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Self-assembling peptides are a type of biomaterial rapidly emerging in the fields of
biomedicine and material sciences due to their promise in biocompatibility and
effectiveness at controlled release. These self-assembling peptides can form
diverse nanostructures in response to molecular interactions, making them
versatile materials. Once assembled, the peptides can mimic biological
functions and provide a combinatorial delivery of therapeutics such as
cytokines and drugs. These self-assembling peptides are showing success in
biomedical settings yet face unique challenges that must be addressed to be
widely applied in the clinic. Herein, we describe self-assembling peptides’
characteristics and current applications in immunomodulatory therapeutics.
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1 Introduction

An influx of attention has been drawn to self-assembling peptides as the organization of
these nanostructures has made it possible to interact with biological systems and induce
bioactivity necessary for applications in tissue engineering, cancer immunotherapy, drug
delivery, and vaccine design. Mainly, in tissue engineering, it was common to use scaffolds
derived from animal or plant sources such as collagen, chitosan, and alginate (Loo et al.,
2015; Peng et al., 2022). These scaffolds can potentially induce immunogenicity (Berthiaume
et al., 2011; Loo et al., 2015; Andorko and Jewell, 2017). Self-assembling peptides (SAPs) can
mimic tissues’ natural biomechanics and structure and the extracellular matrix (ECM).
Besides the self-assembling peptides’ natural framework, SAPs are tunable to include
biologically active systems. The adaptable nature of these peptides allows for loading a
wide range of modulators that can be modified through their chemical composition to
stabilize the scaffold, control release, and influence biological activity (Hoffman, 2002;
Habibi et al., 2016; Sankar et al., 2021). SAPs are attractive biomaterials that can deliver
immunomodulators known to have rapid clearance and poor metabolic stability (Lee et al.,
2019; La Manna et al., 2021). The delivery site of these modulators can range from
intracellular to distant targeted tissues. SAPs’ potential in tissue engineering, drug
delivery, and immunotherapy can change the way we design and deliver biologics.

Many SAPs form networks of nanofibers that generate hydrogels at low weight percent.
Some of the SAP hydrogels have shear-thinning and self-healing properties, which broadens
the scope of using them as a biomaterial. Shear-thinning is a material’s ability to decrease
viscosity under shear strain and self-heal when the strain is removed (Diesendruck et al.,
2015; Chen et al., 2018a). Hydrogels with shear-thinning and self-healing properties are
attractive biomaterials because they can be injected for minimally-invasive delivery (Herbst
et al., 2013; Chen and Zou, 2019). Upon injection, the hydrogel can recover to the shape of
the local environment, an important property for scaffolds in tissue engineering (Overstreet
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et al., 2012; Uman et al., 2020). These hydrogels experience
improved material retention and mechanical properties that allow
homogenous sequestration of modulators, making them ideal for the
controlled release of small molecules for drug delivery (Lopez-Silva
et al., 2019; Chang and Yan, 2020; Han et al., 2020; Uman et al.,
2020). Maintaining biomaterial integrity is vital to restore
vasculature and bone (Davison et al., 2014; Williams, 2019). Over
time, the material can erode, but the early roots of regeneration are
necessary to build the foundation of tissue growth (Berthiaume et al.,
2011; O’Brien, 2011). Similarly, controlled material degradation is
also required to ensure the release of immunomodulators for drug
delivery and immunotherapy applications (Langer et al., 1990;
Zhang et al., 2018). This review will cover self-assembling
peptides’ unique contribution to biological activity and as
delivery vehicles (Figure 1). SAPs will be discussed as small
molecule mimickers and binding domains that contribute to host
response and as delivery vehicles for immunomodulators such as
antibodies and cytokines. The mechanism of peptide assembly and
their chemical modifications have been recently reviewed in great
detail and will not be discussed here (Lee et al., 2019; LaManna et al.,
2021; Sinha et al., 2021; Li et al., 2022).

2 Designing self-assembling peptides
for immunomodulation

Self-assembling peptides are a class of peptides in which
numerous copies interact with one another through a variety of

non-covalent interactions to generate specific nano- and micro-
structures in a fashion reminiscent of Lego Blocks. Numerous SAP
“building blocks” have been described, each with its own unique
characteristics and design criteria for self-assembly into
nanostructures which have been reviewed in-depth (Lee et al.,
2019; La Manna et al., 2021). A large number of SAPs are being
explored for their potential in biomedical applications. In particular,
MultiDomain Peptides (MDPs), Self-Assembling Amphiphilic
Peptide Drug Conjugate (SAAPDC), RADARADARADARADA
(RADA16), KLDLKLDLKLDL (KLD-12),
SSGGPLGVRGKLVFFCAWSATWSNYWRH (LMY1), QAR-
ILEADAEILRAYARILEAHAEILRAD (Coil-29),
AEAEAKAKAEAEAKAK (EAK16-II), and QQKFQFQFEQQ
(Q11) with their respective current immunotherapy strategies will
be reviewed (Table 1) (Tripathi et al., 2015; Ding et al., 2016; Moore
and Hartgerink, 2017; Mora-Solano et al., 2017; Ji et al., 2018; Wang
et al., 2019; Lv et al., 2022; Wu et al., 2022).

