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Algae play a crucial role in the earth’s primary productivity by producing not only
oxygen but also a variety of high-value nutrients. One such nutrient is
polyunsaturated fatty acids (PUFAs), which are accumulated in many algae and
can be consumed by animals through the food chain and eventually by humans.
Omega-3 and omega-6 PUFAs are essential nutrients for human and animal
health. However, comparedwith plants and aquatic sourced PUFA, the production
of PUFA-rich oil from microalgae is still in the early stages of exploration. This
study has collected recent reports on algae-based PUFA production and analyzed
related research hotspots and directions, including algae cultivation, lipids
extraction, lipids purification, and PUFA enrichment processes. The entire
technological process for the extraction, purification and enrichment of PUFA
oils from algae is systemically summarized in this review, providing important
guidance and technical reference for scientific research and industrialization of
algae-based PUFA production.
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Introduction

Algae are a group of photosynthetic organisms that evolved earlier than higher plants.
Organisms that contain chlorophyll a in cells but lack differentiation of roots, stems, leaves
and other tissues and organs are generally classified as algae (Lee, 2018). Humans have been
utilizing algae as food for thousands of years, such as Nostoc, Aphanizomenon and Spirulina
(Jensen et al., 2001). Macroalgae are typically consumed directly by humans, while
microalgae are indirectly consumed through the consumption of fish and other animals.
Algae are the primary contributors to water productivity on Earth, providing nutrients for
many aquatic organisms (Chen H et al., 2021). Some algae are particularly suitable as feed
(Becker, 2003a) for animals, and initial processing techniques have been established
(Amorim et al., 2020).
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Eicosatetraenoic acid; ETE, Eicosatrienoic acid; GLA, Gamma-linolenic acid; HPA,
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Polyunsaturated Fatty Acid(s); SDA, Stearidonic acid.
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Microalgae are a valuable source of biologically active substances
and a treasure trove of resources. Recent articles have highlighted
their ability to produce a variety of valuable products such as lipids,
proteins, sugars, mannan (Capek et al., 2023), chitin (Chiriboga and
Rorrer, 2019), terpenoids (Huang et al., 2021), vitamins (Ljubic et al.,
2021). Some microalgae also produce essential fatty acids like alpha-
linolenic acid (ALA) (Meng et al., 2018), eicosapentaenoic acid
(EPA) (Peltomaa et al., 2018; Xia et al., 2020), docosahexaenoic acid
(DHA) (Peltomaa et al., 2018), gamma-linolenic acid (GLA) (Ronda
et al., 2012).

The analysis shows that lipids and fatty acids are the prominent
research areas in algae research. Algal cells typically contain lipids
ranging from 1% to 40% of their dry weight, while some species can
accumulate up to 85% (Becker, 2003b; Chen and Wang, 2021).
These lipids generally exist in cells in the form of glycerides, free fatty
acids, glycolipids and phospholipids (Becker, 2003b). Certain algae
species can produce both PUFA and pigment fucoxanthin
simultaneously, such as diatom Nitzschia laevis (Lu et al., 2019),
Tisochrysis lutea (Gao et al., 2022). Apart from nutrition and health
applications, algae also have significant potential in environmental
fields, such as biodiesel production (Zhu et al., 2016; Chen and
Wang, 2022), hydrogen production (Chen et al., 2023), as well as the
removal of nitrogen (Chen et al., 2016; Wang J et al., 2019; Chen and
Wang, 2020), flame retardants (Zhang et al., 2021), and organics
(Zheng et al., 2021) fromwastewater. However, compared with fossil
energy, due to the high cost of production, extraction, and
conversion, algae biodiesel’s commercial advantages are limited
(Chen et al., 2019; Chen H et al., 2020). Therefore, since 2014,
the focus of algae research has gradually shifted towards high-value
bioproducts and environmental applications (Rashid et al., 2018).

Algae are currently being developed as new sources of the
polyunsaturated fatty acids (PUFAs), including linolenic acid
(LA), ARA, EPA, docosapentaenoic acid (DPA), DHA (Chen W
et al., 2021; Cui et al., 2021). Algal DHA has already been
commercialized in the market. Although the deep-sea fish oil
PUFAs currently available are derived from fish, they are
essentially derived from the oil accumulated by algae ingested by
fish (Ebm et al., 2021). To identify related research, we collected
keywords related to algae and PUFA, and the 41 kinds of
unsaturated fatty acids (UFAs) introduced on Wikipedia. Using

these keywords, we searched the Web of Science and retrieved over
7,000 reports related to algae-PUFA research. From the perspective
of statistics in Figure 1, algae-PUFA research is an important
research hotspot and has shown continuous growth in recent years.

Analysis of research hotspots

The VOS viewer (version 1.6.18) was used to analyze the
keywords found in the retrieved reports. Among the keywords,
algae was found to be the central theme, and the keywords most
closely related to algae were fatty-acid, composition, growth, and
extraction (as shown in Figure 2).

In the blue cluster depicted in Figure 2, growth is found to be
most closely related to light, biomass, cultivation, lipid production,
biodiesel, accumulation. This indicates that there are some key
factors involved in the accumulation of PUFA in the algae
culture. Furthermore, algae oil has emerged as a critical area of
research in the field of biofuel and biodiesel. However, the
production of biodiesel from algae is considered to be expensive
and less commercially viable (Kumar et al., 2013). With recent
technological advancement, the production cost of microalgae
biodiesel based on waste water and seawater has been reduced to
US$2.2/kg, which is still much higher than that of fossil energy (Yu
et al., 2023). Even after considering the revenues from wastewater
treatment and carbon dioxide capture, the commercial
competitiveness of microalgae biodiesel remains insufficient when
compared with fossil energy. On the other hand, the production of
PUFAs has proved to be commercially successful.

The microorganisms associated with PUFAs were ranked based
on their occurrence, with green algae and diatoms being relatively
more frequent (Figure 3A). Among green algae, Chlorella,
Chlamydomonas, Nannochloropsis, Scenedesmus, Haematococcus,
Dunaliella were reported more quantitatively. Among diatoms,
there were more reports of Phaeodactylum tricornutum,
Skeletononema costatum, and Thalassiosira rotula. It suggests that
research on PUFAs production is mostly concentrated in these algae.
In general, diatoms can accumulate a large amount of long-chain
PUFA in cells, but their biomass production rate is generally
relatively low even when supplemented with organic carbon

FIGURE 1
The number of algae-PUFA-related research reports in recent years in the web of science.

Frontiers in Bioengineering and Biotechnology frontiersin.org02

Chen et al. 10.3389/fbioe.2023.1146881

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1146881


sources (Marella et al., 2021; Cheah et al., 2022). On the other hand,
Cryptheccdinium cohnii and Schizochytrium have a high content of
long-chain PUFAs such as DHA and EPA, as well as high biomass
production rates. Some green algae, such as Chromochloris
zoffingiensis, can accumulate astaxanthin, but the accumulated
PUFAs is mainly C18 PUFAs (Liu et al., 2016; Mao et al., 2018).
Therefore, some research groups are also attempting to co-produce
long-chain PUFAs and astaxanthin in algae cells, making it more
cost-effective for commercial production (Pawar et al., 2021).

The keywords related to the cultivation conditions were ranked
based on their occurrence, as shown in Figure 3C. Among these
keywords, nitrogen (concentration), light, temperature, carbon,
phosphorus, organic carbon, salinity, pH, LED, and glucose were
found to be the key research factors. It is evident that the nitrogen
source is the most relevant or critical for algal PUFA production.
Other environmental or nutritional factors may also affect the
accumulation of PUFAs. Therefore, to optimize culture
conditions and increase the yield of algae PUFAs, the above
environmental factors can be considered for trial testing.

In the green cluster composition shown in Figure 2, the focus is
mainly on some keywords that PUFAs affect animal nutrition. This
also indicates that PUFAs plays an important role in improving the
nutritional value of aquatic products. Furthermore, the
accumulation of PUFAs in many aquatic products is also due to

the PUFAs accumulated by algae in the water (Brett and MÜller-
Navarra, 1997; Nichols, 2003).

