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The cornea is the main refractive medium of the human eye, and its clarity is critical
to visual acuity. Corneal optical density (COD) is an important index to describe
corneal transparency. Intact corneal epithelial and endothelial cells, regular
arrangement of collagen fibers in the stroma, and normal substance metabolism
are all integral for the cornea to maintain its transparency. In the last two decades,
the Pentacam Scheimpflug imaging system has emerged as a breakthrough for the
measurement of COD (also called corneal densitometry). It has been found that a
wide variety of factors such as age, refractive status, and corneal diseases can affect
COD. Different corneal refractive surgery methods also change COD in different
corneal regions and layers and affect visual acuity following the surgery. Thus, COD
has gradually become a significant indicator to evaluate corneal health, one on
which the attention of clinicians has been increasingly focused.
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1 Introduction

Visual acuity relies on proper transition and focusing of light through the cornea and
other tissues before reaching the retina (Brown et al., 2020; Price et al., 2021). Located at the
front of the eye, the cornea accounts for two-thirds of the total refraction therein. As such, its
optical clarity critically affects the refraction of light and overall optical outcomes of the eye
(Patel and Tutchenko, 2019; Mohan et al., 2022). The optical clarity of the cornea depends on
its unique structure and biological characteristics, which include intact corneal epithelial and
endothelial cells, regular arrangement of collagen fibers in the stroma, and normal substance
metabolism (Onochie et al., 2019; Zhang et al., 2019; Mohan et al., 2022).

The measurement of corneal optical clarity began in the 1990s with concerns about the
appearance of haze in the cornea following refractive surgery (Andrade et al., 1990). Because
earlymeasuring instruments possessed poor sensitivity and image acquisition, themeasurement
of the optical clarity of the cornea relied mainly on qualitative analysis, which was highly
affected by the subjective experience of the clinician (Doughty and Jonuscheit, 2019). The
Pentacam Scheimpflug imaging system solves this problem. Through a rotating Scheimpflug
camera, the system is capable of assessing corneal optical densitometry (COD) to objectively
and quantitatively evaluate the corneal optical clarity (Lou et al., 2022). The range of COD is
defined as 0-100.When COD is 0, light can pass through the cornea uninhibited.WhenCOD is
100, light cannot pass through the cornea at all (Takacs et al., 2011).
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Recent studies based on Pentacam Scheimpflug imaging system
have found that COD can be affected by edema or inflammation,
both of which cause structural or biological changes in the cornea in
various corneal diseases such as infectious keratitis and keratoconus
(Lopes et al., 2014; Orucoglu et al., 2014; Sorcha et al., 2014).
Different corneal refractive surgery methods also have distinct
effects on COD, and changes in COD after surgery have a
certain correlation with visual quality (Lazaridis et al., 2017; Wei
et al., 2020; Hou et al., 2022). COD also gradually increases with
advancing age in healthy elderly people (Hillenaar et al., 2011). In
recent decades, COD has gradually become an important optical
index to assess corneal health both in healthy people and in patients
with corneal diseases.

2 Corneal structure and optical clarity

The cornea is ecial tissue located at the front of the eye with a
convex meniscus shape and high transparency. Its equivalent
refractive force is about 43 D, accounting for more than two-
thirds of the eye’s refraction (Otri et al., 2012; Patel and
Tutchenko, 2019). The cornea is an avascular tissue with a
complex composition and regular arrangement, and its
structure is the key to maintaining its optical clarity (Yu et al.,
2022).

2.1 Corneal epithelium

The corneal epithelium supports the tear film, protects
underlying structures, and maintains the cornea’s
transparency (Lavker et al., 2020). The process of oxygen

transport and metabolism of the corneal epithelium are vital
to corneal clarity. Vicente et al. reported that, when the cornea
suffered from hypoxia and hypercapnia due to long-term
contact lens wearing, the corneal epithelial cells may suffer
from acidosis and a subsequent decrease in corneal
transparency (Moreno et al., 2022). Molecules such as
superoxide dismutase (SOD), glutathione peroxidase (GPX),
and catalase (CAT) have been reported to be associated with the
normal antioxidant function of corneal epithelial cells (Chen
et al., 2009).