As an example, MDPs are a class of SAP that form nanofibers
consisting of a bilayer of β-sheet hydrogen bonded peptides. This
organization is facilitated due to the amphiphilic nature of the MDP
with hydrophilic amino acids facing the aqueous solution and
hydrophobic amino acids facing the interior of the fiber bilayer.
In this arrangement, the peptides form hydrogen bonds down the
length of the fiber to further stabilize the assembly. Charged residues
at the peptide’s termini are frequently designed to be negatively or
positively charged, and this charge can be used to control assembly.

Recently four different chargedMDPs were compared in vivo for
their reaction with the host immune system (Moore et al., 2018;

FIGURE 1
Self-assembling peptides can be designed to chemically conjugate and deliver bioactivemolecules. Chemically conjugatedmolecules include small
molecules and binding domains. Delivery of molecules includes antibodies and cytokines and growth factors. Schematic wasmade using Biorender.com.
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Lopez-Silva et al., 2020). In a murine subcutaneous injection model,
the positively charged lysine-based MDP, K2(SL)6K2 (K2 MDP), and
arginine-based MDP, R2(SL)6R2 (R2 MDP) promoted an
inflammatory response compared to the negatively-charged
E2(SL)6E2 (E2 MDP) and D2(SL)6D2 (D2 MDP). Through
histological analysis, both amine groups K2 MDP and R2 MDP
saw infiltration by host cells. K2 MDP was homogenously infiltrated
by host cells, while R2 MDP had heterogeneous infiltration with a
higher total number of cells and distinct cell pools. The SAPs with
carboxylate side chains, E2 MDP and D2 MDP, had less infiltration.
From early time points in flow cytometry and tSNE evaluations, K2

MDP had the presence of monocytes and macrophages, which
resolved over time, indicating an acute inflammatory response.
Meanwhile, R2 MDP had more polymorphonuclear myeloid-
derived suppressor cells and, over time, did not resolve, implying
chronic inflammatory reactions. These results provide a greater
understanding of developing SAPs for particular purposes. In the
case of tissue regeneration, K2MDPwould be a better SAP option as,
over time, the material degrades, and inflammation declines. R2

MDP would be advantageous in cancer immunotherapy because
having localized inflammation in the tumor immune
microenvironment stimulates antitumor responses from
macrophages that produce inflammatory cytokines like
interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-
α) and lymphocytes such as natural killer cells, T cells, and B cells
that induce cytotoxic activity (Chen et al., 2018b). E2 MDP and D2

MDP can be helpful in cases where the material does not provoke an
immune response towards transplanted therapies such as mouse
pancreatic-islet-derived cells for the treatment of diabetes (Su et al.,
2010; Griffith et al., 2016). Thus, when developing SAPs, a
significant consideration should be the hydrogel’s amino acid
sequence to achieve the desired immune response.

SAPs can be chemically conjugated with small molecules and
biologic recognition motifs to enhance cellular uptake (Hoffman,
2002; Wu et al., 2012; Fan et al., 2017; Levin et al., 2020). The

alteration of the peptide primary sequence can include short
bioactive amino acid sequences capable of initiating a biological
response in the termini or, in some cases, in the middle of the
sequence of SAPs. Cells can adhere to the nanostructures since
most SAPs resemble the ECM. Cell adhesion-promoting bioactive
amino acid sequences such as RGD can stimulate cell adherence
(Cui et al., 2010). SAPs should be customized to the application
and responsive to the environment. For instance, in bone defect
repair, the rate of material degradation to the rate of bone
regeneration is essential for developing new bone tissue
(Dumas et al., 2014; Wei et al., 2020). SAPs can be remodeled
by integrating sites in the material which are cleavable by enzymes
such as matrix metalloproteinases-2 (MMP-2). These cleavable
sites will allow healthy tissue to break down the material to make
way for new tissue formation. In cancer applications, to prevent
degradation of the ECM and metastasis, MMP-2 can be inhibited
(Ji et al., 2018). SAPs can bind to cell surface receptors to activate
or inhibit their signal. SAPs can include angiogenic cell surface
receptor agonists to promote tissue development, such as VEGF
mimic sequence (Siddiqui et al., 2021). Additionally, anti-
angiogenic domains can prevent neovascularization (Nguyen
et al., 2018). The signal is contained and localized in the gel by
incorporating small molecules and biologic recognition domains
in the hydrogel.

