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Glucocorticoid-induced osteoporosis (GIOP) is considered the third type of
osteoporosis and is accompanied by high morbidity and mortality. Long-term
usage of glucocorticoids (GCs) causes worsened bone quality and low bone mass
via their effects on bone cells. Currently, there are various clinical pharmacological
treatments to regulate bone mass and skeletal health. Pulsed electromagnetic
fields (PEMFs) are applied to treat patients suffering from delayed fracture healing
and non-unions. PEMFs may be considered a potential and side-effect-free
therapy for GIOP. PEMFs inhibit osteoclastogenesis, stimulate
osteoblastogenesis, and affect the activity of bone marrow mesenchymal stem
cells (BMSCs), osteocytes and blood vessels, ultimately leading to the retention of
bone mass and strength. However, the underlying signaling pathways via which
PEMFs influence GIOP remain unclear. This review attempts to summarize the
underlying cellular mechanisms of GIOP. Furthermore, recent advances showing
that PEMFs affect bone cells are discussed. Finally, we discuss the possibility of
using PEMFs as therapy for GIOP.
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1 Introduction

Glucocorticoids (GCs) are used as a treatment to suppress inflammation, as well as for
various inflammation-mediated diseases, including ankylosing spondylitis (AS) and
rheumatoid arthritis (RA) (Crawford et al., 2003). However, prolonged GC therapy can
cause glucocorticoid-induced osteoporosis (GIOP), which is considered the third type of
osteoporosis (Schorlemmer et al., 2005). At present, the main negative effects of excess GCs
on the skeleton are considered to be exerted on bone cells directly, affecting osteoblasts,
osteoclasts, osteocytes, and bone marrow mesenchymal stem cells (BMSCs) (Wang et al.,
2018). BMSCs have the potential to differentiate into different kinds of cells (Chamberlain
et al., 2007). In bone tissue, there is a dynamic balance between differentiation into
adipocytes and osteoblasts. The balance plays an important role in lipid metabolism and
bone homeostasis. In addition, some groups reported that excessive GC use could disturb the
balance between lipid metabolism and bone remodeling (Takano-Murakami et al., 2009) by
upregulating adipogenesis and downregulating osteogenesis of BMSCs (Yin et al., 2006). GCs
increase the expression of adipogenesis-associated genes, such as peroxisome proliferator-
activated receptor-γ2 (PPAR-γ2), but decrease osteogenic gene expression, especially Runt-
related transcription factor 2 (Runx2) (Li et al., 2005). Moreover, chronic GC treatment may
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lead to metabolic defects, resulting in lower serum insulin levels,
higher blood glucose, and enhancement of visceral obesity (Lee et al.,
2007). These factors might be related to GC-induced obesity and
diabetes, which in turn cause severe osteoporosis.

At present, for the treatment of GIOP, calcium and vitamin D
are the basic treatments, while bisphosphonates and terlipatide are
the main treatment drugs, which increase bone density and reduce
fracture risk in GIOP patients. Calcitonin is mainly used to relieve
bone pain and is applicable to patients who do not tolerate or have
contraindications to the above drugs (Pereira et al., 2020). However,
long-term use of these antiosteoporosis drugs can also cause
potential side effects, including osteonecrosis of the jaw,
gastrointestinal complaints, and typical subtrochanteric or
diaphyseal femoral fractures (Canalis et al., 2007). In addition to
pharmacotherapy, physical therapy is a non-invasive and safe
biophysical countermeasure, which should be the highest
recommendation in clinical practice. Pulsed electromagnetic fields
(PEMFs) have been proven to exert anti-inflammatory effects and
are efficient in treating many bone disorders, including fresh
fractures, non-union and delayed fractures, osteoporosis, diabetic
osteopenia, and osteonecrosis (Liu et al., 2013; Liu et al., 2017; Wang
et al., 2019a; Wang et al., 2019b). At present, the application of
PEMFs to GIOP is not yet popularized in clinical practice, but some
animal experiments have shown promising results. For example, one
group found that PEMF therapy might alleviate bone loss and
reduce serum lipid levels without negative effects in GIOP rats.
The process depends on theWnt/β-catenin signaling pathway (Jiang
et al., 2016). Our group reported that PEMFs eliminated senescent
cells to rescue bone loss in GIOP mice (Wang et al., 2021; Wang
et al., 2022a). Furthermore, PEMFs also eliminate the side effects of
GCs on osteoblasts (Esmail et al., 2012). We can infer that PEMF
treatment may be an effective, safe, and non-invasive therapy for
GIOP and might provide some potential benefits for patients
with GIOP.

