure (IDP) of each lumbar segment was
compared to the data in a cadaveric test by Hsiao et al. (Hsiao
et al., 2022). Pure moments of 7.5 Nm with and without an axial
load of 500 N in FL, EX, and LB were applied to the superior endplate
of L1.

Validation of the instrumented FE models

As MS-SR, SS-MR, and MS-MR were relatively novel instrumented
models, no cadaveric study using these three models was reported. There
were two cadaveric studies using the instrumentedmodels ofNo-SPF and

TABLE 2 Material properties of the lumbar and pelvic ligaments.

Ligament Stiffness coefficient (N/mm) Reference

Anterior longitudinal ligament 1864 Rohlmann et al. (2006)

Posterior longitudinal ligament 236

Ligamentum flavum 58

Capsular ligament 384

Intertransverse ligament 11

Interspinous ligament 15

Supraspinous ligament 34

Anterior sacroiliac ligament 700 Zheng et al. (1997)

posterior sacroiliac ligament 400

Interosseous sacroiliac ligament 2800

Sacrospinous ligament 1400

Sacrotuberous ligament 1500

Superior pubic ligament 500

Arcuate pubic ligament 500

Inguinal ligament 250 Phillips et al. (2007)

Iliolumbar ligament 1000
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SS-SR, and both were performed by Pereira et al. (de Andrada Pereira
et al., 2021; de Andrada Pereira et al., 2022). After carefully reviewing the
cadaveric specimen information in these studies, we confirmed that the
cadaveric specimen were not reused. Only anterior lumbar interbody
fusion was performed at L5/S1 in the cadaveric instrumented models by
Pereira et al., without any laminectomy or facetectomy, which may
impact the stability and stress distribution of spine. To make our
validation more reliable, we restored the lamina and facet joints but
the interbody fusion cages were preserved before pure moments of
7.5 Nm were applied.

The ROM of L2-S1 and LSJ in the No-SPF and SS-SR models was
compared to the data in the studies by Pereira et al. (de Andrada Pereira
et al., 2021; de Andrada Pereira et al., 2022). The rod strains on
lumbosacral rod (between L5-PS and S1-PS) and S1-S2 rod were also
validated. Consistent with the protocol by Pereira et al., the rod trains
were measured on the posterior surface, at the middle level, on the
right side.

Loading and boundary condition

The loads and boundary conditions were set in Abaqus 6.10
(Dassault Systems, France) for FE analysis. In all the FE models, the
iliacwas fully constrained in all degrees of freedom.A load of 500 N and a
puremoment of 7.5 Nmwas applied to the nodes coupledwith L1-SEP to
simulate flexion, extension, lateral bending and axial rotation under the
physiological compressive load

Data analysis

The global ROM, the ROM of LSJ, the maximum von-Mises
stress (VMS) on instrumentation, the S1-PS, the lumbosacral
rods, the cages, the sacrum, and S1-SEP in FL, EX, LB, and AR
were compared among the intact model and instrumented
models.

Results

Validation of the intact and instrumented FE
models

The ROM of each lumbar segment and SIJ in the current
intact FE model was consistent with the data from the literature
(Figure 3). The IDP of each lumbar segment in the intact FE
model was also consistent with the data from the study by Hsiao
et al. (Supplementary Figure S1). (Hsiao et al., 2022). The ROM
of L2-S1 and LSJ in the No-SPF and SS-SR instrumented models
was consistent with the data from the studies by Pereira et al.
(Supplementary Figure S2). (de Andrada Pereira et al., 2021; de
Andrada Pereira et al., 2022). The rod strains on lumbosacral
rod and S1-S2 rod were also well validated (Supplementary
Figure S3). The validations suggested that the intact and
instrumented lumbopelvic models in the present study were
effective and reliable, which could be used for further analysis.