SAPs can load bioactive molecules for local delivery. During
hydrogel formation, the SAPs can include the substances of interest.
For instance, molecules such as drugs and cytokines can diffuse out
of the gel. The rate at which the molecule diffuses out depends on the
molecule’s identity and is not yet fully understood (Moore and
Hartgerink, 2017). SAPs can load different polar molecules. For
example, hydrophobic molecules are sequestered in the hydrophobic
core of the SAP, while hydrophilic molecules are in the hydrophilic
regions of the SAP. The ability to modify peptides and allow for the
natural assembling process makes SAPs appealing for nanomaterial
production.

TABLE 1 Overview of reviewed self-assembling peptide immunotherapy strategies.

Material type Immunotherapy strategy Results and application Reference

RADA16 PD-1, DCs and tumor antigens in RADA16 Supported DC efficacy and antitumor activity Yang et al. (2018)

KLD12 TNF-α neutralizing antibody and HGF in KLD2R/heparin
hydrogel

Enhanced renal protective potential and reduced chronic renal
fibrosis

Liu et al. (2020)

MDP L-NIL drug mimic in MDP Reduced nitrotyrosine levels in and around the implant Leach et al. (2019a)

CDN sequestered in L-NIL-MDP Decreased tumor growth and prolonged survival Leach et al. (2021)

CCL2-binding moiety to form SLaM Reduced monocyte migration, and sequestered CCL2 molecules Kim et al. (2020)

MCP-1 and IL-4 in SLac Promoted infiltration and polarization of macrophages to
M2 phenotype

Kumar et al. (2015)

SAAPDC DOX-KGFRWR in SAAPDC Prolonged survival and antitumor response Ji et al. (2018)

LMY1 CD47 targeting motif, MMP-2 motif and PD-1 in LMY1 Improved survival outcomes and antitumor response Lv et al. (2022)

Coil-29 PEPvIII, TRP2, and Toxoid Prolonged survival and inhibited tumor growth Wu et al. (2022)

EAK16-II SL9 to form SL9-EAK16-II and TLR 7/8 agonist Developed strong SL9 specific CD8 T cell responses Ding et al. (2016)

Q11 TNFQ11/PADREQ11 and TNFQ11/VACQ11 Improved survival in TNF-mediated inflammation model Mora-Solano et al.
(2017)
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3 Self-assembling peptide mimicking
biological functions

Self-assembling peptides’ nanostructures resemble the ECM and
can modify their peptide sequence for broad applications. Bioactive
amino acid sequences, cleavable sites, and receptor agonists in SAPs
can modulate the immune system (Hoffman, 2002; Wu et al., 2012;
Fan et al., 2017). SAPs allow the signal to be contained and localized
in the gel by incorporating small molecules and biologic recognition
domains.

3.1 Small molecules

Engineered self-assembling peptides can deliver small molecules
to targeted sites. Typically, small molecules are low in molecular
weight and capable of modulating biochemical processes for
diagnosis, treatment, or disease prevention (Lu and Atala, 2014).
Most small molecules can cross the cell membrane allowing them to
target intracellular proteins, and can be produced in large quantities,
making them appealing for large-scale manufacture. However, most
small molecules do not have targeting capability making it difficult
to avoid off-target effects and maintain stability (Kidane and Bhatt,
2005; Gurevich and Gurevich, 2014). Researchers overcome this
barrier by integrating small molecule mimics as a functional group
in SAPs.

When designing biomaterials for biomedical applications, it is
critical to tailor them to the disease. In the case of cancer, for
example, there is an upregulation of inducible nitric oxide synthase
(iNOS) in the tumor immune microenvironment (Jenkins et al.,
1995; Zhang and Xu, 2001). Some researchers have used a small
molecule inhibitor, N6-(1-iminoethyl)-L-lysine (L-NIL), to target
iNOS to achieve tumor regression (Jenkins et al., 1995; Zhang and
Xu, 2001; Fukumura et al., 2006; Jayaraman et al., 2012). An MDP
with L-NIL-like functionality, KLNIL

2(SL)6K
LNIL

2 (L-NIL-MDP), was

developed to mimic a small-molecule inhibitor with
immunomodulatory properties (Figure 2). L-NIL-MDP in vitro
inhibited iNOS activity and nitrite production in cell populations
interacting with the hydrogel material (Leach et al., 2019a). From a
single subcutaneous injection of L-NIL-MDP,
immunohistochemistry showed L-NIL maintained low
nitrotyrosine levels in and around the implant over 7 days.