In the pink cluster in Figure 2, the keywords with higher
occurrence are fatty-acid, PUFA, and extraction. These keywords
are mainly related to the health benefits of PUFAs. Extraction is an
important aspect of algae-PUFA production research, and closely
related to growth, composition, PUFA, carotenoid. Additionally, in
the exploration of algae biodiesel production, extraction is a
significant cost factor (Kumar et al., 2013; Rashid et al., 2018).

In the yellow cluster in Figure 2, the keywords with higher
occurrence are EPA and biosynthesis, which are related to the
synthesis of PUFAs. The keywords of interest include desaturase
and linolenic acid. Linolenic acid is not only an important PUFA,
but also a precursor for the synthesis of other PUFAs, such as DHA and
EPA. The human body has the ability to convert linolenic acid into
other PUFAs. Ensuring the intake of linolenic acidmay be beneficial for
human health and meet the body’s demand for longer chain PUFAs
such as DHA and EPA. In addition, the occurrence of various PUFA
types is ranked by occurrence in Figure 3D, which shows that DHA and
EPA have the highest occurrence. The occurrences of arachidonic acid
(ARA), linolenic acid, and linoleic acid are also relatively high. The
occurrence of oleic acid is very small, and the occurrence of other
PUFAs is very low. This implies that the application value of these
PUFAs is related to the current market demand.

FIGURE 2
The most popular keywords in the articles of algae-PUFA in the Web of Science Core Collection.
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In the purple cluster in Figure 2, carotenoid was the important
keyword, closely related to astaxanthin, Haematococcus and
Dunaliella, followed by heterotrophic and chlorophyll. Moreover,
both carotenoid and PUFAs in the pink cluster are closely related to
antioxidant. The keywords of other high-value products are ranked
by their occurrences (Figure 3E). It can be seen that carotenoid,
amino-acid, and astaxanthin are other high-value products with the
highest correlation with algae-PUFA. This may be because the
accumulation of these substances has a certain correlation with
the accumulation of PUFAs. The simultaneous accumulation of

PUFAs with other high-value products can greatly increase the
potential for practical production applications of these algae.

Sources of PUFAs

Synthesis

Fatty acids are long-chain carboxylic acids that serve as crucial
raw materials for oils and directly affect the properties and functions

FIGURE 3
Occurrence of the main keywords in the reports of algae-PUFA according to the species (A), health functions (B), conditions (C), kinds of PUFAs (D),
other high value products (E).

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Chen et al. 10.3389/fbioe.2023.1146881

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1146881


of oils. Fatty acids can be divided into saturated fatty acids and
unsaturated fatty acids (UFAs). Fatty acids that lack carbon-carbon
double bonds in the aliphatic chain are referred to as saturated fatty
acids, which include palmitic acid and stearic acid, among others.
PUFAs are straight-chain fatty acids with two or more double bonds
(Metzner, 1984). Depending on the position of the first double bond
from themethyl end of the fatty acid, PUFAs can be classified intoω-
x fatty acids, including ω-9, ω-6, ω-3 (also referred to as n-9, n-6, n-
3) (Djuricic and Calder, 2021).

The biosynthesis of ω-3, ω-6 and ω-9 PUFAs begins with acetyl-
CoA and requires a series of carbon chain elongation and
desaturation reactions, as illustrated in Figure 4 (Uemura, 2012;
Scanferlato et al., 2019). The synthesis of ω-3 and ω-6
polyunsaturated fatty acids follows two distinct pathways, and
intermediates from one pathway cannot be directly converted
into intermediates of the other (Napier, 2002). The ω-3 PUFAs
like DHA and EPA are derived from ALA, while the ω-6 PUFAs,
such as GLA and ARA are derived from LA (9,12-linoleic acid)
(Lehninger, 1982). The synthesis of PUFAs in microorganisms is
similar to that in higher organisms. Acetyl-CoA and malonyl-CoA
form LA under the action of fatty acid synthase complex, which is
then further metabolized to PUFAs through the ω-6 and ω-3
pathways (Lehninger, 1982).

Humans and other mammals are incapable of synthesizing ω-3
and ω-6 PUFAs de novo due to the absence of Δ12 and
Δ15 dehydrogenases (Napier, 2002). Therefore, LA and ALA
must be obtained from dietary sources (Djuricic and Calder,
2021). The synthetic pathways of ω-3 and ω-6 PUFAs share

common desaturases and chain-elongation enzymes, resulting in
a metabolic competition process (Smink et al., 2012). Therefore, a
balanced intake of LA and ALA is crucial. The essential fatty acid
ALA serves as a precursor to ω-3 PUFAs such as EPA and DHA
(Brenna et al., 2009). Thus, supplementing these precursors can help
to increase EPA or DHA levels, with a more comprehensive
supplementing effect.

Main physiological and health functions

The health benefits of omega-3 PUFA was initially studied
through the correlation between fish oil intake and health risks,
mainly related to reducing triglycerides, lowering blood pressure,
preventing thrombosis, and interfering with arachidonic acid
cascade reaction, and thus playing an anti-atherosclerosis role
(Simopoulos, 1991; Kris-Etherton et al., 2002). EPA and DHA
have shown promising results in prevention, body weight
management, and cognitive function in patients with mild
Alzheimer’s disease (Swanson et al., 2012). Figure 3B displays the
occurrence of keywords related to health and disease, where the
antioxidant activity of PUFAs is the most prominent characteristic.
PUFAs has anti-oxidation and anti-aging effects. Clinical studies
have shown that after taking ALA, the activity of glutathione
peroxidase and superoxide dismutase increases, the generation of
malondialdehyde decreases, and it has an antioxidant effect (Mahsa
et al., 2017; Boskabady et al., 2019; Korbecki et al., 2019). In addition,
PUFAs have reported functions in antibiotics, cardiovascular-

FIGURE 4
The general pathways of PUFAs synthesis. Desaturase: Δ4/Δ5/Δ6/Δ9/Δ15/Δ17; C18/20/22, carbon numbers; :1/:2/. . ./:6, number of olefinic bonds;
(n-3/6/9), double bond between the (n–x) and (n-x+1) to last carbon atoms; −3/6/9/12/15/18, double bond between the x and x+1 to last carbon atoms.
AdA, adrenic acid; ALA, α-linolenic acid; ARA, arachidonic acid; DGLA, dihomo-γ-linolenic acid; DHA, docosahexaenoic acid; DPA, osbond acid; DPA,
Docosapentaenoic acid; EDA, eicosadienoic acid; EPA, eicosapentaenoic acid; ETA, eicosatrienoic acid; ETE, eicosatetraenoic acid; GLA, γ-linolenic
acid; LA, linoleic acid; OA, oleic acid; SDA, stearidonic acid; THA, tetracosahexanoic acid; TPA, tetracosapentanoic acid.
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disease, anti-inflammation, cancer, liver health, blood lipids,
diabetes, brain health, and ontogeny. In summary, PUFAs play
an important role in human health, with their main physiological
functions related to the circulatory system, immune system and
nervous system. A summary is shown in Table 1. Omega-3 PUFAs
have a strong market presence due to their crucial structural and
physiological functions, as well as their beneficial health effects.

Food sources of PUFAs

According to Figure 4, ALA is the primary precursor of ω-3
PUFAs, and is mainly used in the pharmaceutical, food and cosmetic
industries, with potential for even more new uses. Currently, the
largest use of ALA is in dietary nutrition. The Center for Genetics,
Nutrition and Health of the National Institutes of Health in the
United States recommends a daily intake is 2.22 g/day of ALA
(Simopoulos et al., 2000). However, ALA is found in low
amounts in common foods, including various fresh vegetables.
The content of ALA in plants is generally around 100 mg/100 g
(fresh weight), and is mainly present in glycolipids in the leaves
(Raper et al., 1992; Ayerza, 1995). Common sources and contents of
ALA are shown in Table 2.