FIGURE 2
Five instrumented models including instrumentations and cages. (A, B) No-SPF: SPF was not performed and only bilateral pedicle screws were
inserted at S1; (C, D) SS-SR: The primary rod was anchored to single S2AI screw, and there was no any accessory rods. (E, F)MS-SR: The primary rod was
anchored to dual S2AI screws, and there was no any accessory rods; (G, H) SS-MR: The primary rod was anchored to S1-PS. Medial accessory rod was
used, with distal end anchored to single S2AI screw and proximal end connected to the ipsilateral primary rod by rod-rod connector; (I, J) The
primary rod was anchored to S1-PS. Medial accessory rod was used, with distal end anchored to dual S2AI screws and proximal end connected to the
ipsilateral primary rod by rod-rod connector.
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Global ROM

The global ROM of intact model, No-SPF, SS-SR, MS-SR, SS-
MR, and MS-MR in all directions was demonstrated in Figure 4A.
Compared with intact model, the global ROM of No-SPF decreased
in all directions; compared with No-SPF, the ROM of SS-SR
decreased by 32.97%, 39.25%, 31.43%, and 38.21% in FL, EX, LB,
and AR, respectively. Compared with SS-SR, the ROM further
decreased in MS-SR, SS-MR, and MS-MR. The most significant
decreased ROM was observed in MS-MR, ranging from 27.30% in
LB to 54.21% in EX, compared with SS-SR. In FL, EX, and AR, the
ROM was similar between MS-SR and SS-MR; however, in LB, the
ROMwas similar between SS-SR and SS-MR, as well as betweenMS-
SR and MS-MR.

ROM of lumbosacral junction

The ROM of LSJ of intact model, No-SPF, SS-SR, MS-SR, SS-
MR, and MS-MR in all directions was demonstrated in Figure 4B.
Compared with intact model, the ROM of No-SPF decreased in all
directions; compared with No-SPF, the ROM of SS-SR decreased by

25.81%, 37.62%, 32.81%, and 36.18% in FL, EX, LB, and AR,
respectively. Compared with SS-SR, the ROM further decreased
in MS-SR, SS-MR, and MS-MR. The most significant decreased
ROM was observed in MS-MR, ranging from 43.25% in LB to
55.29% in FL, compared with SS-SR. The ROM of SS-MR decreased
by 20.71% in FL and 13.91% in AR but increased by 17.00% in EX,
compared with MS-SR. In LB, the ROMwas similar between MS-SR
and SS-MR.

ROM of sacroiliac joint

The ROM of SIJ of intact model, No-SPF, SS-SR, MS-SR, SS-
MR, and MS-MR in all directions was demonstrated in Figure 4C.
Compared with intact model, the ROM of No-SPF slightly
increased in all directions. Compared with No-SPF, the ROM
of SS-SR decreased by 82.03%, 73.36%, 55.83%, and 61.07% in FL,
EX, LB, and AR, respectively. Compared with SS-SR, the ROM of
MS-SR further decreased by 68.11%, 62.33%, 38.30%, and 76.09%
in FL, EX, LB, and AR, respectively. The ROM was similar
between SS-SR and SS-MR, as well as between MS-SR and
MS-MR.

FIGURE 3
Comparison of the range of motion between the intact model and in vitro studies. (A) range of motion of L1/2; (B) range of motion of L2/3; (C) range
of motion of L3/4; (D) range of motion of L4/5; (E) range of motion of L5/S1; (F) range of motion of sacroiliac joint.

FIGURE 4
Comparison of the range of motion among intact and instrumented models. (A) the global range of motion; (B) the range of motion of lumbosacral
junction; (C) the range of motion of sacroiliac joint.
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FIGURE 5
Comparison of the maximum von-Mises stress among instrumented models. (A) instrumentation; (B) lumbosacral rods; (C) S1-pedicle screws; (D)
cages; (E) S1-superior endplate; (F) sacrum.

FIGURE 6
Von-Mises stress on instrumentation of different instrumented models in flexion, extension, lateral bending, and axial rotation.
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Maximum von-Mises stress on
instrumentation

The maximumVMS on instrumentation in No-SPF, SS-SR, MS-
SR, SS-MR, and MS-MR in all directions was demonstrated in
Figure 5A and Figure 6. Compared with No-SPF, the maximum
VMS on SS-SR decreased by 6.79%, 14.93%, 9.71%, and 9.79% in FL,
EX, LB, and AR, respectively. Compared with SS-SR, the maximum
VMS further decreased in MS-SR, SS-MR, and MS-MR in all
directions. The most significantly decreased maximum VMS was
observed in MS-MR, ranging from 9.82% in AR to 27.30% in EX,
compared with SS-SR. In FL and LB, the maximum VMS gradually
decreased fromMS-SR toMS-MR; however, in EX and AR, the VMS
on SS-MR was slightly greater than MS-SR.