2.2 Bowman’s layer

Bowman’s layer is an 8-12 μm thick layer formed by non-cellular
aggregates that help the cornea maintain its shape (Cankaya et al.,
2018). In healthy adults, COD was indicated to be negatively
correlated with the thickness of Bowman’s layer (Pekel et al.,
2018). Following femtosecond laser-assisted LASIK, areas of focal
disruption of the Bowman’s layer were observed to correspond with
areas of interface haze, suggesting that decreased corneal
transparency is associated with damage to the Bowman’s layer
(Vaddavalli Pravin et al., 2012).

2.3 Corneal stroma

The corneal stroma is one of the most precisely arranged and
transparent tissues in the cornea (Espana and Birk, 2020). The
normal arrangement of collagen fibers in the stroma and the
stability of stromal cells are critical to corneal clarity. Collagen
type I is the primary collagen in the corneal stroma (Song et al.,

TABLE 1 Measurement methods of corneal optical clarity.

Methods Types Technical principle Advantages Disadvantage Refs

Slit-lamp
microscope

Qualitative Evaluating corneal transparency
by haze grading

Simple and practicable in use Measurement is related to the
experience and subjectivity of
clinicians, and cannot objectively
reflect the degree of corneal clarity

Anumanthan et al.
(2017)

Ultrasound
biomicroscope
(UBM)

Qualitative B-mode ultrasound UBM can be used to observe the
location, size, and range of corneal
haze

Only moderate and above moderate
haze can be measured

Kendall et al.
(2015)

In vivo confocal
microscopy

Qualitative Confocal microscopy Each sublayer of the cornea can be
observed and analyzed by different
light intensities

Usually needs to contact the cornea;
potentially causes slight shape changes
in the cornea, leading to potential
measurement errors

McLaren et al.
(2016)

Orbscan
topography

Qualitative Placido disc technique combined
with the slit scan technique

Can visually display the anterior and
posterior corneal surface height,
corneal curvature, corneal
astigmatism, and corneal thickness

Accuracy is significantly lower than
ultrasonic pachymetry

Altan-Yaycioglu
et al. (2007)

Optical coherence
tomography (OCT)

Qualitative Based on near-infrared light
waves to image microstructures
of the cornea

Has a higher resolution and faster
speed than that of UBM

Penetrating power is weak and, when
corneal opacity is high, is prone to
measurement bias

Mori et al. (2009)

Pentacam
Scheimpflug
imaging system

Quantitative Based on the Scheimpflug
principle, in which the camera
and light source speedily rotate
and scan the eye

Boasts high resolution, accurate
positioning, repeatable
measurements, easy operation, non-
contact, and quantitative analysis of
corneal optical density

Good cooperation of subjects is
required to avoid measurement bias

Garzón et al.
(2017)
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2021). After corneal refractive surgery, collagen type III will
appear (Abdelkader, 2013; Abdelkader, 2016). Compared with
collagen type I, collagen type III is thicker in diameter and
irregularly arranged (Gandhi and Jain, 2015). The appearance of
a large number of collagen type III fibers induces structural
changes in the stroma and consequently leads to a decrease in
corneal transparency (Gibson et al., 2013).

Following injury of the corneal stroma, the repair process
begins with the activation of cytokines to remove damaged cells.
Corneal epithelial cells secrete cytokines that induce stromal
cells to transform into activated stromal fibroblasts (SFs)
(Kowtharapu et al., 2018). SFs have low crystalline contents
that lead to a decrease in corneal transparency. In addition, SFs
are able to synthesize large-diameter collagen fibers and
abnormal extracellular matrix, leading to a higher refractive
index and the appearance of corneal haze (Wang et al., 2003).
Ha et al. have indicated the correlation between corneal haze
and COD, and the therapeutic effect of mitomycin C on corneal
haze (Ha et al., 2010). Mitomycin C has an antiproliferative
effect on corneal SFs that prevent the decrease of corneal
transparency (Carlos De Oliveira and Wilson, 2020).