ALA-rich products available in the market are typically sourced
from a few crops, such as flaxseed, as well as deep-sea fish oil. Marine
fish are unable to synthesize DHA on their own. Instead, the DHA
contained in their bodies originates from marine microorganisms,
such as phytoplankton, and accumulates in marine fish, reptiles and
mollusks through themarine food chain (Brett andMÜller-Navarra,
1997; Nichols, 2003). Research has shown that certain marine
bacteria, algae, and fungi are capable of synthesizing PUFAs
(Ratledge, 2001). Some algae, in particular, can accumulate ALA
ranging from 10% to 40% of the total lipid fraction, as shown in
Table 3.

Algae are the original source of ω-3 PUFAs in fish oil, making
algae oil a crucial source of PUFAs. An increasing number of algae
are now being cultivated on a large scale for the production of some
bioactive substances, including PUFAs. Compared to planting
terrestrial crops to produce oil to obtain ALA and other PUFAs,
algae are easy to cultivate, have high photosynthesis efficiency, short
reproduction cycle, and offer relatively more flexible production
without the need for arable land. Furthermore, abundant microalgae
germplasm resources contain numerous genetic resources, which
can also be used as chassis organisms and living bioreactors to
produce a variety of high value-added products that are beneficial to
human and animal nutrition and health. There are several

TABLE 1 The main function of PUFAs.

Main functions Physiological function

Circulatory System

Regulate Blood Lipids Lower blood pressure (Paschos et al., 2007; Hashimoto et al., 2020) and have protective effect on the heart (Rajaram,
2014).

Antithrombotic Reduce the risk of some coronary heart disease and cerebral ischemia (Winnik et al., 2011; Stivala et al., 2013; Rajaram,
2014), reduce the risk of atherosclerosis (Varin et al., 2015), and effectively prevent and treat thrombotic diseases
(Yamashita et al., 2005; Golanski et al., 2021).

Effects On Insulin Resistance ALA intake was inversely associated with insulin resistance, whereas DHA combined with EPA was not (Muramatsu
et al., 2010). ALA helps control blood sugar in type II diabetic rats (Rajaram, 2014; Mejía-Zepeda and Pérez-Hernández,
2020).

Immune System

Anti-Inflammatory, Anti-Autoimmune & Anti-
Allergic

Treating and preventing allergic dermatitis, bronchial asthma and pollen allergy (James et al., 2000; Calder, 2002).
Inhibiting the body’s allergic reaction (Boskabady et al., 2019; Kaveh et al., 2019), restoring and improving immunity
are important treatments against inflammation (Winnik et al., 2011; Kaveh et al., 2019). Positive effect in the treatment
of alcoholic liver disease and inflammation of the liver (Wang M et al., 2019).

Antitumor Inhibits the growth and metastasis of breast cancer (Corsetto et al., 2011; Yang et al., 2014).

Nervous System

Central Nervous System Constitute brain nerve cells, retinal and other tissue cells (Abedin et al., 1999).

Promote the synthesis of proteins and certain neurotransmitter substances in the brain, and play an important role in
the growth of brain nerve cells and neurotransmitter synapses (Jeffrey et al., 2002a; Jeffrey et al., 2002b).

Promote the development of the nervous and visual system of infants and young children (Guesnet and Alessandri,
2011; Muhlhausler et al., 2018), and promote the formation of vision (Youdim et al., 2000; Mizukami et al., 2018).

It has an effect on maintaining and improving learning and memory ability (Umezawa et al., 1999; Petursdottir et al.,
2008; de Souza et al., 2011).

Visual System An important structural lipid component of retinal tissue (Salem Jr et al., 1986), which helps maintain good vision
(Neuringer et al., 1986). Lack of DHA, the vision is greatly reduced in the late growth period (Bell et al., 1995).

Alzheimer’s Disease For Alzheimer’s dementia, PUFAs can normalize brain tissue in the state of DHA deficiency, and the anti-inflammatory
effect of DHA can improve the immune response in the brain (Swanson et al., 2012; Devassy et al., 2016; Fonteh et al.,
2020).
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TABLE 2 Contents (%) of UFAs in total lipid of common foods.

Sources OA LA GLA ALA EPA DHA Reference

Flaxseed oil ~21 ~13 <1 43–61 <1 <1 Aguillón-Páez et al. (2020), Yang et al. (2021)

Refined Canola seed oil ~61 ~25 <1 ~7 <1 <1 Özcan et al. (2021)

Refined linoleic sunflower oil ~34 ~54 — — — — Aşkın and Kaya (2020)

Oyster nut oil ~9 ~49 <1 <1 <1 <1 Mwakasege et al. (2021)

Extra-virgin olive oil 55–83 3–21 — <1 <1 <1 Gunstone (2011)

Soybean oil ~22 ~56 — ~7 — — Rodríguez-Miranda et al. (2019)

Walnuts Oil ~8 ~61 — ~12 — — Copolovici et al. (2017)

Butter lipids 15–18 1–2 <1 <1 — — Faraji Sarabmirza et al. (2023)

Milk lipids 39–45 9–13 <1 <1 — — Anzhany et al. (2021)

Beef lipids 40–42 2–3 <1 <1 <1 <1 Najar-Villarreal et al. (2019)

Muscle lipids of farmed Salmon ~34 ~10 ~12 ~3 ~10 — Hatlen et al. (2022)

Spinach leaves — — — ~0.14 (DW) — — Rajaram (2014)

DW, dry weight.

TABLE 3 The content (%) of PUFAs in total lipid of some algae strains.

Organisms GLA ALA EPA DHA Reference

Acutodesmus obliquus — ~38 — — Othman et al. (2019)

Aurantiochytrium sp. — — ~1 ~42 Chauhan et al. (2023)

Chlamydomonas reinhardtii — ~44 — — Zheng et al. (2022)

Chlorella sorokiniana — ~11 ~2.4 — Shim et al. (2020)

Chlorella vulgaris — ~35.4 — — Othman et al. (2019)

Chlorococcum (Oophila) amblystomatis ~4 ~31 — — Correia et al. (2020)

Codium fragile (Suhr) Hariot (Chlorophyta) — 14.2–19.9 3.0–4.4 — Schmid et al. (2014)

Codium tomentosum ~3 ~12 ~2 ~12 Ferreira et al. (2022)

Crypthecodinium cohnii — — — 37–40 Moniz et al. (2021)

Isochrysis galbana — ~6 ~3 ~10 Señoráns et al. (2020)

Isochrysis zhangjiangensis — ~11 ~2 ~14 Li Y et al. (2019)

Isochrysis galbana — ~11 ~7 ~14 Ge et al. (2023)

Nannochloropsis sp. — 0.1–17 4–34 — Ma et al. (2016)

Nannochloropsis oceanica — — ~27 — Matsui et al. (2022)

Oocystis pusilla — 23 — — Vidyashankar et al. (2015)

Phaeodactylum tricornutum — — 17.7 2.38 Wang X et al. (2019)

Phaeodactylum tricornutum ~0.8 — 27–30 ~0.7 Kadalag et al. (2022)

Scenedesmus sp. HSJ296 ~42 Meng et al. (2018)

Schizochytrium limacinum — ~1 ~1 ~45 Rodríguez-España et al. (2022)

Arthrospira platensis 34.5 — — — Yang X et al. (2019)

Spirulina platensis 15.8 — — — Yang X et al. (2019)

Thraustochytriidae sp. — — <8 ~21 Quilodrán et al. (2010)
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advantages to using microorganisms instead of fish oil as an
alternative resource (Table 4).

Ways of producing PUFA

Currently, humans rely on fishery products as a source of
omega-3 PUFA, which poses a risk of exposure to environmental
pollutants such as methylmercury, polychlorinated biphenyls, algal
toxins, and other contaminants (Ward and Singh, 2005; Hamilton
et al., 2020; Zheng et al., 2023). The consumption of fish and fish oil
is less safe due to these pollutants, and the limited fishery resources
also make the sustainable supply of omega-3 PUFA challenging
(Kris-Etherton et al., 2002; Hamilton et al., 2020). Furthermore, the
efficiency of omega-3 PUFA digestion can be affected by the
processing methods of aquatic products (Kris-Etherton et al.,
2002; Adarme-Vega et al., 2012; Hamilton et al., 2020).