Maximum von-Mises stress on lumbosacral rods
The maximum VMS on lumbosacral rods in No-SPF, SS-SR,

MS-SR, SS-MR, and MS-MR in all directions was demonstrated in
Figure 5B. Compared with No-SPF, the maximum VMS on SS-SR
significantly decreased in EX. The maximum VMS was similar
between SS-SR and MS-SR in all directions; however, the
maximum VMS on both SS-MR and MS-MR were significantly
lower than MS-SR. The most significantly decreased maximum
VMS was observed in MS-MR, ranging from 16.54% in LB to
35.85% in EX, compared with SS-SR. Compared with SS-MR, the
maximum VMS on MS-MR further decreased by 9.64%, 18.44%,
5.90%, and 17.67% in FL, EX, LB, and AR, respectively.

Maximum von-Mises stress on S1-PS
The maximum VMS on S1-PS in No-SPF, SS-SR, MS-SR, SS-

MR, and MS-MR in all directions was demonstrated in Figure 5C.
Compared with No-SPF, the maximum VMS on SS-SR decreased by
20.09%, 16.06%, 8.98%, and 15.97% in FL, EX, LB, and AR,
respectively. Compared with SS-SR, the maximum VMS further
decreased in MS-SR, SS-MR, and MS-MR. The most significantly
decreased maximum VMS was observed in MS-MR, ranging from
28.71% in AR to 47.03% in EX, compared with SS-SR. In FL and LB,
the maximum VMS gradually decreased from MS-SR to MS-MR;
however, in EX and AR, the VMS on SS-MRwas slightly greater than
MS-SR. This trend was similar to that of global instrumentation.

Maximum von-Mises stress on cages
ThemaximumVMS on cages in No-SPF, SS-SR, MS-SR, SS-MR,

and MS-MR in all directions was demonstrated in Figure 5D and
Figure 7. Compared with No-SPF, the maximum VMS on SS-SR
decreased in FL, EX, and AR. Compared with SS-SR, in FL, the
maximum VMS significantly decreased in MS-SR and MS-MR but
comparative in SS-MR; in EX, the maximum VMS significantly
decreased in MS-SR, SS-MR, and MS-MR; in LB, the maximum
VMS significantly decreased in SS-MR andMS-MR but comparative
in MS-SR; in AR, the maximum VMS gradually decreased fromMS-
SR toMS-MR. Themost significantly decreasedmaximumVMSwas
observed in MS-MR, ranging from 16.48% in AR to 26.81% in LB,
compared with SS-SR. The maximum VMS in EX was similar
between MS-SR and SS-MR.

FIGURE 7
Von-Mises stress on cages of different instrumented models in flexion, extension, lateral bending, and axial rotation.
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Maximum von Mises stress on S1-SEP
The maximum VMS on S1-SEP in No-SPF, SS-SR, MS-SR, SS-

MR, and MS-MR in all directions was demonstrated in Figure 5E
and Figure 8. Compared with No-SPF, the maximumVMS on SS-SR
decreased by 9.62%, 9.90%, 12.67%, and 13.18% in FL, EX, LB, and
AR, respectively. Compared with SS-SR, in FL, the maximum VMS
significantly decreased in MS-SR and MS-MR but comparative in
SS-MR; in EX, the maximumVMS significantly decreased inMS-SR,
SS-MR, and MS-MR; in LB, the maximum VMS significantly
decreased in SS-MR and MS-MR but comparative in MS-SR; in
AR, the maximum VMS gradually decreased from MS-SR to MS-
MR. This trend was consistent with that of cages. The most
significantly decreased maximum VMS was observed in MS-MR,
ranging from 18.50% in LB to 32.83% in EX, compared with SS-SR.

Maximum von Mises stress on sacrum

The maximum VMS on the sacrum in No-SPF, SS-SR, MS-SR,
SS-MR, and MS-MR in all directions was demonstrated in Figure 5F
and Figure 9. Compared with No-SPF, the maximumVMS on SS-SR
decreased by 36.90%, 9.37%, 13.96%, and 15.57% in FL, EX, LB, and
AR, respectively. Compared with SS-SR, in EX, LB, and AR, the
maximum VMS further decreased in MS-SR, SS-MR, and MS-MR;
however, in FL, the maximumVMS was comparative in SS-MR. The
most significantly decreased maximum VMS was observed in MS-
MR, ranging from 21.32% in EX to 40.85% in FL, compared with SS-
SR. Compared with SS-MR, the maximum VMS on MS-MR further

decreased by 41.69%, 17.25%, 14.38%, and 20.58% in FL, EX, LB,
and AR, respectively.