2.4 Descemet’s membrane

Descemet’smembrane is a dense, thick, relatively transparent, and
acellular basement membrane that separates the posterior stroma
from the endothelial layer (de Oliveira andWilson, 2020). Descemet’s
membrane originates from the secretion of endothelial cells at
different stages of development and gradually thickens (Eghrari
et al., 2015). It plays an important role in the maintenance of
corneal transparency as a critical regulatory structure. Together
with the endothelium, it is involved in the trafficking of
substances, such as transforming growth factor beta (TGFβ) and
platelet-derived growth factor (PDGF), that regulate stromal fibrosis
and edema and may therefore influence COD (Medeiros et al., 2018).

2.5 Corneal endothelium

The corneal endothelium is located on the posterior corneal surface
and lacks self-renewal capacity (Kumar et al., 2022). It keeps the corneal
stroma in a relatively dehydrated state via transporting fluid from the
corneal stroma to the aqueous humor, which is critical to corneal

FIGURE 1
Measurement of corneal optical density by the Pentacam Scheimpflug imaging system. (A) Schematic representation of the rotation of the
Scheimpflug camera of the Pentacam Scheimpflug imaging system. (B) Schematic representation of the Scheimpflug principle. Its main feature is that the
plane of the film, the lens, and the picture/focus plane cut each other in a Scheimpflug intersection. Thus, the focused region is increased, and the
sharpness of the image is improved. (C) Schematic representation of the corneal zones and layers defined by the Pentacam Scheimpflug imaging
system. (D) Example of the software panel of the corneal optical densitometry in the Pentacam Scheimpflug imaging system. Displayed as a grayscale
coded map, the average COD in different corneal zones and layers can be individually assessed and automatically displayed in the table chart.
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transparency (Sie et al., 2020). Tekin et al. indicated that COD was
significantly correlated with cell density and percentage of hexagonal
cells in healthy corneas (Tekin et al., 2017). However, Dorota et al. came
to a different conclusion in patients with the pseudoexfoliation
syndrome (PEX), which is characterized by the excessive production
of granular amyloid-like protein fibers in the anterior segment
(Tomczyk-Socha et al., 2022). Increased COD was observed in the
corneal epithelium in the PEX group, whereas it was not associated with
endothelial cell density (Urbaniak et al., 2018). This is possibly caused
by the formation of a fibrous layer that is loosely attached to Descemet’s
membrane in advanced stages of PEX, and it may increase the COD of
the corneal endothelium.

3Measurement methods of the corneal
optical density

Due to concerns about corneal haze after refractive surgery, the
measurement of corneal optical clarity began in the 1990s (Andrade

et al., 1990). In the early stages, the measurement of the optical
clarity of the cornea was mainly qualitative analysis using such
instruments as the slit-lamp microscope, ultrasound biomicroscope,
and optical coherence tomograph (Table 1). Quantitative evaluation
of the corneal optical clarity began with the emergence of Pentacam
Scheimpflug imaging system (Lou et al., 2022).

3.1 Qualitative measurements of corneal
optical clarity

3.1.1 Slit-lamp microscope
The slit-lamp microscope is one of the most widely used

instruments in ophthalmic diagnosis. It can be used to observe the
corneal haze to evaluate the optical clarity of the cornea (Anumanthan
et al., 2017). According to the Fantes scale, the level of haze is graded
as: grade 0, completely clear; grade 1, haze can be easily found under
the slit-lamp microscope, but it does not affect the observation of iris
details; grade 2: hazemildly affects the observation of iris details; grade

TABLE 2 Influencing factors of corneal optical density in healthy people and patients with corneal diseases.