In this review, we first summarize the underlying cellular
mechanisms of GIOP. Moreover, recent advances have shown
that PEMFs affect bone cells. Finally, we discuss the possibility of
using PEMFs as a therapy for GIOP.

2 PEMFs

PEMFs are low-frequency magnetic fields with a specific
amplitude and waveform characterized by a stable variation in
the amplitude of the magnetic field over time. In exposed tissue,
PEMFs create a secondary electric field, which is similar to the one
naturally generated during the conversion of mechanical energy into
electrical energy (Zhu et al., 2017). Two methods, inductive or
capacitive coupling, can be used to apply PEMFs in biological
tissues. In direct capacitive coupling, the electrodes must be
placed on the tissue, but in inductive coupling (non-direct
capacitive coupling) they may not be in direct contact with the
tissue. The reason is that the electric field produces a magnetic field,
and then a current can be produced in the conductive tissues in the
body (Ross et al., 2019). PEMFs are a non-invasive method of
physical therapy for skeletal diseases. In 1978, Martin found that
PEMFs have therapeutic effects in osteoporosis (Matsunaga et al.,
1996). Recently, PEMFs have also been proven to improve bone

mineral density in the spine, distal radius, and knee in osteoporosis
patients (Roozbeh and Abdi, 2018). PEMFs have widespread
application with rapid effects, easy operation, and no adverse
effects. It has been demonstrated that PEMF therapy is a safe,
non-invasive, and easy method to treat inflammation,
dysfunctions, and pain related to osteoarthritis (OA) and RA
(Ganesan et al., 2009). Waldorff et al. (2017) also reported that
PEMF increased the speed of bone healing when used as a treatment
for fracture patients. Additionally, PEMFs have been proven to be
beneficial in enhancing bone mechanical strength and improving
bone microstructure by promoting bone formation and suppressing
bone resorption in a study of a New Zealand white rabbit model of
osteoporosis (Qian et al., 2021). Moreover, PEMF therapy
attenuated bone resorption, enhanced BMD, and promoted
osteogenesis in rats with disuse osteoporosis. In an ovariectomy
(OVX)-induced osteoporosis mouse model, a PEMF modulated the
anabolic and catabolic activity of bone, upregulated the expression of
osteogenesis-related genes, and promoted trabecular bone
formation (Wang et al., 2022b).

3 Bone

Bone is a metabolically-active tissue related to the physiological
processes of locomotion, providing structural support and
movement facilitation by providing storage of minerals and
growth factors, regulation of mineral and acid–base homeostasis,
protection of important structures, muscle levers, and a site for
hematopoiesis. A central marrow space surrounded by periosteum
and bone tissue is the general structure of a long bone (Buck and
Dumanian, 2012). Bone remodeling is a process that involves
replacing old bone with newly-formed bone periodically at the
same location and is involved in osteoporosis (Siddiqui and
Partridge, 2016). Bone is composed of various cell types that
undergo continuous remodeling (Raggatt and Partridge, 2010;
Buck and Dumanian, 2012; Siddiqui and Partridge, 2016).