Discussion

The substantial biomechanical shear forces of LSJ, poor bone
quality of sacrum, and complex sacral anatomy make long spinal
fusion challenging to achieve solid lumbosacral fusion, which
impacts patients’ HRQoL and usually needs revision surgery
(Kim et al., 2010). Also, the large lever arms and cantilever forces
result in high stress on the base of the construct, increasing the risk
of implant failure. Therefore, SPF has been proposed following long
spinal fusion ending at S1 (Guler et al., 2015; El Dafrawy et al., 2019).
Although SPF indeed reinforces the construct stiffness, 12.0%–
46.9% of implant failure rate has been reported by previous
studies (Park et al., 2021b; Gao et al., 2021). To reduce the
incidence of mechanical complications, multiple pelvic screws or
multirod construct have been applied as an advanced SPF technique
(Uotani et al., 2021; Lee et al., 2022a; Lee et al., 2022b; Tang et al.,
2022). The current study revealed that both multiple pelvic screws
and multirod construct could increase the mechanical stability of
LSJ, reduce strain on the lumbosacral rod, and protect the S1-PS and
sacrum. The combination of these two constructs could further
improve these effects. This study may play a role of pre-clinical
evaluation of MS-MR construct and could provide surgeons with
more information about its advantages over the other advanced SPF
constructs.

FIGURE 8
Von-Mises stress on S1-superior endplate of different instrumented models in flexion, extension, lateral bending, and axial rotation.
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The LSJ is the most mobile and anteriorly inclined segment in
the lumbar spine (Park et al., 2021a). These biomechanical
characteristics induce a risk of pseudarthrosis in this region,
which could predispose the implant to mechanical failure (Park
et al., 2021b). Several studies reported a high incidence of
lumbosacral pseudarthrosis with S1-PS alone (19.0%–83.0%) or
additional SPF (10.5%–33.3%) (Kim et al., 2006a; Kim et al.,
2006b; Finger et al., 2014; Guevara-Villazón et al., 2020; Eastlack
et al., 2022). A meta-analysis by Han et al. reported that there was no
significant difference in the pseudarthrosis rate between patients
with or without SPF (Han et al., 2021). Therefore, advanced SPF
technique by multiple pelvic screws or multirod construct was tried
to solve this problem. Cadaveric studies have shown that four-rod
constructs could significantly reduce the flexibility and motion of
LSJ in FL, EX, and AR (Kelly et al., 2008; Wang et al., 2013; Godzik
et al., 2019; Ntilikina et al., 2020). Consistent with previous studies,
the current study additionally indicated that both the multiple pelvic
screws and multirod construct could decrease the ROM of LSJ in FL,
EX, LB, and AR compared with the SS-SR model. The ROM
decreased most in the MS-MR model. In this construct, there
were four rods crossing the LSJ, and the caudal anchors of the
four rods were independent, which may contribute to its superior
biomechanical characteristics. Therefore, we considered that
additional pelvic screws and accessory rods had the potential to
stabilize the LSJ further and achieve solid fusion. Priority should be
given to the MS-MR construct for patients with high risks of
pseudarthrosis.

Anterior column support using fusion cages could enhance the
fusion rate and prevent implant failure at LSJ (Jung et al., 2019; Lee

et al., 2020). However, osteoporosis is a risk factor for cage
subsidence, with a high prevalence of 32.8% in ASD patients
undergoing long spinal fusion (Gupta et al., 2021; Yang et al.,
2021). Therefore, an appropriate biomechanical environment is
paramount to a solid interbody fusion for ASD patients. The
current study detected similar trends in the VMS variation on
cage and S1-SEP. Compared with No-SPF and SS-SR, the VMS
decreased the most in the MS-MR model. The VMS on cages in all
directions decreased, ranging from 25.75% to 37.23% compared with
No-SPF and 16.48%–26.81% compared with SS-SR; the VMS on S1-
SEP in all directions decreased, ranging from 28.82% to 39.48%
compared with No-SPF and 18.50%–32.83% compared with SS-SR.
This finding indicated that the MS-MR construct could facilitate
lumbosacral fusion by reducing the risk of cage subsidence. For
patients with risk factors of cages subsidence, such as osteoporosis
and age >60 years, the MS-MR could be considered.