In contrast, microorganisms such as microalgae offer a flexible,
efficient, and safe natural synthesis pathway for omega-3 PUFA
(Hamilton et al., 2020; Gu et al., 2021). In terms of production costs,
compared with fishing and aquaculture to obtain omega-3 PUFA,
algae fermentation production still does not have a significant cost
advantage. However, with the depletion of fishery resources and the
advancement of microalgae processing technology, the cost and
product quality of omega-3 PUFA from algae and other
microorganisms can eventually capture the market.

For the industrialization of PUFA production from algae, DHA
and EPA have been successfully commercialized on a large scale
(Borowitzka, 2013; Xue et al., 2013). Currently, several species of
microalgae and fungi, including Schizochytrium, Cryptocodinium
cohnii, and diatoms, are being used for fermentation production of
PUFA (Ward and Singh, 2005; Marella et al., 2021; Stramarkou et al.,
2021; Chi et al., 2022). These studies primarily refer to the
fermentation production mode of fungi such as yeast. Many
algae can be photoautotrophically cultured in various reactors
such as open ponds, and can also be heterotrophically cultured
in fermentation tanks. However, commercial algae production
mostly relies on autotrophic cultivation, including Spirulina
sp. and Chlorella sp. (Mendes et al., 2022). Although the input

cost of photoautotrophic culture is relatively low, the yield per unit
cost is also low. Under mixotrophic and heterotrophic conditions,
the biomass yield of many algae is even ten times higher than that
under autotrophic conditions. If high-density fermentation can be
achieved, the unit production cost of some microalgae is lower than
that of photoautotrophic culture (Jin et al., 2020; Jin et al., 2021; Ruiz
et al., 2022). It is estimated that at a production scale of 1,000 tons/
year, the production cost per unit of microalgae biomass production
by high-density fermentation method can be lower than that by
open pond culture method (Jin et al., 2020). However, it should be
noted that the oil content and composition of some algae in
heterotrophic culture may not be as commercially valuable as in
photoautotrophic culture (Jin et al., 2020). When choosing between
photoautotrophic and heterotrophic cultivation, many
manufacturers rely on the higher biomass yield per unit of input
they can achieve (Ruiz et al., 2022). Therefore, achieving ultra-high-
density fermentation is crucial for the commercialization of
microalgae. It should be pointed out that, in theory, microalgae
fermentation does not require the participation of photosynthesis. If
the unnecessary physiological functions and structures of
microalgae can be controlled during the proliferation process, or
if the synthesis pathway of high-value products such as microalgae
PUFA can be introduced into more robust and efficient chassis cells
for expression, this could greatly enhance the economic viability of
production.

Moreover, the development of sequencing, genetic engineering
and bioinformatics technology has significantly contributed to the
synthesis of omega-3 PUFA. It has provided essential information
for optimizing the enzyme system for algae to synthesize high-value
oil (Yang F et al., 2019; Degraeve-Guilbault et al., 2021). The
synthetic pathways of PUFAs in algae are relatively well-
understood, and many desaturases and elongases in algae or
other species have been identified. Additionally, the enzymes
present in algae have also provided crucial information for the
synthesis pathways of omega-3 PUFA in other species, such as fungi
and plants (Rezanka et al., 2017). Compared to the fermentation
mode and genetic engineering of yeast and other microorganisms,
the tools available for algae still need to be developed (Xue et al.,
2013; Xie et al., 2015; Khera and Srivastava, 2022).

TABLE 4 Comparison of PUFAs production by algae, higher plants and aquatic animals.

Item Algae Higher plants Aquatic animals

Source Genetic transformation for high-yield strains is
relatively mature.

Very few high-yielding species Fishery resources are limited.

Production Production throughout the year, not limited by raw
materials and origin.

Cultivation is affected by climatic conditions. The PUFAs varies with the species of fish, season,
geography, and fishing time.

The cultivation and the production quality are
relatively easy to control.

The yield and content may be affected by the
environment and management.

The living environment of fish is easy to
accumulate pollutants.

Harvesting &
Extraction

Relatively difficult, and some algae need breaking
the wall.

Relatively easy. Relatively easy.

Purification Relatively simple. Relatively higher content.
Relatively easy enrichment.

Relatively simple. Relatively higher content.
Relatively easy enrichment.

Contains a large amount of other saturated and
low UFA. Relatively complicated.

Quality No cholesterol, no fishy smell, no pesticides and
heavy metal ion pollution; product characteristics

are stable.

No cholesterol, no fishy smell; stable product
characteristics. Some crops may have pesticide

residues.

Relative higher cholesterol and often has a fishy
smell, heavy metals and other environmental

pollutants.
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Advances in genetic engineering technology are essential for the
synthetic biology of algae. However, many algae can only undergo
genetic modification, such as RNAi, which cannot be stably
inherited (Kugler et al., 2019). Alternatively, high-producing
strains can be screened using blind mutagenesis. Nevertheless, if
significant breakthroughs occur, many efficient photosynthetic
chassis cells could provide a vital platform for the production of
PUFA, carotenoids, and other substances. Algae, with their ability to
use light energy and cheap carbon sources to produce PUFA, hold
great potential for the future. With its high photosynthetic
efficiency, algae can be used as chassis cells to transform into a
cell factory that can synthesize omega-3 PUFA using solar energy
and cheap carbon sources. Thus, genetic engineering technology to
transform microbial fermentation for PUFA production is currently
an important means to achieve commercialization.

Pretreatment of lipids extraction from
algae

Typically, microalgal biomass obtained through fermentation or
other cultures must be harvested prior to lipid extraction. Currently,
algae biomass harvesting methods can be divided into four types,
flocculation-sedimentation, centrifugation, filtration, and flotation,
each with its own scope of application (Wang S et al., 2019; Li et al.,

2020). Many materials have been developed to effectively flocculate
algae, and various types of collection membranes have been
developed to filter and collect algae. However, flocculation,
sedimentation, filtration, and flotation are primarily used for the
concentration and harvesting of algae with low biomass density, and
only most of the medium residue can be removed by separation
(Wang S et al., 2019; Li et al., 2020). On the other hand,
centrifugation can achieve high-quality concentration and
separation of algae, which has been utilized in commercial
production and is more suitable for the collection of algae with
high cell density (Wang S et al., 2019).

After being collected by centrifugation, the algae are still wet and
need to be dehydrated in order to obtain dried biomass that is stable
and easy to storage. While heat drying is a common method, it takes
a long time and is not suitable for algae containing high-
temperature-sensitive compositions (Hosseinizand et al., 2018).
For algae rich in such compositions, like PUFAs, freeze-drying,
vacuum drying, and spray drying are more appropriate as they do
not involve long-term high-temperature heating. Spray drying
involves dispersing wet algae into micro-droplets, which are then
exposed to hot air for a very short time, greatly shortening the
evaporation time (Zhang et al., 2022). Therefore, spray drying is
suitable for large-scale production and is much more efficient than
heat drying, freeze drying, and vacuum drying. After the purer algae
biomass is collected, oil extraction, impurity removal, and PUFAs

FIGURE 5
The main production process of high-purity PUFAs.
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purification are required to obtain higher purity algae PUFAs (Ali
et al., 2021; ChenW et al., 2021). The process of algae production, oil
extraction and PUFAs enrichment is outlined in the Figure 5.