Factors Impact Descriptions of its impact on corneal optical density Refs

Ages Positive Corneal optical density is significantly correlated with age and corneal thickness; corneal optical
density increases with age in the healthy population

Cankaya et al. (2018)

Non-
relative

Corneal optical density is not correlated with age in Chinese patients with myopia Wei et al. (2020)

Gender Non-
relative

There were no significant differences in corneal optical density between males and females Sorcha et al. (2014)

Relative Females have a higher total corneal optical density than that of men Garzón et al. (2017)

Regions Relative The average value of total corneal optical density in studies from different countries are distinct Otri et al. (2012), Patel and
Tutchenko (2019)

Soft contact lens wear Positive Corneal optical density of soft contact lens wearers was significantly higher than that of healthy
participants

Ozek et al. (2021)

Orthokeratology lens
wear

Positive Long-term orthokeratology treatment could significantly increase the corneal optical density in
young orthokeratology lens wearer

Zhao et al. (2022)

Keratoconus Positive Cornea optical density readings of patients with keratoconus were higher than those of the
healthy population and correlated with the severity of keratoconus

Shen et al. (2019)

Infectious keratitis Positive After pathogenic bacteria invade the cornea, it will lead to a decrease in corneal transparency
and a increase in corneal optical density

Orucoglu et al. (2014)

Corneal transplantation Positive Corneal optical density in eyes treated by various keratoplasty was significantly higher than that
of the normal controls

Koh et al. (2012)

PRK Positive The postoperative corneal optical density was significantly higher than that before the surgery Poyales et al. (2017)

LASIK Non-
relative

After 1 year of LASIK, the corneal optical density did not change significantly Fares et al. (2012)

Positive Corneal optical density of patients with epithelial ingrowth after LASIK is significantly
increased

Tian (2018)

FS-LASIK Positive Corneal optical density was found only in the peripheral zone (10-to-12 mm annulus) at
1 month after FS-LASIK.

Poyales et al. (2017)

Negative A long-term prospective study on FS-LASIK indicated that corneal optical density significantly
decreased at 5 years post-surgery compared with the baseline

Wei et al. (2020)

SMILE Non-
relative

At 6-12 months after surgery, the corneal optical density of patients has no significant change
from baseline after SMILE.

Wei et al. (2020)

Negative Corneal optical density significantly decreased in 3 months and 3 years after SMILE. Han et al. (2017)
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3: haze moderately affects the observation of iris and lens; grade 4: the
cornea is so cloudy that the iris is totally obscured (Fantes et al., 1990).
Although this grading method is simple to use, the grading is often
dependent on the experience and subjectivity of clinicians. As such, it
cannot objectively quantify the degree of haze. In order to quantify the
levels of haze, Hollingsworth et al. devised a grading scale to
demonstrate alterations in corneal morphology in keratoconus
using in vivo confocal microscopy (Hollingsworth et al., 2005).

3.1.2 Ultrasound biomicroscopy (UBM)
UBM is able to objectively image the anterior segment of the eye

at microscopic resolution (Pavlin et al., 1992). It can accurately
determine the size, location, and range of corneal lesions, and it has
been widely used in diseases related to changes in corneal clarity,
including keratoconus, corneal dystrophy, and corneal scar
(Silverman, 2009; Kendall et al., 2015). After photorefractive
keratectomy, UBM examination is carried out to document and
follow the haze phenomenon (Nagy et al., 1996). However, UBM is
only able to assess moderate and above-moderate haze; subtle haze is
not observable with UBM (Nagy et al., 1996).

3.1.3 In vivo confocal microscopy
In vivo confocal microscopy was first used for the non-invasive

assessment of corneal injury and disease at the cellular level by
Cavanagh in the 1990s (Cavanagh et al., 1993). In vivo confocal
microscopy provides multidimensional high-resolution images of the
corneal structure at each layer in vivo, which reduces the false results
caused by specimen processing (Bilgihan et al., 2019). According to
the observation of corneal haze, in vivo confocal microscopy can
determine the structures that contribute to corneal haze at a high
spatial resolution (McLaren et al., 2016). In comparison with the
Pentacam Scheimpflug camera, in vivo confocal microscopy is more
suitable for measuring backscatter in the corneas with the highest
degree of haze (McLaren et al., 2016). However, the microscope
usually needs to contact the cornea; thus the instrument will cause
slight shape changes of the cornea in measuring corneal transparency,
leading to potential measurement errors. Additionally, while the
accuracy of confocal microscopy is high in the central cornea. It is
relatively poor in the peripheral cornea (Takacs et al., 2011).