The high incidence of lumbosacral and pelvic implant failure is a
major concern for long spinal fusion. Substantial rates ranging from
23.7% to 56.0% have been reported by previous cohort studies
(Guler et al., 2015; Hallager et al., 2017; Eastlack et al., 2022).
Among the implant failure, rod fracture (RF) was the most
common complication, and 28.0%–81.3% of RF occurred at
lumbosacral rods (Devlin et al., 1991; Lertudomphonwanit et al.,
2018; Rabinovich et al., 2021). The culprits of RF were
pseudarthrosis and the increasing fatigue cracks under external
stress (Yamanaka et al., 2015; Sardi et al., 2022). We reviewed
and synthesised the data of all published clinical studies
comparing the mechanical complication rate between two-rod
construct and multirod construct, and a significantly lower

FIGURE 9
Von-Mises stress on sacrum of different instrumented models in flexion, extension, lateral bending, and axial rotation.
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incidence of pseudarthrosis (14.2% vs. 35.0%) and RF (15.8% vs.
32.9%) was detected in patients undergoing multirod construct
(Hyun et al., 2014; Han et al., 2017; Merrill et al., 2017; Guevara-
Villazón et al., 2020; Yamato et al., 2020; Bourghli et al., 2021; Dinizo
et al., 2021; Lamas et al., 2021; Rabinovich et al., 2021; Lyu et al.,
2022). There are two options to anchor the distal end of accessory
rods, including domino connectors and multiple pelvic screws. The
way of stress dispersal was different between the two options.
Domino connector is the most popular option, in which the
accessory rods were anchored to the primary rods instead of the
vertebra, just as satellite rods. The stress of primary rods was
transferred to the accessory rods, but it would be finally
transferred back at the region distal to the accessory rods,
resulting in RF or screw breakage at LSJ (Palumbo et al., 2015;
Shen et al., 2018). However, by multiple pelvic screws, the accessory
rods were directly anchored to the pelvis. The four rods crossing the
LSJ are more mechanically independent, similar to two separate
spinal constructs, providing the majority of cantilever force (Ramey
et al., 2021). Cadaveric studies by Ntilikina et al. (2020) and Godzik
et al. (2019) reported that accessory rods connected by domino
connector could significantly decrease the strain of primary rods in
FL, EX, LB, and the strain of S1-PS in AR. Nevertheless, the
protective effect of accessory rods connected by multiple pelvic
screws is still unknown. VMS was used in the current study. VMS is
an equivalent stress value based on distortion energy to decide if a
material will fail (yield) under a given loading condition. For spine
and spinal instrumentation, a higher VMS on bone or internal
fixation suggests a greater amount of deformation on it, which
makes it more prone to instrumentation failure or fracture. We
found that the VMS on instrumentation was decreased with the
additional use of either S2AI screws or accessory rods. The VMS
mainly concentrated on the L5-S1 rod, and the MS-MR model
decreased the VMS in all directions, especially in EX, compared with
No-SPF (45.40%) and SS-SR (35.85%). Also, both multiple pelvic
screws and multirod constructs could protect the S1-PS and sacrum,
and this effect provided by the MS-MR model was the most
significant. This finding indicated that MS-MR could enhance the
construct stiffness, reduce the risk of RF and screw breakage at LSJ,
and reduce the risk of sacrum fracture. Additionally, the less stress
values on MS-MR construct may indicate its superior durability,
which could provide patients with long-term benefits.

The persistent motion of SIJ may result in further stress on
the SPF and induce delayed failures (Eastlack et al., 2022). Tang
et al., 2022 reported that the dual S2AI screws could mitigate
postoperative SIJ pain and play an anti-rotation role. Consistent
with their study, the current study revealed that the additional
S2AI screw could further decrease the ROM of SIJ, especially in
AR. This advantage may be associated with reduced VMS on
instrumentation.