In addition to traditional processes, there is a process in which
algae cells are directly converted into fatty acid methyl esters or fatty
acid ethyl esters, bypassing the lipids extraction step. Dry or even wet
microalgal cells can undergo in-situ transesterification to become
fatty acid esters (Umamaheswari et al., 2020). Biodiesel production
tests using wet Nannochloropsis gaditana and Schizochytium
limacinum biomass have shown that the yield of fatty acid esters
in total lipids can reach between 73% and 100% (Kim et al., 2015;
Park et al., 2017). Generally, wet microalgae are not suitable for lipid
extraction or transesterification reactions due to their moisture
content, which prevents non-polar solvents from penetrating into
the cells, thereby reducing lipid extraction efficiency (Nagappan
et al., 2019). The in-situ transesterification reaction is a complex
process that involves the reaction between an ionic liquid and the
contents of a cell. This process requires breaking down the cell wall
to react with the lipid present inside. To enhance the efficiency of
this reaction and reduce associated costs, it is essential to conduct a
meticulous study of the interaction between the appropriate ionic
liquid and the cell components (Ding et al., 2022). However, these
processes typically require high temperatures above 100°C, which
may cause the degradation of PUFAs. If these limitations can be
overcome, it would significantly reduce the production and
enrichment process of microalgae PUFA and lower production
costs, as illustrated in Figure 5.

Lipids extraction

Common oil crops such as rapeseed, peanut, soybean, corn, and
sunflower can be extracted for lipids using physical pressing and
solvent extraction methods. However, due to the powdered or block
form of dried algae, physical pressing is not an effective method of
extraction. Instead, solvent extraction is generally utilized using
substances like n-hexane, chloroform, or supercritical CO2.
Supplemental techniques such as microwave treatment,
mechanical treatment, enzyme treatment, or ultrasonic cell wall
breaking can also be applied to improve algae oil extraction (Teo and
Idris, 2014).

Extraction methods

There are various methods available for extracting algae oil, but
it is primarily utilized in biodiesel production to reduce costs (Liu
et al., 2013). Due to the large number of other components that can
be introduced, this method is typically used for extracting products
not intended for human and animal consumption. Algae oil
extraction methods include chemical solvent extraction, physical
wall breaking treatment, supercritical fluid extraction (SFE), and
biological extraction (Ali et al., 2021). These methods can be roughly
divided into two categories: regular organic solvent extraction and
SFE. The advantages, disadvantages, and scope of application of
both extraction methods were summarized in Table 5.

Organic solvent extraction is widely used in the extraction of
algae oil. That is to choose an organic solvent that can dissolve oil,

infiltrate the algae and extract the intracellular oil (Ranjan et al.,
2010). This method provides high oil yield, simple equipment, and
convenient operation. However, the organic solvents used are often
toxic and volatile, which can be harmful to human health. While
static extraction can extract some substances from the material, its
extraction efficiency is low and it takes a long time. To improve the
extraction efficiency, dynamic extraction is generally employed, and
the solvent is repeatedly flowed through the material (Grierson et al.,
2012; Ramluckan et al., 2014; Aravind et al., 2021). For instance,
Soxhlet extraction is commonly used to extract the total lipids. This
method requires dry biomass with smaller particle size, continuous
reflux of the solvent, continuous heating of the equipment,
continuous reflux of the evaporated solvent, even continuous
reflex with different solvent, making it a highly energy-intensive
process that is unsuitable for components that are sensitive to high
temperature (Chen W et al., 2020; Aravind et al., 2021).

In a fully enclosed device, SFE is a suitable method for
temperature-sensitive products. Carbon dioxide, a non-polar
molecule, can be transformed into a supercritical fluid at normal
temperature and high pressure. By altering the temperature,
pressure, and adding various entrainers, similar polarity
molecules in the sample can be extracted (Cooney et al., 2009).
Other substances, such as ammonia, ethylene, propane, and
propylene, can also be utilized as supercritical fluids (Cooney
et al., 2009). In some instances, lipid yields from SFE are
comparable to those from Soxhlet extraction (Mercer and
Armenta, 2011). Over the last 3 decades, SFE has been utilized to
extract high-value compounds from algae, including astaxanthin, β-
carotene, lutein, DHA, EPA, ALA, ARA (Solana et al., 2014; Molino
et al., 2020). After 5% (w/v) ethanol was used as an entrainer to
extract lipids fromChlorella vulgariswith supercritical CO2, the lipid
extraction efficiency increased by 127% (Safi et al., 2014). Lipid
extraction yields were also improved by using microwave radiation-
assisted supercritical CO2 extraction strategies (Dejoye et al., 2011).
However, the overall lipid extraction rates they reported, ranging
from 47 to 127 mg/g cells, were not significantly higher than those of
the physical and chemical methods mentioned above. Compared
with Soxhlet extraction, SFE has several advantages in extracting
PUFAs from Scenedesmus (Solana et al., 2014), Nannochloropsis
sp. (Jiménez Callejón et al., 2022), Schizochytrium sp. (Rodríguez-
España et al., 2022).

Extraction with wall breaking

The extraction of oils from certain algae can be a challenging
task as they are protected by cell walls that need to be broken down.
The cell wall of algae are complex structures made up of multiple
layers, including cellulose and pectin, which are quite rigid and can
impede the extraction of target compounds (Brennan and Owende,
2010). Currently, the main methods for breaking down algae cell
walls are physical methods that mechanically destroy the cell wall, as
well as biochemical methods that use enzymes or chemical agents to
hydrolyze and degrade the cell wall. However, the appropriate cell
wall breaking method largely depends on the unique biology and cell
wall characteristics of the algae (Praveenkumar et al., 2015).
Additionally, the efficiency of these methods is affected by
operating conditions such as temperature, pressure, biomass
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(concentration, wet and dry state, growth stage), and scale (Rawat
et al., 2011). If the synthesis of cell walls can be controlled through
genetic engineering, the barrier to substance extraction can be
eliminated, significantly reducing the cost of material processing,
and also correspondingly increasing the utilization rate of nutrients
in the culture medium. Therefore, creating excellent chassis cells and
controlling the synthesis of cell walls is the most ideal solution.

Physical wall-breaking method
The physical wall-breaking method involves applying

mechanical external force or non-mechanical physical methods to
break up cells, which include homogenization, high-pressure
homogenization, ultrasonic crushing, microwave crushing,
electroporation, autoclave, repeated freezing and thawing
(Madany et al., 2021).

The homogenization utilizes mechanical external force, such as
grinding, to break the wall. When crushing Chlorococcum sp. by
grinding, the average cell crushing rate reaches 17.5% (Halim et al.,
2012). Homogenization is only appropriate when the product is
easily separable. Although it is economical and environmentally
friendly, and does not require mixing with other ingredients, it is not
efficient for algae with stronger cell walls (Madany et al., 2021).

The high-pressure homogenization method uses high-speed
impact and strong shearing under high pressure to break up
cells. When treating Chlorococcum sp. with 85 MPa
homogenization, the cell disruption rate reaches 73.8% (Halim
et al., 2012). The crushing effect of the high-pressure
homogenization method is closely related to the composition of
the algae cell wall. This method usually has a high breaking rate and
has little effect on fatty acid profile, but is energy intensive
(Magpusao et al., 2022).

Ultrasonication is suitable for most algal cells and generates
dense microbubbles in liquid media, resulting in strong cavitation
effects when high-power ultrasound (typically exceeding 20 kHz) is
used (Valizadeh Derakhshan et al., 2014). Proper ultrasonic
treatment can even double the oil extraction rate from Chlorella
(Ellison et al., 2019). Ultrasonic method is non-polluting and has a
high wall-breaking rate, but the local temperature in the system may
rise sharply, and its effect on the quality of the extracted oil is not yet
clear.

The microwave crushing method employs microwave heating to
rapidly increase the intracellular temperature, which results in the
vaporization of liquid water and the generation of high pressure,
ultimately breaking through the membrane-wall structure of the cell
to create small holes (Lee et al., 2010). Although this method is fast
and pollution-free, the sharp increase in temperature may cause
denaturation of the active substance.

Electroporation generates minimal cell debris and can even
promote cell growth and regeneration. It is also possible to
extract intracellular lipids into the supernatant. However, the
extraction rate is lower compared to chemical lysis or mechanical
decomposition (Eleršek et al., 2020).

Autoclaving involves the use of high temperature and pressure
to increase the diffusion of substances, allowing them to be released
from cells (Zhou et al., 2020). However, it may cause side reactions
in some substances and lead to changes in lipids. This method is
typically used in bioenergy production (Sivaramakrishnan and
Incharoensakdi, 2019).