BMSCs, or marrow stromal cells (MSCs), were confirmed to be
precursors for several different cell lineages, such as chondrocytes,
osteoblasts, adipocytes, myoblasts, and fibroblasts (Kfoury and
Scadden, 2015), which are regulated by Wnt signaling pathways
and bone morphogenetic proteins (BMPs) (Chen et al., 2016).
Under the stimulation of multiple factors, activated osteoblasts
proliferate in large numbers at the depression of bone resorption,
secrete a variety of bone formation-related proteins, combine with
extracellular crystalline hydroxyapatite and other inorganic
components to form mature bone matrix, and gradually
mineralize to form new bone (Kylmaoja et al., 2016). Osteoclasts
are the primary functional cells of bone resorption and play a vital
role in bone growth, development, repair and reconstruction.
Osteoclasts, which express receptor activator of nuclear factor
kappa-B (NF-κB) ligand (RANKL) and macrophage colony
stimulating factor (M-CSF), originate from the blood
mononuclear macrophage system and are special terminally-
differentiated cells. Fusion of mononuclear precursor cells forms
giant multinucleated cells in various ways (Xu and Teitelbaum,
2013). Mature osteoclasts are multinuclear cells produced by the
fusion of tartrate-resistant acid phosphatase-positive (TRAP+)
mononuclear cells, termed preosteoclasts (POCs), and are the
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main source of platelet-derived growth factor-BB (PDGF-BB) (Boyle
et al., 2003; Xu and Teitelbaum, 2013; Kusumbe et al., 2014; Xie et al.,
2014; Zhen et al., 2021). Type H vessels are located abundantly in the
metaphysis adjacent to the growth plate, are linked with bone
formation, and are double-positive for CD31 and Emcn (Peng
et al., 2020a; Zhen et al., 2021). PDGF-BB, released by POCs,
promotes angiogenesis of type H vessels and osteogenesis (Peng
et al., 2020a). Osteocytes are terminally-differentiated osteoblasts
embedded in the bone matrix, which are a major source of sclerostin
(SOST) and RANKL, regulating osteoblast and osteoclast formation,
respectively (Goldring, 2015; Wang et al., 2019c). Additionally,
osteoclasts lay down minerals and create the collagen-rich bone
matrix, transforming mechanical inputs into biochemical signals
(Bidwell et al., 2008).

GIOP can be induced as a primary side effect of the application
of GCs based on various mechanisms. It is reported that GCs might
be toxic to genes related to cell regulation (osteoblasts, etc.) through
combining with the promoter region of GC response elements,
eventually resulting in changes of protein regulation and synthesis
(Adami and Saag, 2019). Moreover, GCs can be harmful to bone
formation via two main pathways: enhancing expression of
peroxisome proliferator-activated receptor gamma 2 (PPARγ2)
and suppressing the typical Wnt/β catenin signaling pathway
(Adami and Saag, 2019). Previous evidence has proven that GCs
induce apoptosis of osteocytes and osteoblasts, impairing the
function and differentiation of osteoblasts directly. In addition,
another study showed that T cells could also lead to bone loss
through the RANKL pathway and regulation of CXCL10, resulting
in GIOP (Song et al., 2020). The details of GC targeting of bone are
discussed below.

4 Potential targets of PEMFs in GIOP

4.1 BMSCs

A faulty early mesenchymal precursor, presumably an MSC, will
cause a reduction in the production of osteoprogenitor cells and may
be responsible for a variety of musculoskeletal problems, including
osteoporotic syndromes (Bonyadi et al., 2003). BMSCs are a critical
cellular target of GCs in developing bone turnover (Shen et al.,
2018). GC treatment increases the number and size of bone marrow
adipocytes, switching the fate of BMSCs from osteogenesis to
adipogenesis (Bujalska et al., 1999). This process has been
demonstrated to depend on transactivation of CCAAT/enhancer
binding protein in murine stromal cells (Pereira et al., 2002; Canalis
et al., 2004) accompanied by an upregulation of PPARγ2 and
downregulation of Runx2 (Canalis et al., 2007), leading to
increased bone marrow adipose tissue, fewer mature osteoblasts
and decreased cancellous bone (Weinstein and Manolagas, 2000). In
addition, GCs stimulate preadipocyte conversion to mature
adipocytes, resulting in the hyperplasia of adipose tissue. In a
GC-treated model, a two-fold increase was found in the
cancellous adipocyte area (Weinstein and Manolagas, 2000).
Stimulation of osteogenic MSCs is a relatively new concept in
medicine that could potentially be achieved by the use of PEMFs.
PEMFs have the potential to prevent aberrant and promote healthy
MSC function. PEMFs (75 Hz, 1.5 mT, 28 days) have been shown to