Additionally, the modified L-NIL-MDP with inherent
bioactivity can be synergistically combined with a controlled
released small molecule, cyclic dinucleotide (CDN). CDNs can
induce antitumor responses in preclinical models through the
Stimulator of Interferon Genes (STING) pathway (Corrales et al.,
2015; Leach et al., 2018). The STING pathway links the detection of
cytosolic tumor DNA through the enzyme cyclic GMP-AMP
synthase, which activates STING resulting in the upregulation of
type I interferons (Leach et al., 2019b; Jiang et al., 2020; Decout et al.,
2021). This signaling allows for the crosstalk between tumor and
immune cells, which promotes antitumor responses (Jiang et al.,
2020). Clinical trials have evaluated intratumoral injections of CDN
as a monotherapy, such as ADU-S1007 and MK14548
(ClinicalTrials.gov: NCT03172936, NCT03010176) and a
modified CDN that forms a macrocycle-bridged STING agonist
(Kim et al., 2021). These efforts may not be sufficient to localize the
delivery of these small molecules. L-NIL-MDP was used to sequester
CDN for controlled administration (Leach et al., 2021). Tumor-
bearing mice treated with the L-NIL-MDP + CDN group showed
decreased tumor growth compared with K2 MDP + CDN treatment.
Survival increased with the L-NIL-MDP + CDN group compared to
a saline control, L-NIL-MDP alone, and K2 MDP alone. Currently,
the mechanism of action for L-NIL-MDP is being investigated.

Other SAPs have also been used for promoting antitumor
activity. An SAAPDC was created containing amphiphilic peptide
drug conjugate from oligomeric peptides (KGFRWR) and MMP-2
inhibitor doxorubicin (DOX) to treat hepatocellular carcinoma
(Figure 3). DOX-KGFRWR strengthened the inhibition of MMP-

FIGURE 2
Self-assembling peptide chemical structure of N6-(1-iminoethyl)-L-lysine (A) Design of L-NIL-MDP. (B) Lysine side chains from starting material,
K2(SL)6K2, converted to L-NIL functional group. (C) Schematic demonstrating the nanofibers formed from MDPs into antiparallel β-sheets. (D) Image of
L-NIL-MDP formed at 1 wt% in a phosphate-containing buffer. Reprinted with permission from Leach et al. (2019b). Copyright 2019 American Chemical
Society.
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2 activity and sustained the release of DOX in the DOX-KGFRWR
group compared to DOX alone (Ji et al., 2018). The in vivo
antitumor efficacy studies showed prolonged survival and
therapeutic efficacy in the DOX-KGFRWR group. DOX-
KGFRWR was able to control the release and retention of DOX
without inducing severe systemic toxicity. The hexapeptide-based
supramolecular system illustrated local and controlled drug release
profiles. Researchers should explore the combination of embedding
functional motifs and sequestering small molecules into SAPs in
cases where synergy is required to improve response.

3.2 Binding domains

Besides integrating small molecules, SAPs can incorporate
binding domains to activate or inhibit cellular processes. Parallel
and serial binding are two types of interactions common in receptor
binding. In the case of parallel binding, coinciding binding occurs
between multiple sites on the molecule and can have stronger total
binding strength than monovalent interactions (Mammen et al.,
1998; Varner et al., 2015). On the other hand, serial binding involves
repeated weak-binding events that result in biological activities such
as signal transduction (Ohlson et al., 1997; Ohlson, 2008). These
binding activities play a fundamental role in intracellular and
extracellular activity. Therefore, researchers can incorporate the

binding domains in SAPs to get a biologic response. There are
non-self-assembling therapeutic peptides that can deliver
immunomodulatory agents. Such therapeutic peptides have been
thoroughly reviewed and will not be discussed here (Lau and Dunn,
2018; Li et al., 2021; Thakur et al., 2022).