3.1.4 Orbscan topography
Orbscan topographer is a hybrid slit-scanning and Placido disc

corneal topographer that can visually display the anterior and
posterior corneal surface height, corneal curvature, corneal
astigmatism, and complete corneal thickness (Fam et al., 2005;
Karimian et al., 2011). It was demonstrated that Orbscan readings
were inversely correlated to haze grade (Fakhry et al., 2002; Altan-
Yaycioglu et al., 2007). However, its accuracy was significantly lower
than ultrasonic pachymetry, suggesting that Orbscan topography
alone is insufficient for measuring corneal haze (Altan-Yaycioglu
et al., 2007). Moreover, Orbscan topography is a qualitative analysis
and thus cannot quantitatively describe the clarity of the cornea.

3.1.5 Optical coherence tomography (OCT)
OCT is a high-resolution optical imaging technique that utilizes

near-infrared light waves to image the microstructures of different
tissue types (Yang et al., 2022). It was first applied for in vivo
measurements of the human retinal structure by Swanson et al.

(1993). Rahul et al. used OCT to assess corneal opacity and found
that it could simulate the effect of phototherapeutic keratectomy
performed for the removal of corneal opacity (Mori et al., 2009).
OCT has a higher resolution and faster speed than that of UBM.
However, UBM can better penetrate opaque or cloudy tissues,
thereby improving the observation of the ciliary body, posterior
iris structures, and anterior chamber in the case of corneal opacity,
scarring, and edema (Ursea and Silverman, 2010).

3.2 Measurement of the corneal optical
density with Pentacam Scheimpflug imaging
system

The emergence of the Pentacam Scheimpflug imaging system
represents a breakthrough in the evaluation of COD, which is an
important quantitative index to evaluate corneal transparency.

3.2.1 Principles of Pentacam Scheimpflug imaging
system

The system is based on the Scheimpflug principle (Figure 1A, B),
in which the rapidly rotating Scheimpflug camera and light source
scan the eye, obtaining 50 Scheimpflug images in less than 2 seconds
(Efron, 2019). At the same time, using a second pupil camera, eye
movements are detected and automatically corrected (Huang et al.,
2014; Cavas-Martínez et al., 2016). Pentacam Scheimpflug imaging
system measures COD in standardized gray units (GSU) on a scale
of 0-100 to quantify corneal transparency at different zones and
depths within the cornea (Hsieh et al., 2021).

3.2.2 Method of measuring corneal optical density
During the examination, the patient remains in a standardized

dim-light condition for 5-10 min and is subjected to the test in the
natural state of the pupil (Pakbin et al., 2022). The patient, who is seated
with their chin fixed on a mandibular brace, is asked to stare at a fixed
target in the center of the Pentacam blue stripe without blinking or
moving their eyes. The examiner selects the measurement mode
(usually 25 segments/second) for automatic scanning and acquires
data for 2 seconds (Gao et al., 2016). Pentacam Scheimpflug imaging
system divides the corneal area into four concentric zones and three
layers with different depths (Figure 1C, D) (Li et al., 2021).

4 Factors influencing COD in healthy
people and patients with corneal
diseases

With Pentacam Scheimpflug imaging system, researchers have
found that COD varies significantly between healthy people and
patients with corneal diseases, as well as between people of different
ages and regions (Table 2). Based on emerging evidence, COD has
gradually become one significant indicator of corneal health.

4.1 Age and gender

COD was found to increase with age in healthy Caucasians from
Belgium (Sorcha et al., 2014). In healthy Spanish participants,
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change in CODwas also positively associated with age in all layers of
the cornea (the anterior, central, and posterior layers) (Garzón et al.,
2017). However, regarding the concentric zones of the cornea, the
change of COD was correlated with age only in the 6-10 mm
annulus. In healthy Turkish participants, Ali et al. demonstrated
a significant positive correlation between total COD and age
(Cankaya et al., 2018). With in vivo confocal microscopy, Toine
et al. also found that backscatter in the anterior stroma was
significantly increased in healthy participants aged 50 years or
older in the Netherlands (Hillenaar et al., 2011). However, Wei
et al. indicated that COD was not statistically correlated with age in
Chinese patients with myopia (Wei et al., 2020). The correlation
between COD and agemay be caused by the reduction of endothelial
cells, which are critical to corneal clarity (Gipson, 2013).