exert suppressive effects on the expression of adipogenic genes
(Jansen et al., 2010; Lu et al., 2015) and induce osteogenesis
through the enhancement of ALP activity and the expression of
Runx2 in BMSCs (Ongaro et al., 2014), accompanied by a delayed
increase in cell proliferation. Stimulation of osteogenesis through
application of a PEMF alleviated bone loss in GIOP models (Wang
et al., 2022a). The Wnt/β-catenin pathway might be involved in this
process. For example, GCs disturb the BMSC differentiation balance
by upregulating adipogenesis-related genes and downregulating
osteogenesis-associated genes by suppressing the Wnt/β-catenin
pathway (Li et al., 2013). The mRNA and protein expression
levels of Wnt10b, LRP5, and β-catenin were significantly
upregulated in GIOP rats after PEMF stimulation for 12 weeks
(50 Hz, 4.0 mT, 40 min per day), suggesting that the canonical
Wnt signaling pathway was activated during PEMF stimulation,
which is in agreement with previous reports (Ding et al., 2011; Jing
et al., 2013; Jiang et al., 2016). In addition, the mTOR signaling
pathway plays a crucial role in a variety of diseases, including GIOP
(Wang et al., 2020; Ge and Zhou, 2021). Suppressing mTOR
signaling induces osteoblastic differentiation and reduces
adipogenic potential (Martin et al., 2015). One group reported
that exposure to PEMFs reversed the reduced mineralization of
the extracellular matrix (ECM) induced by rapamycin, an inhibitor
of TORC1 (receptor of mTOR) (Sarbassov et al., 2006), suggesting
that PEMFs might stimulate BMSC commitment to the osteoblast
lineage via the mTOR pathway (Ferroni et al., 2018). Whether
mTOR participates in the rescue of GIOP by PEMFs requires further
study.

Recently, cellular senescence, characterized by loss of replicative
potential, has been shown to have a crucial role in GIOP (Liu et al.,
2021; Wang et al., 2021; Wang et al., 2022c). For example, in young
mice, Nestin-expressing (Nestin+ cells), a type of MSC in postnatal
bones, are primarily of endothelial and osteoblast lineages (Ono
et al., 2014) and undergo senescence in response to GCs (Li et al.,
2017; Su et al., 2020). In addition, LepR+ MSCs of adult mice are also
susceptible to GC treatment (Wang et al., 2021). Our group reported
that LepR+ cells exhibit a senescent phenotype based on flow
cytometry and immunostaining analysis (Wang et al., 2021;
Wang et al., 2022a). Clearance of senescent cells by PEMF
treatment (8 Hz, 3.8 mT, 1 h per day) for 4 weeks rescued GC-
induced bone loss (Wang et al., 2021; Wang et al., 2022a). In
particular, PEMFs exerted anti-senescence effects on LepR+ MSCs
through the EZH2–H3K27me3 axis (Wang et al., 2022a).

In conclusion, PEMFs play an important role in regulating the
balance of BMSC production and differentiation through various
pathways either directly or indirectly. Thus, there is potential to
apply PEMFs to the treatment of GIOP in future.

4.2 Osteoblast function

The effects of PEMFs on osteoblast function remain debatable; it
is well known that PEMFs have a window effect and produce
repeatable osteogenic effects (Matsunaga et al., 1996). Different
PEMF intensities and different time-points chosen for analysis
can cause different effects. However, most studies assumed that
PEMFs could enhance osteoblast activity, leading to an increase in
cellular differentiation (Diniz et al., 2002).
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There are many assumptions related to the mechanism of how
PEMFs affect osteoblast lineages in response to GCs. First, osteoblast
orientation and morphology can be regulated by PEMFs. A PEMF
(60 Hz, 0.7 mT, 24 h) was shown to mediate osteoblast
differentiation by inducing morphological changes, making
osteoblastic cells smaller, shorter and rounder in comparison to
sham treatment (Lee and McLeod, 2000), which should be tested in
GIOP. In support of this, our experiments showed that long-term
GC treatment caused detrimental effects on osteoblasts, which could
be reversed by PEMF therapy (8 Hz, 3.8 mT, 1 h per day) (Wang
et al., 2021; Wang et al., 2022a). The Wnt signaling pathway might
also account for this. For instance, GCs suppresses the synthesis and
release of transcription factors of the Wnt signaling pathway in
mature osteoblasts (Mak et al., 2009), such as β-catenin and Runx2,
impairing osteoblast differentiation. Specifically, therapeutic
concentrations of GCs upregulate the expression of glycogen
synthase kinase 3β (GSK-3β), resulting in β-catenin degradation
(Wang et al., 2009). Meanwhile, high levels of GCs also promote the
expression of Wnt inhibitors such as SOST and DKK1 (Mak et al.,
2009). PEMFs have been demonstrated to increase the expression of
genes associated with the Wnt signaling pathway, including Wnt1a,
Wnt3a, Lrp5, and Lrp6, both in vivo and in vitro. In addition, a
PEMF (50 Hz, 4.0 mT, 40 min per day) also downregulated DKK1,
which antagonized the Wnt signaling pathway (Zhou et al., 2015;
Jiang et al., 2016) in a rat model. The role of the canonical Wnt
signaling pathway was investigated after PEMF treatment in a GIOP
model (50 Hz, 4.0 mT, 40 min per day for 12 weeks) (Jiang et al.,
2016). A PEMF reversed the decreased expression of Wnt10b, LRP5,
and β-catenin induced by GCs (Jiang et al., 2016).