More than one binding domain can be incorporated into SAPs
for vaccine applications. Particularly in active immunotherapy, the
patient’s immune system is stimulated to produce a therapeutic
response toward a disease or pathogen. The main goal of active
immunotherapy is to generate a predictable B cell response without
an autoreactive T cell response (Jia et al., 2013). Researchers have
used B cell epitopes from the targeted protein, non-autologous
T-helper epitopes incorporated in a carrier protein, and if the
response is insufficient, adjuvants are added (Durez et al., 2014;
Bavoso et al., 2015; Zhang et al., 2016). A supramolecular peptide
system was created with exogenous T-cell epitopes and TNF B cell
epitopes co-assembled into a nanofiber without additional adjuvants
(Mora-Solano et al., 2017). Two T-cell epitopes were generated:
high-affinity universal CD4+ T-cell epitope, PADRE, was used with
Q11 to form PADREQ11, and T-cell epitope from Vaccinia I1L
protein was used with Q11 to create VACQ11. A B cell epitope from
mouse TNF was used with Q11 to form TNFQ11. In a TNF-
mediated inflammation model, lipopolysaccharide was delivered
intraperitoneally, and mice immunized with TNFQ11/
PADREQ11 or TNFQ11/VACQ11 had improved survival. These

FIGURE 3
Self-assembling amphiphilic peptide drug containing amphiphilic peptide drug conjugate from oligomeric peptides (KGFRWR) and MMP-2 inhibitor
doxorubicin (DOX). Reprinted from Ji et al. (2018).
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findings indicate that a combination of B and T cell epitopes can
produce immune cells’ specific activation towards a disease state.

Binding domains and small molecules can be included in SAPs.
For instance, EAK16-II incorporated HIV-1 specific cytotoxic
T-lymphocyte (CTL) epitope, SL9, to form SL9-EAK16-II (Ding
et al., 2016). Additionally, toll-like receptor (TLR) agonists, R848 or
R837, were included in SL9-EAK16-II as they have been shown to
reduce the ability of lymphoid tissue to support HIV infection
(Hofmann et al., 2016; Bam et al., 2017). In vitro and in vivo
studies showed the co-delivery of CTL epitope and TLR7/
8 agonist group SLP-EAK16-II/R848 had significantly strong
SL9-specific CD8 T cell responses. A combination of known
epitopes and agonists can be delivered through SAPs to obtain a
desired immune response.

4 Self-assembling peptides releasing
immunomodulators

Several new immunomodulators, such as immune checkpoint
inhibitors (ICIs) and cytokines, have been used in a wide array of
research areas. Immunomodulators can be divided into
immunostimulators and immunosuppressants; depending on the
context, they can activate or prevent immune cell activity. These
modulators may face insufficient immune stimulation, off-target
side effects, and bioactivity loss during circulation (Sathish et al.,
2013; Feng et al., 2019). Many of these modulators, whether
monotherapeutic or in combination, are administered
systemically and require high doses to maintain modulators in
circulation, ultimately resulting in high toxicities (Bast et al.,
2019; Wang et al., 2022). Therefore, it is vital to have localized
and sustained release of these immunomodulators. Many
researchers have begun using self-assembling peptides to release
immunomodulators, which have shown promise in several fields.

4.1 Antibodies

ICIs have succeeded in melanoma, renal cell carcinoma, and
non-small cell lung cancer (Das and Johnson, 2019; Franzin et al.,
2020). In head and neck squamous cell carcinoma (HNSCC), ICIs
have shown some success. Particularly, anti-programmed death 1
(PD-1) was approved for treating recurrent/metastatic HNSCC
(Burtness et al., 2019). Even though HNSCC has a similar
mutational and immune profile as other solid cancers, anti-
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) failed to
demonstrate a benefit for HNSCC patients. Most of the HNSCC
clinical trials testing anti-CTLA-4 recruited patients who previously
received ablative locoregional therapies since HNSCC is prone to
regional lymphatic metastasis (D’Cruz et al., 2015; Chow, 2020;
Mody et al., 2021). Recently, it was found that by preserving the
lymphatics, there is a robust immune response with anti-CTLA-4 in
an HNSCC murine model (Saddawi-Konefka et al., 2022). Using a
combination of anti-CTLA-4 and immunomodulators known to
drive antigen processing and cross-presentation can help mount a
robust antitumor response.

Tumor characteristics such as tumor immune infiltration and
DNA damage pathways can influence immune checkpoint inhibitor

efficacy (Bai et al., 2020; Meyers and Banerji, 2020). Tumor cells’
mutational burden can increase tumor antigenicity and enhance
evasion strategies to targeted treatments (Seidel et al., 2018).
Therefore, immunostimulatory substances are crucial for ICI
combinations to have antigenicity and adjuvanticity (Galluzzi
et al., 2020; Kwon et al., 2021). For instance, there have been
early reports of combining anti-CTLA-4 with immunostimulatory
substances such as GM-CSF, anti-CD25, and anti-CD40 (van Elsas
et al., 1999; Sutmuller et al., 2001; Quezada et al., 2006; Sorensen
et al., 2010). In an Oral Squamous Cell Carcinoma mouse model,
anti-PD-1 with a STING agonist had improved tumor response
compared to PBS + IgG2a (Shi et al., 2022). With these
combinations, it was common to administer ICIs with their
respective immunostimulant frequently. A biomaterial like SAPs
can provide a controlled release strategy for ICIs and incorporate
other motifs for targeting.