Regarding gender, some studies demonstrate that the CODs of
males and females are not significantly different from one another
(Sorcha et al., 2014; Cankaya et al., 2018). However, a Spanish study
has indicated that women tend to have slightly higher COD (16.60 ±
1.83 GSU) than men (16.22 ± 1.54 GSU) (Garzón et al., 2017). The
influence of gender on COD still needs to be further confirmed.

4.2 Regional differences

The average values of total COD in studies from different
countries are also distinct. A study from the UK showed that the
average COD in healthy subjects (64 eyes) was 12.3 ± 2.4 GSU (Otri
et al., 2012). A Japanese study (36 eyes) indicated that the average
value of total COD in healthy Japanese was 16.4 ± 1.7 GSU (Ozek
et al., 2021). A study based on healthy Caucasians from Belgium
(794 eyes) indicated that the average COD of the 12 mm-diameter
zone was 19.74 ± 3.89 GSU (Sorcha et al., 2014). In Spanish healthy
participants (338 eyes), the average COD of the total zones was
16.46 ± 1.85 GSU (Garzón et al., 2017). These distinct results suggest
that there may be regional differences in COD. This issue will be
addressed by a large-scale international study in the future.

4.3 Soft contact lens wear

Soft contact lens wear may cause poor tear film dynamics,
inflammatory events, and potential contact lens disease, leading
to anatomical and physiological changes in the cornea (Kaido et al.,
2020; Mickles et al., 2021; Wang and Jacobs, 2022). A study based on
soft contact lens wearers demonstrated that the COD of anterior 0-
6 mm annular zones was significantly higher than that of healthy
participants; however, the CODs of the 6-12 mm zone in the two
groups had no significant differences (Ozek et al., 2021). This change
could be due to poor tear function and inflammatory events in the
anterior 0-6 mm zone of the cornea, where the soft contact lens
interacts with the cornea (Muhafiz et al., 2019).

4.4 Orthokeratology lens wear

A number of studies indicated that orthokeratology lens wear
could slow the progression of myopia in school-aged children
(Hiraoka, 2022). With Pentacam Scheimpflug imaging system,

Zhao et al. indicated that long-term orthokeratology treatment
(about 2 years) could significantly increase the COD of the 0-
10 mm diameter area of the cornea in young orthokeratology
lens wearers (10.43 ± 2.03 years old) (Zhao et al., 2022).
Moreover, COD changes were associated with the fitting mode
during the first year, and the COD did not significantly reduce
after 1 month of discontinuation (Zhao et al., 2022). This is basically
consistent with the effect of orthokeratology lenses, which flatten the
central area and steepen the mid-peripheral area in the cornea
(Alharbi and Swarbrick, 2003).

4.5 Keratoconus

In recent years, COD has gradually become an indicator of corneal
health in ophthalmic diagnosis. Lopes et al. found that COD was
significantly increased in Brazilian patients with keratoconus in
comparison with healthy subjects and was positively correlated with
the severity of keratoconus (Lopes et al., 2014). A study based on
Chinese subjects also reached a similar conclusion (Shen et al., 2019).
Additionally, the authors demonstrated that COD values for the
anterior layers (0-6 mm), central layers (0-6 mm), posterior layer
(2-6 mm), and total layers (0-6 mm) were significantly associated
with the stiffness parameter-applanation time 1, which is an
important index of corneal rigidity (Shen et al., 2019). Moreover, it
was found that the COD of Down syndrome patients with keratoconus
showed a significant increase in the middle thickness layer in the 6 mm
zone compared to that of Down syndrome patients whose corneas were
steeper and thinner than normal (Asgari et al., 2020). Myriam and Ali
et al. also indicated that, due to the excessive collagen fibers
proliferation, the COD of the stromal layer was significantly
increased in keratoconus patients after corneal collagen cross-
linking (Kim et al., 2016; Böhm et al., 2019; Mahdavi Fard et al., 2019).