In contrast, the repeated freezing and thawing method produces
ice particles within the cells, causing the salt concentration of the
remaining cytosol to increase, leading to cells swelling and breakage.
This technique is simple to perform and does not damage heat-
sensitive substances, making it suitable for the extraction of high-
value substances, making it suitable for high-value product
extraction using wall-broken extraction. However, it consumes
more energy compared to other methods.

Biochemical wall-breaking method
The biochemical wall-breaking method involves adding

biological enzymes or chemical reagents to assist in degrading
cell wall. This approach is commonly used in conjunction with
physical methods. The most prevalent methods are the osmotic
shock method, solvent lysis method, ionic liquid lysis method,
switchable polar solvent lysis method, and biological enzyme
preparation digestion method.

The acid-heat method involves treating algae with acid to
degrade the cell walls. Mixing Chlorococcum sp. with 8% sulfuric
acid and heating the mixture at 160°C for 45 min achieved an algae
cell wall breaking rate of 33.2% (Halim et al., 2012). Dilute H2SO4

can significantly affects the degradation of cell wall, even in the
absence of any polar organic solvent such as methanol. However, it
should also be noted that this sulfuric acid process can be efficiently
applied to wet algal biomass, but appropriate material and facility
costs should be addressed (Park et al., 2014).

Chemiosmosis involves using the difference in osmotic pressure
between the inside and outside of algae cells in a hypertonic solution
to break down the cells. Although this method is mild, it usually
takes a long time, and the high osmotic pressure causes the cell
contents to be squeezed out spontaneously. A low lipid extraction
rate was obtained from wet algal biomass of C. vulgaris with 1 L of
phosphorus hydrate P(CH2OH)4Cl (Olkiewicz et al., 2015).

Solvent lysis, ionic liquid lysis, and switchable polarity solvent
lysis are based on the properties of the cell wall, where specific
solvents or chemical substances are added to degrade the cell wall.

TABLE 5 Methods for oil extraction from algae.

Regular organic solvent extraction Supercritical fluid extraction

Advantage Relatively high oil yield, simple equipment and easy operation. Relatively low temperature, avoiding contact with oxygen, high
efficiency.

Shortcoming Toxic, volatile, not conducive to human health and environmental
protection.

Expensive and high energy consumption.

Scope of Application Low-value products, bioenergy. High-value products, carotenoids, PUFAs.
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The most common solvent lysis methods include the Bligh and Dyer
method, Folch method, and Soxhlet extraction, which
simultaneously achieve cell wall lysis and oil extraction. The ionic
liquid lysis supplemented by physical treatment can significantly
enhance the extraction of fatty acids. Switchable polarity solvents
have unique chemical properties that can rearrange the lipid bilayer
structure in the cell membrane, resulting in higher extraction
efficiency than solvent lysis.

The enzymatic method utilizes hydrolytic enzymes to degrade
algae cells. This method has a high rate of wall breaking, mild
conditions, and does not cause denaturation of intracellular
substances. However, the use of enzyme preparations also
increases the difficulty of separating and purifying later products.
Enzymatic hydrolysis of Chlorella vulgaris is superior to other
physical breaking methods (Zheng et al., 2011). When comparing
the effects of various cell disruption methods on lipid production in
Schizochytrium sp., pretreatment with lysozyme and cellulase results
in the highest extraction rate and highest DHA content (Hac İsa
et al., 2022).

Decolorization and impurity removal

Crude or unrefined bio-oil often contains various other fat-
soluble molecules, such as photosynthetic pigments, which are
valuable nutritionally. However, as a commodity oil, these
compositions not only impact the color and appearance of the oil
but also reduce the stability of the oil quality, leading to oxidation or
deterioration of the oil (Rodríguez-España et al., 2022). Therefore, it
is crucial to remove unnecessary components such as pigments to
improve the oil’s stability and quality.

Algae lipids generally contain a certain amount of carotenoids,
which are fat-soluble. It has been found that carotenoids are typically
synthesized in cells and stored in lipid droplets in a fat-soluble form to
accumulate a substantial amount of astaxanthin, which requires
synthesizing the necessary amount of lipid droplets (Collins et al.,
2011; Han et al., 2013). Although there are several separation methods
to separate carotenoids from lipids, such as silica gel column
chromatography, central partition chromatography, and thin-layer
chromatography (Sun et al., 2022), the separation cost is relatively
high. Additionally, carotenoids and lipids can be separated by screening
solvents and using the polarity difference (Lourenço-Lopes et al., 2020;
Sun et al., 2022). Separation can improve the output value of
production if the product value exceeds the increased process cost.
Some algae can also synthesize carotenoids when accumulating large
amounts of long chain PUFA under special conditions. For example,
Chaetoceros gracilis (Tachihana et al., 2020), Phaeodactylum
tricornutum (Derwenskus et al., 2020), Nitzschia sp (Ma et al.,
2023) can simultaneously accumulate EPA and fucoxanthin, while
Nannochloropsis gaditana (Menegol et al., 2019) can simultaneously
accumulate EPA and carotenoids, while Aurantiochytrium sp (Yin
et al., 2023) can simultaneously accumulate DHA, astaxanthin, and β-
carotenoids. However, according to the reported content, in order to
simultaneously accumulate both types of high-value products in large
quantities, further in-depth research is still required.

Adsorbents commonly used for crude oil decolorization include
various products such as activated clay and activated carbon. Among
them, activated clay is widely used for decolorization in the oil

industry. Activated clay is inexpensive, easy to obtain and prepare,
and has a strong absorption capacity for chlorophyll, carotenoids
and their derivatives, hydroxyl-containing polar molecules, free fatty
acids, and colloidal substances (Kreps et al., 2014). For example, it
effectively decolorizes crude oil from corn (Liu and Zheng, 2014)
and Scenedesmus sp. (Chen W et al., 2021).

Activated clay is a commonly used adsorbent for crude oil
decolorization, which can be obtained from various sources.
However, activated clay from different production areas may have
varying components, leading to differences in their decolorization
performance. Therefore, modifications can be made to activated clay
to enhance its adsorption and decolorization capabilities. Activated
clay is preferred over other decolorization materials, such as activated
carbon, activated fuller’s earth and attapulgite clay, making it a more
suitable choice (Liu and Chen, 2012). Not only can activated clay
effectively decolorize crudely extracted biodiesel, but it can also
remove most peroxides (Su et al., 2014). For example, commercial
montmorillonite clay from Leping, Jiangxi, China (Yang M et al.,
2019), and upper Eocene sedimentary clay from Kairouan, Tunisia
(Eloussaief et al., 2020) can be modified through proper treatment,
greatly improving the adsorption capacity of pigmentmolecules in oil.
Moreover, some activated clay used for oil decolorization can be
regenerated by calcination and other treatments. Recycled activated
clay can then be used again, reducing the cost of decolorization
(Bachmann et al., 2020). To optimize the decolorization process, it is
necessary to screen the activated clay with the best decolorization
performance for the target oil. Appropriate improvement of the
activated clay processing technology can also improve the
decolorization performance. Finally, optimizing the decolorization
conditions can lead to activated clay becoming an ideal tool for the
decolorization of refined oil and algae oil (Chen et al., 2012).

Enrichment of PUFAs

Many algae have been approved as a new food resource and are
already being incorporated into everyday meals, with related food
products already on themarket. Some peoplemay need to supplement
their omega-3 PUFA-rich intake through consuming foods and edible
oils rich in these fatty acids, while others may need to turn to drugs,
health products, or evenmilk powder. Tomanufacture these products,
omega-3 PUFA raw materials with a single component and defined
content are required. Algae oil, which is rich in omega-3 PUFAs, can
be used as a raw material for these products. However, to meet the
desired product characteristics when used in health products,
pharmaceuticals, or auxiliary medicines, PUFAs in algae oil must
be purified (Li X et al., 2019; Wei and Wang, 2020). For instance,
several omega-3 PUFAs prescription drugs approved by the U.S. Food
and Drug Administration for the prevention and treatment of high
triglycerides require even higher purity (Hoy and Keating, 2009; Blair
and Dhillon, 2014; Kim and McCormack, 2014).