SAPs can load ICIs and other substances that elicit an antitumor
response. As an illustration, a mixture of RADA16 peptide, anti-PD-
1 antibodies, DCs, and tumor antigens was developed for cancer
treatment (Figure 4). RADA16 peptide DC with model tumor
antigen ovalbumin (OVA) and anti-PD-1 antibody (Gel-DC-
OVA + anti-PD-1) increased the proportion of activated DCs in
the draining lymph nodes and reduced regulatory T cells (T-regs)
(Yang et al., 2018). Mice were rechallenged with, EG7-OVA cells,
which are mouse lymphoma cells that exogenously expressed
ovalbumin, and they found that Gel-DC-OVA and Gel-DC-OVA
+ anti-PD-1 delayed tumor growth. Although there were no
significant differences in the addition of PD-1 blockade
compared to Gel-DC-OVA, the PD-1 group saw improved tumor
growth inhibition efficacy. In another study, DCs and whole tumor
cell lysates (TCL) were loaded in the gels, and there was a significant
efficiency in inhibiting tumor growth in the Gel-DC-TCL + anti-
PD-1 group.

Other cancer treatment strategies are looking at CD47 as a
potential therapeutic target. CD47 is a transmembrane glycoprotein
that emits a “do not eat” signal by binding to the signal regulatory
protein α (SIRPα) on immune cells (Lian et al., 2019). Many cancers
with poor prognosis express CD47 at high levels compared to
normal cells (Chao et al., 2012; Lian et al., 2019). This signal is
responsible for the escape of cancer cells from immune surveillance.
Therefore, a self-assembling peptide LMY1 was created with a
CD47 targeting motif, MMP-2 responsive peptide linker, self-
assembly motif, and hydrophilic motif (Lv et al., 2022). The SAP
first binds to CD47 on tumor cells followed by cleavage of the MMP-
2 responsive peptide linker in the tumor immune
microenvironment. This allows assembly into peptide-based
nanofibers. The SAP nanofibers are then able to block
subsequent interaction of CD47 and SIRPalpha, promoting the
phagocytosis of tumor cells. In the subcutaneous Lewis lung
carcinoma tumor model, combining LMY1 and anti-programmed
death-ligand 1 (PD-L1) had the most significant antitumor efficacy
and improved survival outcomes.

Sequestering immune checkpoint inhibitors in SAPs is a
promising approach in cancer therapy. As illustrated by the
previous example, combining multiple immunotherapeutic
approaches is possible by using SAPs. A peptide nanofiber
vaccine platform Coil29 was generated to include multiple
epitopes to induce a coordinated antitumor immune response.
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Coil29 contains peptides with PEPvIII, B cell peptide epitope against
EGFRvIII receptors, TRP2, a melanoma-associated CD8 T cell
peptide antigen, and toxoid (Td) CD4 T cell epitope (Wu et al.,
2022). After three subcutaneous immunizations with Coil29, the
vaccine formulation containing three antigens PEPvIII, TRP2, and
Toxoid (P/Tr/Td-fiber) and the Coil-29 with two antigens PEPvIII
and Td (P/Td-fiber) both generated long-lasting PEPvIII-specific
IgG responses compared to Complete Freund’s Adjuvant with the
three antigens. The immunized mice were challenged with
EGFRvIII-expressing B16vIII melanoma cells 2 weeks after final
immunization. Tumor growth was significantly delayed in mice with
P/Tr/Td-fibers and improved overall survival. When mice with
B16vIII tumors were coadministered with P/Tr/Td-fibers and
anti-PD-L1 and anti-CD47 there was significant tumor inhibition
and long-term survival compared to the blockade group and the P/
Tr/Td-fiber alone. Delivering multiple epitopes and immune
checkpoint blockades in SAPs can aid in developing robust
immune responses.