4.6 Infectious keratitis

In infectious keratitis, corneal ulcers will occur after invasion of
viruses, bacteria, and other pathogenic factors into the cornea (Cabrera-
Aguas et al., 2022). Faik et al. reported that archipelago keratitis led to a
significant increase in COD (Orucoglu et al., 2014). Following
treatments with antiviral or antibacterial drugs, the infiltrates were
able to be reduced within 5 weeks. The initial changes were unable to be
observed via slit-lamp microscopy, but measurement of the COD
allowed the evaluation of therapeutic improvement in corneal
clarity, which was decreased from 96.5 to 38.6 GSU (Orucoglu et al.,
2014). In bacterial keratitis, COD of the inflamed area was significantly
increased. Even after 1 month, when the corneal wound was almost
healed, COD was still higher than that of the adjacent normal corneal
area (Otri et al., 2012). Therefore, measuring COD with Pentacam
Scheimpflug imaging system may serve as a powerful tool to assess the
severity of infectious keratitis and the efficacy of drugs therefor.

4.7 Corneal transplantation (keratoplasty)

Corneal transplantation is widely used following corneal
damage (Català et al., 2022). Complications such as acute
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rejection and/or corneal infection are the main causes of corneal
transplant failure (Armitage et al., 2019). Salvatore et al. found that,
following Bowman’s layer transplantation, the transparency of the
cornea decreased, mostly in the central and Bowman’s layer
transplantation posterior layers where the graft had been placed
(Luceri et al., 2016). Moreover, a study based on various selective
lamellar keratoplasty procedures demonstrated that COD in eyes
treated by different keratoplasties was significantly higher than that
of normal controls (Koh et al., 2012). These studies suggest that the
measurement of COD could provide a basis for clinical diagnosis
after corneal transplantation.

5 Roles of the corneal optical density
after refractive surgery

With the improvement of corneal refractive surgery, most
patients can obtain better visual acuity after surgery (Ang et al.,
2021). However, due to the degree of laser ablation, corneal haze,
poor wound repairing, and other reasons, there is still a small
percentage of patients who do not experience the expected
outcomes (Jahadi Hosseini et al., 2016; Chang et al., 2022).
Corneal transparency and corneal optical density may be affected
by damage to the cornea and affect the visual acuity after corneal
refractive surgery (Savini et al., 2016; Charpentier et al., 2021).

5.1 Photorefractive keratectomy (PRK)

Corneal haze is a major complication following PRK, one that
causes decreased visual acuity, refractive regression, and alterations
in the quality of vision (Charpentier et al., 2021). Many studies have
indicated that COD after PRK is significantly higher than before
surgery (Cennamo et al., 2011; Takacs et al., 2011; Poyales et al.,
2017). Increased ablation depth during surgery causes more serious
corneal damage and a higher COD (Charpentier et al., 2021). At
3 months post-surgery, a decreased level of haze was associated with
a reduction in COD (Boulze-Pankert et al., 2016). In order to
evaluate the long-term effect of PRK on corneal densitometry, a
recent study was carried out based on myopic patient who had
photorefractive keratectomy more than 22 years (Montorio et al.,
2020). The authors demonstrated that the COD of the anterior layer
in the central zone of the cornea was significantly increased in eyes
that had been operated on with greater ablation depth in comparison
with unoperated eyes (Montorio et al., 2020). However, there was no
significant difference in the CODs of eyes operated on with lower
ablation depth and unoperated eyes (Montorio et al., 2020).