Hydrolysis of lipids

Fatty acid hydrolysis can hydrolyze and separate ester-forming
fatty acids, which can then be further separated and utilized based on
their different properties.
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Saponification-esterification method
PUFAs can be separated and concentrated by taking advantage

of the difference in the solubility of fatty acid metal salts in certain
organic solvents. To obtain refined oil with higher PUFAs content,
lipids can be saponified under heating conditions using a specific
ratio of ethanol and NaOH. The saponified mixture can then be
filtered to obtain saponified liquid and solid particles, followed by
esterification of the saponified compositions with dilute H2SO4.

Non-catalytic hydrolysis method
Transesterification of triglycerides to form fatty acid methyl

esters or fatty acid ethyl esters can be achieved directly under high
temperature and pressure (Felix et al., 2019), through the Thermal-
Fenton mechanism (Yew et al., 2021), or in supercritical methanol
conditions (Mohamadzadeh Shirazi et al., 2017). However, this
process is mainly used in biodiesel production, which results in
impurities and may easily damage PUFAs.

Chemical catalytic hydrolysis method
Acid catalysis, saponification-acidolysis, and high-pressure

hydrolysis are common methods used in the oleochemical
industry for lipid hydrolysis. The acid-catalyzed and
saponification-acidification methods are cost-effective and have a
hydrolysis rate of over 90%. However, they produce large amounts of
waste acid or alkali (Zhuang et al., 2012; Asikainen et al., 2015).
High-pressure steam hydrolysis is an effective alternative but
requires higher equipment and operating costs. Generally, these
methods are carried out at higher temperatures, particularly the
high-pressure hydrolysis method (Zarli, 2020).

Chemical catalysts can be categorized into homogeneous and
heterogeneous catalysts, which can be further subdivided into
alkaline and acid catalysts (Neag et al., 2023). Commonly used
homogeneous catalysts include NaOH, CH3ONa, KOH,
concentrated HCl, or H2SO4 (Neag et al., 2023). Heterogeneous
catalytic processes are suitable for raw materials containing more
polar components, such as CaO/MgO, KF/CaO, magnetic nano-
scale KOH/Fe2O3-Al2O3 (Kazemifard et al., 2019), CaMgO/Al2O3,
zirconia (ZrO2), titanium oxide (TiO2), zeolites, ion exchange resins
(Hidalgo et al., 2013), and algae carbon-based solid acid catalysts
(Cao et al., 2021).

Lipase-catalyzed method
Enzymatic enrichment utilizes the selective specificity of lipase,

an enzyme that catalyze various reactions such as hydrolysis,
acidolysis, alcoholysis, transesterification and reverse synthesis of
esters of triacylglycerides and other water-insoluble esters. The main
reactions involved in enzymatic enrichment are hydrolysis,
transesterification and esterification.

Enzymatic hydrolysis
The enzymatic hydrolysis method, which employs lipase for

breaking down oil into fatty acids and glycerol, can be carried out
at mild conditions without the need for steam boiling or
pressurization. The reaction can be carried out at room
temperature or slightly higher, and does not produce a large
amount of waste acid or waste alkali. Lipase is a carboxyl ester
hydrolase that can hydrolyze the α and β bonds of glycerides into
fatty acids and glycerol and synthesize glycerol esters from fatty

acids and glycerol. Depending on the characteristics of different
lipases and the selected reaction conditions, both hydrolysis and
transesterification reactions can be operated, as well as
esterification of certain fatty acids. By undergoing hydrolysis,
transesterification, and esterification reactions, lipases can
produce high concentrations of specific fatty acids, which can
be subsequently isolated and enriched by other methods (Akanbi
et al., 2013). Lipase-catalyzed hydrolysis has proven successful in
enriching EPA and DHA in oils from fish (Pan et al., 2012;
Valverde et al., 2013; Valverde et al., 2014), Isochrysis galbana,
Chaetocerous calcitran, Chlorella marina, and Tetraselmis gracillus
(Jacob and Mathew, 2017), and ALA in flaxseed oil (Rupani et al.,
2012; Zou et al., 2020). Hence, lipase can be an efficient and
environmentally friendly tool to enrich fatty acids. The hydrolysis
rate of some lipases for olive oil, soybean oil, rice bran oil, linseed
oil, perilla seed oil, and rapeseed oil can reach 35%–100% (Zhao
et al., 2022), and the hydrolysis rate of oil to Scenedesmus sp. can
reach 66% (Chen W et al., 2021).

Enzymatic esterification method
Lipase selectively catalyzes the reaction of UFAs and alcohols to

produce esters, or between saturated fatty acids and alcohols to
generate esters, thereby enriching UFAs (Jithu Paul, 2019).

Enzymatic transesterification method
It involves the catalytic exchange of acyl groups between

glycerides and free fatty acids, alcohols, or other esters under the
catalysis of lipase. These reactions are referred to as acidolysis,
alcoholysis and transesterification reactions, respectively. This
method is particularly suitable for the preparation of high
concentration PUFAs or PUFA methyl esters (ethyl esters)
(Farmani et al., 2007; Castejón and Señoráns, 2020). During the
transesterification process, lipase preferentially acts on saturated and
monounsaturated chains, thereby substituting PUFAs into
glycerides to achieve enrichment.

Chemical methods for enriching PUFAs usually require
derivatization of raw oil to form PUFAs or their methyl and
ethyl esters, which then need to be combined with other
separation methods to achieve a good enrichment effect.
Additionally, these methods often require further conversion
into a glyceride form that can be easily absorbed by the human
body. Physical and chemical methods also involve the use of a large
amount of organic reagents, which can be harmful to health and
must to be completely removed. In contrast, the lipase hydrolysis
method only requires a single-step reaction under mild conditions
and does not require a large amount of organic reagents or
additional pretreatment. This method can enrich PUFAs on
glycerides, and the hydrolysis rate of these fatty acid glycerides
is faster than the methyl or ethyl ester enriched by physical and
chemical methods (Yang et al., 1989). Therefore, the hydrolysis
method is more suitable for human digestion and absorption. The
immobilized lipase can still maintain 60% of its initial activity even
after 10 reaction cycles (Liu et al., 2018). However, to separate the
target components, it is often necessary to combine other methods.
Lipase with high specificity must be extensively screened, which
can increase the cost. To enhance the functional specificity of
lipase, computer-aided design can be employed (Moharana and
Rao, 2020).
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Purification of PUFAs

Various methods are available for the separation and
purification methods of PUFAs, such as low-temperature
crystallization, urea inclusion, silver ion complexation, molecular
distillation methods. The advantages and disadvantages of these
methods are summarized in Table 6.

Ag+ complexation method
Silver ions have the ability to form polar complexes with carbon-

carbon double bonds, and the more double bonds there are, the
more Ag+ combined, the stronger the complexation, and the more
stable the complex. The silver ion complexation method is typically
categorized into the AgNO3 solution direct complexation method,
AgNO3-silica gel column chromatography, AgNO3 membrane
separation and adsorption method, etc. For instance, the Ag+

complexation method has been used to enrich omega-3 PUFA
from Desmodesmus sp. oil, leading to an increase in the ALA
content from 24% to 92% (Nagappan and Kumar Verma, 2018).
These methods have high enrichment efficiency and product purity,
but the cost of Ag+ is high and recovering it in large quantities is
challenging. Moreover, after saponification, Ag+ needs to be eluted
with organic reagents which may cause heavy metal pollution in the
product and residues in organic eluents. These drawbacks have
limited the widespread production and application of these
methods.