4.2 Cytokines and growth factors

Therapeutic strategies have also gone toward cytokine and
growth factor interactions. Cytokines mediate the signaling
among immune cells. There are different classes of cytokines,
such as interleukins, interferons, and chemokines (Ramesh et al.,
2013; Negishi et al., 2018). Some of the first approved cytokines were
interferon α (IFN-α) as an adjuvant treatment for resected high-risk
melanoma patients and high-dose IL-2 for metastatic renal cell
cancer and melanoma. In cancer therapy, tumors can change their
microenvironment by manipulating cellular and non-cellular
components through complex signaling networks utilizing
cytokines, chemokines, and growth factors to allow them to grow
and spread (Baghban et al., 2020). In HNSCCs, the tumor immune

microenvironment has been shown to impair tumor-infiltrating
lymphocytes’ function and have immune-suppressive phenotypes,
including myeloid-derived suppressive cells and T-regs (Chen et al.,
2020). Dysfunctional tumor-infiltrating lymphocytes have decreased
cytolytic activity and impaired production of effector cytokines such
as IL-2, IFN-γ, and TNF-α (Zhang et al., 2020). Pro-inflammatory
cytokines such as IL-2, IL-12, and IL-15 can improve antigen
priming, increase the number of effector immune cells in the
tumor immune microenvironment and enhance cytolytic activity
(Berraondo et al., 2019). IL-2 can maintain T-regs to control the
immune response and stimulate conventional T cells to promote the
immune response (Abbas et al., 2018; Choudhry et al., 2018;
Grasshoff et al., 2021). Unlike IL-2, IL-15 does not stimulate
suppressive immunocytes such as T-regs (Saeed and Revell, 2001;
Waldmann et al., 2020). IL-12 is crucial for the recruitment and
effector functions of CD8 T cells and natural killer cells (Leonard
et al., 1997; Del Vecchio et al., 2007; Nguyen et al., 2020; Mirlekar
and Pylayeva-Gupta, 2021). As for growth factors, they stimulate cell
proliferation, migration, and differentiation (Ren et al., 2019). These
growth factors have been useful in regenerative medicine
applications. Together, cytokines and growth factors can restore
the intercellular communication needed to provide therapeutic
potential.

Significant challenges arise when cytokines and growth factors
are delivered with bolus or continuous administration (Pires et al.,
2021). The small molecular size of cytokines and growth factors
makes it difficult to localize them and can result in systemic toxicity
outweighing their therapeutic efficacy (Baluna and Vitetta, 1997;
Ren et al., 2019). Given the disadvantages of conventional systemic
administration for cytokine therapy, a delivery vehicle capable of
achieving the controlled release of cytokines would maximize their
therapeutic potential while limiting the toxic systemic side effects
and short half-life of these molecules (Berraondo et al., 2019; Conlon
et al., 2019; Propper and Balkwill, 2022). Therefore, sequestering

FIGURE 4
Delivery of exogenous dendritic cells and PD-1 in RADA16 for immunotherapy vaccine. Reprinted with permission from Yang et al. (2018). Copyright
2018 American Chemical Society.
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cytokines and growth factors in self-assembling peptides can
mediate the release of these small signaling molecules.

Self-assembling peptides can be used to sequester cytokines. For
instance, K-(SL)6-K-G-WKNFQTI (SLaM) was used to sequester
chemokine (C-C) ligand 2 (CCL2), also known as monocyte
chemoattractant protein-1 (MCP-1) from the extracellular matrix
to reduce chemotaxis of monocytes and macrophages (Kim et al.,
2020). Monocyte migration was reduced in the presence of SLaM
hydrogel in contact with CCL2, and through ELISA found the
hydrogel sequestered the majority of the CCL2 molecules in the
solution. Using SAPs to sequester external signaling molecules can
work as an adjunctive material for transplants or tissue regeneration
without administering systemic immunosuppressants. Several
cytokines can be delivered using SAPs. To demonstrate, a self-
assembling domain and cell-adhesive fibronectin-derived RGDS
sequence, also known as RGD, K(SL)2(SLRG)(SL)3K(GRGDS)(SLac)
was used to release MCP-1 and IL-4 to foster a proangiogenic
environment for tissue engineering applications (Kumar et al.,
2015). MCP-1 had most of its release during the first 48 h, while
IL-4 had prolonged release over 16 days. From the in vivo studies, SLac
+ MCP-1+IL-4 promoted infiltration, recruited macrophages, and
polarized them to an M2 phenotype within and around hydrogel.
This temporal release is not limited to proangiogenic cytokines; they
can also be applied to pro-inflammatory applications such as cancer
(Berraondo et al., 2019; Nash et al., 2021). The controlled release in
SAPs can be beneficial in enhancing the half-life of cytokines and
ensuring a robust immune response.