5.2 Laser-assisted in situ keratomileusis
(LASIK)

In the past decade, LASIK has been a popular ophthalmologic
surgy to correct myopia (Liu et al., 2021). Usama et al. reported that
LASIK had good visual outcomes and did not significantly alter
COD 1 year after LASIK (Fares et al., 2012). This result indicates that
LASIK has less effect on corneal transparency than does PRK
(Gadde et al., 2020). Some scholars have found that the COD of

patients with epithelial ingrowth after LASIK is significantly
increased, suggesting that COD could be used as an objective
measurement of the level and progression of epithelial ingrowth
following LASIK (Adran et al., 2017; Tian, 2018).

5.3 Femtosecond LASIK (FS-LASIK)

Following FS-LASIK, Poyales et al. reported that significant
changes in COD were found only in the peripheral zone (10-to-
12 mm annulus) at 1 month after surgery (Poyales et al., 2017).
Giacomo et al. reported that the COD of myopic patients increased
in the 0-10 mm region of the anterior cornea after FS-LASIK, but
this situation gradually reversed within 6 months (Savini et al.,
2016). However, the changes in COD were still significant in the
annular zone ranging from 6 to 10 mm, where the flap edge was
located (Savini et al., 2016). The anterior layer and middle layer
within the range of 6-10 mm usually mark the edge of the corneal
flap. When the basement membrane is damaged, fibrosis will be
repaired, potentially resulting in a drop in corneal clarity (Stramer
et al., 2003). A long-term prospective study on patients 5 years after
FS-LASIK demonstrated that the COD at all corneal zones
significantly decreased in comparison with the baseline,
indicating that the clarity of the cornea could continue to
improve over a long period following FS-LASIK (Wei et al., 2020).

5.4 Small incision lenticule extraction
(SMILE)

It is not needed to make a corneal flap in SMILE; this permits a
smaller incision and thus less damage to the cornea (Jiang et al.,
2022). Apostolos et al. reported that the total COD at the annular
zone of 0-6 mm showed no significant change 3 months after
SMILE in comparison with preoperative values (Lazaridis et al.,
2017). In addition, the total COD at the annular zone of 0-6 mm
showed a weak negative association with lenticular thickness after
SMILE (Lazaridis et al., 2017). Another study based on SMILE also
indicated a negative correlation between the COD and corneal
thickness, showing a significant reduction in postoperative COD
3 months after SMILE (Alio del Barrio et al., 2021). Because the
number of keratocytes and collagen fibrils is associated with the
corneal optical property, the reduction in COD may be a result of
the decrease of overlying stroma that reduces backscatter
components (Li et al., 2013; Lazaridis et al., 2017).
Furthermore, animal study has shown that SMILE has a low
level of postoperative inflammation and keratinocyte reaction
after the surgery (Dong et al., 2014).

Some studies have compared the changes of COD after FS-
LASIK and SMILE.Wei et al. reported that the change in COD of the
anterior and central layers in SMILE was significantly smaller than
that in FS-LASIK at 5 years post-surgery (Wei et al., 2020). Hou et al.
indicated that, at 12 months post-surgery, patients who underwent
SMILE had lower corneal density in all areas than those who
underwent FS-LASIK (Hou et al., 2022). However, Shajari et al.
came to a different conclusion; they followed up on changes in COD
1 year after SMILE or FS-LASIK and found no significant difference
in COD between the two groups (Shajari et al., 2018).
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To sum up, COD has been a significant index to evaluate corneal
recovery after refractive surgery.

6 Conclusion

Corneal clarity plays a key role in visual acuity. To date, COD as
measured by Pentacam Scheimpflug imaging system is the most
widely used quantitative index for the evaluation of corneal clarity.
Age, regional differences, contact lens wear, and corneal diseases can
affect COD. COD increases in different regions of the cornea after
surface refractive surgery such as PRK and LASIK. The increase of
COD after SMILE and FS-LASIK may be closely related to
postoperative corneal edema, corneal stromal fiber hyperplasia,
and corneal inflammation. In addition, the change of COD in
SMILE was smaller than that of FS-LASIK. The different
postoperative COD changes between SMILE and FS-LASIK may
be related to the distinct level of inflammatory reaction after the two
surgeries. In sum, COD is an important indicator to evaluate the
severity of corneal diseases and corneal injury and recovery after
corneal refractive surgery.
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