Molecular distillation method
Molecular distillation is a method used to separate substances

based on the difference in mean free path of the molecular thermal
motion of each component in the mixture. The molecular mean free
path is determined by the molecular diameter, system pressure, and
temperature. Under specific temperature and pressure conditions,
fatty acids with high degrees of unsaturation have a short molecular
mean free path, resulting in a slower evaporation rate. Multistage
distillation can efficiently separate different components (Zhang
et al., 2013; He et al., 2020). Molecular distillation doesn’t require the
introduction of foreign substances, does not need to be heated to the
boiling point, has a short heating time, and can be produced
continuously. However, it must be performed under high

vacuum, has high energy consumption, and may yield products
with low purity. Thus, when separating fatty acids with similar
molecular mass, molecular distillation is often combined with other
separation methods. For example, continuous four stages of
molecular distillation can increase the mass fraction of ALA in
silkworm chrysalis oil from 54.49% to 99.28% (Liu et al., 2018), and
enrich ω-3 PUFAs in Schizochytrium limacinum oil to 92.98%
(Zhang et al., 2013).

Low-temperature crystallization method
The low-temperature crystallization method is primarily based

on the difference in freezing point and solubility at low temperature
conditions for the purpose of separation and purification. The
melting point of saturated fatty acids is usually higher than that
of UFAs, meaning that the solidification temperature of fatty acids
with more unsaturated bonds is lower. Additionally, temperature
also affects the solubility of fatty acids in organic solvents. As a
general rule, fatty acids with longer carbon chains exhibit lower
solubility, while fatty acids with more double bonds have higher
solubility in organic solvents, as shown in Figure 6 (Knothe and
Dunn, 2009). Therefore, low-temperature crystallization permits
saturated fatty acids in fatty acids to form a solid phase while
UFAs can dissolve in organic solvents, thereby enriching UFAs in
the remaining liquid phase. The separation technique involves two
steps, namely oil crystallization and solid-liquid phase separation. It
can be divided into dry fractionation, surfactant fractionation, and
solvent fractionation.

Dry fractionation refers to the transesterification of crude oil
under alkaline conditions to produce fatty acid methyl ester (ethyl
ester), which is then cooled to a specific temperature without the
addition of any organic solvent, allowing the solid components in
the oil to crystallize first (Soleimanian et al., 2015). The solid and
liquid phases are then separated by centrifugal filtration or other
means. However, methanol-based alcoholysis is toxic and hazardous
to human health, and thus many studies employ ethanol.
Additionally, fatty acid ethyl ester is not easily hydrolyzed by
pancreatic lipase, which is not beneficial for human absorption
(Sigurgisladottir et al., 1992).

Surfactant fractionation entails freezing crude oil for natural
crystallization, followed by the addition of a specific proportion of

TABLE 6 ALA enrichment methods.

Advantages Disadvantages

Solvent Extraction Simple operation Low purity

Silver Ion Complexation Good separation effect. Expensive. Heavy metal pollution.

High product purity

Molecular Distillation No foreign substances’ introduction. Need high vacuum.

Temperature is far below the boiling point. High energy consumption.

Short heating time. Low purity of the product.

Fit for continuous production. Not ideal for the separation of fatty acids with similar molecular weights.

Low-temperature
Crystallization

Cheap equipment, easy to operate, and can effectively protect
active ingredients

A large amount of organic solvent needs to be recovered, and the separation
efficiency is not high.

Urea Complexation Simple process, low cost, and the active ingredients protective. Difficulty separating fatty acids with similar degrees of unsaturation.
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surfactant and electrolyte solution to emulsify the crystallized solid
oil and suspend it in the water phase, thus increasing the separation
efficiency of crystallized solid oil (Salminen et al., 2014; Islam et al.,
2020). This method is more efficient than the dry method, but many
surfactants cannot be utilized in food processing.

Solvent fractionation involves saponifying crude oil into free
fatty acids, selecting an appropriate organic solvent to dissolve in a
specific proportion, and refrigerating it at low temperature.
Subsequently, large amounts of fatty acids with low degrees of
unsaturation are crystallized and separated by filtration. Using
the low-temperature crystallization method, the content of ALA
in silkworm chrysalis oil increased from 15% to 47.6% (Wang et al.,
2013), and the content of UFAs in the oil of Scenedesmus sp. can be
increased to more than 90%, of which ALA can reach 63% (Chen W
et al., 2021).

Urea inclusion
Urea can form clathrates with aliphatic compounds, specifically

straight-chain compounds containing more than 4 carbon atoms
(Domart et al., 1955; Hollingsworth et al., 1996). Urea inclusion has
long been recognized as an effective method for enriching PUFA, as
indicated in Table 7. The urea clathrate is based on the linear
aliphatic compound as the axis, where there is a weaker van der
Waals bond between urea and the linear aliphatic compound. Urea
molecules spiral up around the axis in a counterclockwise direction
through hydrogen bonding, tightly enclosing it (González-
Fernández et al., 2020). During the crystallization process, urea
forms relatively stable crystal inclusion complexes with saturated
fatty acids or monounsaturated fatty acids. However, polyvalent
unsaturated fatty acids are difficult to include due to their multiple
double bonds and curved carbon chains, which have a specific

FIGURE 6
The melting points of some free fatty acids.

TABLE 7 The effects of urea inclusion for PUFAs enrichment.

Target Effect Reference

LA in Clarias macrocephalus oil Enriched from 18.4% to 47% Zainuddin et al. (2011)

ALA in comfrey oil Enriched to 99.30% Han et al. (2004)

ALA in Kiwi Seed Oil Enriched from 61.82% to 87.2% Wu et al. (2005)

ALA in Silkworm Chrysalis Oil Enriched from 27.99% to 70.28% Zhang et al. (2011)

ALA in Flaxseed Oil Enriched to 78.6% Cheng et al. (2017)

GLA in comfrey oil Enriched to 91% Spurvey and Shahidi (2000)

DHA in waste oil by-products Enriched from 25.5% to 59.7% Wayan Suriani and Komansilan (2019)

PUFAs in carp fish oil Enriched to 88.9% Crexi et al. (2012)

PUFAs in Seal Oil Enriched to 71.35% Zheng et al. (2018)

PUFAs in Refined Salmon Oil Enriched from 38.4% to 96.99% Dovale-Rosabal et al. (2019)
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spatial configuration (Shen et al., 2018). A variety of urea + X
inclusion methods derived from the improvements can be used to
design polymer-urea inclusion complexes more accurately. These
methods make it easier to include straight chain molecules while
making it more challenging to clathrate curved polymer molecules
(Shen et al., 2018). The entire process of the urea inclusionmethod is
simple to operate, and the necessary raw materials are readily
available and inexpensive. This method is worth considering not
only for large-scale application but also as it has a strong
experimental foundation for reference.

Outlook

Essential PUFAs have numerous health and medical benefits.
As people’s quality of life improves, their awareness of health
protection increases, and they pay more attention to nutrition and
health in their diet. Providing high-quality PUFAs for the
population can help enhance their health and quality of life,
and indirectly reduce medical expenses for society. Therefore,
providing high-quality PUFAs for the general population has
both significant social significance and good market prospects.
However, there are few sources of PUFAs-rich oils on the market,
and the production of PUFAs-rich algae oils is still at the
laboratory-scale stage. Many algae that can produce high
PUFAs are still in the verification stage and may be listed as
new resource foods in the future. Thus, it is necessary to explore
the technical model of large-scale production of these high-yield
PUFAs algae, master practical industrial technology means, lay a
technical foundation for the industrialization of algae edible oil,
and promote algae resources to the market.

In the field of bioenergy research, the production of algae oil is
currently facing a bottleneck due to high production costs. As a
result, commercial promotion has become challenging, and progress
in commercial applications have been slow. While the
industrialization of high-value algal oils such as DHA and
astaxanthin has already been successfully realized, producing
high-value PUFAs from algae could potentially solve the cost
problem of algae biodiesel by utilizing the separated by-product
of saturated fatty acid as the raw material for algae biodiesel. Algae
bioenergy currently faces a cost bottleneck that is difficult to
overcome, but focusing on the development and utilization of
high-value products could make it more economically feasible.

An analysis of the research hotspots and development direction
of algae PUFAs production indicates that while there is considerable
emphasis on the accumulation of algae PUFAs, downstream
processes such as extraction, decolorization, impurity removal,
enrichment, and purification require more attention. This work
provides a systematic description of the necessary process methods
for converting algae biomass to enriched PUFAs, and offers
guidance for the production of omega fatty acids using algae.
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