Spatiotemporal release can be achieved with the co-delivery of
cytokines and growth factors in ischemic acute kidney injury (AKI).
Patients with AKI have reduced kidney function and are at risk for
chronic kidney disease. Many pro-inflammatory markers have been
observed in AKI, including cytokines such as TNF-α and IL-1β,
which can cause cell damage (Gao et al., 2013). Growth factors such
as hepatocyte growth factor (HGF) have been reported to stimulate
renal epithelial cell proliferation and induce tubular formation (Mao
and Zhang, 2016). Therefore, the co-delivery of TNF-α neutralizing
antibody and HGF in KLD2R/heparin hydrogel can enhance renal
protective potential and reduce chronic renal fibrosis (Liu et al.,
2020). A faster release of anti-TNF-α was achieved due to protein
diffusion through the KLD2R hydrogel, while the slower release of
HGF was due to a combination of heparin-binding affinity and
molecular diffusion. This dual-drug delivery platform achieved
sequential release kinetics of anti-TNF-α and HGF while
promoting tissue repair. SAPs can allow for controlled
spatiotemporal cytokine and growth factor release to augment an
immune response.

5 Future directions

Self-assembling peptides can inherently contribute to
therapeutics by integrating functional moieties. By knowing the
disease pathology pathways SAPs can be modified to incorporate
small molecules and receptor domains to improve disease state.
Although functional moieties can be incorporated into SAPs, it is
difficult to precisely control and predict secondary and
supramolecular structures (Scanlon, 2008; Pitz et al., 2022).
Therefore, more advanced computational modeling must be

developed to accurately predict the structure of self-assembling
peptides (Chang et al., 2022; Pitz et al., 2022).

The ability to modify peptides in SAPs makes it possible for
large-scale production. In dental applications, it is common to treat
early caries with fluoride to repair tooth enamel. A commercially
available P11-4, Curodont™ Repair, was combined with fluoride for
the non-invasive treatment of early occlusal enamel lesions
(ClinicalTrials.gov: NCT02724592). They found the combination
of P11-4 with fluoride facilitated biomimetic mineralization and was
a safe and effective treatment for early carious lesions (Alkilzy et al.,
2018). Current studies are looking into SAPs as an adjunct during
surgery. There is a risk for hemorrhage by using Transoral Robotic
Surgery for human papillomavirus positive early-stage
oropharyngeal squamous cell carcinoma (Leonhardt et al., 2012;
Moore et al., 2012; Chen et al., 2015). A hemostatic agent from the
RADA16 family, PuraBond®, was used as an adjunct during
Transoral Robotic Surgery (Gupta et al., 2022). Preliminary
findings showed none of the patients developed primary or
secondary hemorrhage post-transoral robotic surgery in
conjunction with PuraBond®. These findings were based on a
small cohort; further large-scale studies are needed to determine
whether patients receive clinical benefit from the hemostatic and
regenerative properties of PuraBond® (ClinicalTrials.gov:
NCT05405907).

Immunomodulators such as cytokines traditionally have rapid
clearance. The usual systemic delivery of ICIs have been associated
with severe immune-related adverse events and even death;
therefore, sequestering these modulators in SAPs can control
drug release (Newton et al., 2019). Although maintaining
modulators is important to sequester, it is imperative to consider
the rate of degradation of the biomaterial. If a significant amount of
cytokines are released at once, it can result in toxicity and, depending
if there is a robust immune response, a cytokine storm (Baldo, 2014;
Pires et al., 2021). Future work should consider having the temporal
release of modulators that can strategically activate immune cells at
certain times, which will be necessary with combination therapy.

There are commercially available SAPs being used as scaffolds
and delivery vehicles. RADA16 has been commercialized as
PuraMatrix™

, which forms 3D hydrogel-forming nanofibrous
structures to support the attachment of various cell types, tumor
cell migration and invasion, and in vivo analysis of tissue
regeneration. PuraMatrix™, in combination with mesenchymal
stromal cells, was used as an epicardial coating of the heart and
noted improved global cardiac function and decreased ventricular
dilatation (Ichihara et al., 2018). Using these readily available SAPs
allows for further modification in several other applications. To date,
there are no clinical trials or FDA-approved self-assembling peptides
for immunotherapy applications, although clinical trials of these
materials for tissue regeneration are ongoing (ClinicalTrials.gov:
NCT05127889, NCT05206539). Given the promise SAPs have
shown for immunomodulation in the preclinical setting, we
anticipate clinical applications of these materials in the future.

6 Conclusion

Self-assembling peptides are versatile materials that allow for
tailoring peptide sequences to house antibodies, cytokines, and small
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molecules for applications in tissue engineering, immunotherapy,
and drug delivery. SAPs can mimic the natural framework and are
tunable to include biologically active systems. The adaptable nature
of these peptides allows for the modification of their chemical
composition to include modulators. A critical part of SAPs is
maintaining biomaterial integrity to build the foundation of
tissue growth or release immunomodulators for drug delivery
and immunotherapy applications. To develop a precise SAP
structure and targeting ability, advanced computational modeling
is needed. The next-generation of SAPs should consider integration
of spatiotemporal motifs for combination treatment.
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