In addition to pseudarthrosis, postoperative residual sagittal
and/or coronal malalignment are risk factors for implant failure
following long spinal fusion for ASD (Lee et al., 2022b; Martin
et al., 2022). For complex cases with preoperative several sagittal
and coronal malalignment, three-column osteotomy (3-CO) and
sequential correction techniques are usually needed (Lau et al.,
2021; Shi et al., 2021). Therefore, a secure foundation and stiff
construct that could accommodate powerful deformity
correction and maintenance are essential. The dual pelvic

screws could provide a stronger pelvic anchorage, and the
accessory rods could reinforce the spinal construct, facilitating
the restoration of spinopelvic alignment. For patients who need
undergoing 3-CO at lumbar vertebra and extending the
instrumentation into the upper thoracic region, some
modifications could be made to the MS-MR construct
presented in this study: the distal end of the primary rods
should be extended and anchored to S2/ilium by pelvic screws;
the proximal end of the accessory rods should be anchored to the
distal adjacent vertebra of the upper instrumented vertebra by PS
or cortical bone trajectory screw. More importantly, all the four
rods should cross both the LSJ and the osteotomy site. These
modifications made the four rods completely mechanically
independent, constructing two separate spinopelvic fixation
constructs. According to the spine instrumentation
nomenclature provided by Ramey et al. the accessory rods in
this kind of construct should be defined as “secondary rods”
(Ramey et al., 2021). S2AI screw and iliac screw are two
commonly used pelvic screws to achieve SPF. However,
various advantages of S2AI screw over iliac screw have been
demonstrated. The systematic review of biomechanical studies by
Hirase et al. suggested that the stress on instrumentations and
surrounding iliac bone was lower in S2AI screw fixation than iliac
screw (Hirase et al., 2022). The meta-analysis by Gao et al.
reported that using S2AI screw could adequately maintain the
deformity correction and significantly decrease the risk of
mechanical complications compared with the iliac screw (Gao
et al., 2021). Also, the placement of S2AI screw does not require
dissection as extensive as iliac screw; therefore, the incidence of
skin breakdown and would infection was lower. Accordingly,
when surgeons decide to implant multiple pelvic screws, we
advocated S2AI screw as routine instrumentation.

The current biomechanical research may facilitate surgeons
to better understand the mechanism of mechanical complications
in long spinal fusion surgery and improve the instrumentation
scenario or device designs. However, several limitations should
be noted. First, as constructing a real ASD patient-specific
lumbopelvic model and simulating the correction procedures
(e.g., multi-level decompression, laminectomy, facetectomy, or
osteotomies) remain technically challenging, the FE model was
developed using the CT images from a healthy volunteer as an
alternative. Therefore, the abnormal spinal loading caused by
ASD and the individual variation of degeneration were not
considered. This methodology was consistent with the
previous FE studies focusing on the performance of different
instrumentations and instrumentation-related problems in ASD
(Buell et al., 2019; He et al., 2021; Oe et al., 2021; Leszczynski
et al., 2022; Son et al., 2022). Further studies should construct and
use ASD patient-specific FE models to elucidate the clinical
significance of the various instrumentations. Second, boundary
conditions were assigned based on the literature. However, the
actual mechanical environment was patient-specific. Therefore, a
discrepancy may exist between the FE model and clinical
observations. Third, some simplifications were made in the
construction of FE models. The paraspinal muscles and
surrounding soft tissues were not simulated, and the nucleus
pulposus was assigned with a hyperplastic material, which may
affect the flexibility of the spine and misrepresent the stress

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Yang et al. 10.3389/fbioe.2023.1148342

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1148342


distribution on some spinal components. Biphasic materials
composed of a solid phase embedded in a fluid media may be
more appropriate and realistic for the modelling of intervertebral
disc (Elmasry et al., 2017). Also, bone mineral density could
influence the stress pattern in SEP and cage, but it was not
considered a variable in the current study. Finally, although
FE analysis has the advantage of eliminating anatomical
variability and has been shown to be a reliable method to
perform biomechanical comparisons among spinal
instrumentations, the actual clinical effects of MS-MR
construct still need to be verified by cadaveric tests as well as
clinical trials with large sample size and long-term follow-up.

Conclusion

Both multiple pelvic screws and multirod construct could
increase the mechanical stability of LSJ and reduce stress on
construct, cages, S1-SEP, and sacrum. The MS-MR construct was
the most adequate to reduce the risk of lumbosacral pseudarthrosis,
RF, screw breakage, and sacrum fracture. This study may provide
surgeons with important evidence for the application of MS-MR
construct in the clinical settings.
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