In addition, BMP-2, a regulator of osteoblast differentiation, is
suppressed by high concentrations of GCs (Yao et al., 2008).
Moreover, therapeutic levels of GCs enhance the expression of
BMP-2 antagonists, such as follistatin and Dan family members
(Hayashi et al., 2009). Li et al. (2007) showed that a PEMF (7.5 Hz,
108 μT, 20 min per day for 4 days) upregulated the mRNA
production of TGF-β, BMP2, osteocalcin, osteoprotegerin, ALP,
Runx2, NF-γB ligand, matrix metalloproteinase-l and -3 (Chen
et al., 2010), and bone sialoprotein. These studies suggested that
osteogenic differentiation of osteoprogenitor cells could be
stimulated by PEMFs directly via the BMP2 signaling pathway
(Schwartz et al., 2008). To clarify the mechanism of PEMF
therapy, further studies should evaluate the role of BMP2 in
bone loss induced by GCs.

Furthermore, GCs inhibit the synthesis of type I collagen
(COL1A), resulting in decreased bone matrix formation in vitro
(Canalis, 1983; Harris et al., 2013). In addition, PEMFs may not only
upregulate genes involved in bone and matrix component formation
but also downregulate various genes related to ECM degradation
(Sollazzo et al., 2010). Sollazzo et al. (2010) reported that PEMFs
(75 Hz, 2 mT, 18 h) increase the expression of genes related to bone
formation, including AKTl and HOXA10; genes associated with
transduction activation, such as P2RX7 and CALM 1; genes
encoding organic ECM components, such as SPARC and
COLlA2; and genes correlated with cytoskeletal components,
including VCL and FNI. Smith et al. (2004) found that PEMFs
(2 min or 1 h) might suppress the expression of genes for matrix
degradation, such as downregulation of phosphatase 4 (DUSP4) and
matrix metalloproteinase 11 (MMP-11). Although in vivo and

in vitro studies showed promising effects of PEMFs on matrix
mineralization, this speculation has not been tested in GIOP
models, which need further study in future.

4.3 Osteocytes

Recent experiments have reported that osteocytes act as the
main targets for excessive GCs in bone (O’Brien et al., 2004).
Osteocytes are thought to control the fate of both osteoclasts and
osteoblasts (Weinstein et al., 2002; Weinstein, 2007). GCs induce
osteocyte autophagy during the initial period (Xia et al., 2010), while
prolonged usage of GCs causes osteocyte death, resulting in a
decrease in osteocyte number, accompanied by significantly
impaired bone quality. However, autophagy induction in
osteocytes cannot rescue the negative effects of GCs on bone
metabolism (Piemontese et al., 2015). Exposure to high levels of
GCs may induce osteocyte apoptosis, causing them to secrete more
DKK1 and SOST, thereby suppressing the combination between
Wnt and LPR5/-6 (Hayashi et al., 2009), leading to reduced bone
formation. On the other hand, dying osteocytes secrete more TNF-α,
IL-6, HMGB1, and RANKL to stimulate osteoclastogenesis. Cai
found that the GC-treated group contained a considerably higher
proportion of apoptotic osteocytes than the control group based on
the results of TUNEL immunofluorescence staining, and the PEMF
group rescued this progression. Moreover, PEMF partially mitigated
the increase in the gene expression of SOST and DKK1, suggesting
that PEMFs (15 Hz, 2.0 mT, 2 h per day for 6 weeks) attenuated the
apoptosis of osteocytes stimulated by GCs (Cai et al., 2020).

In addition to signaling pathway connections, osteocytes also
regulate osteoblasts and osteoclasts via gap junction intercellular
communication (GJIC), including Cx43, which is negative for
osteoclasts and positive for osteoblasts (Wang et al., 2018). Other
small molecules, including prostaglandin E2 (PGE2) and nitric oxide
(NO), might also be related to the communication between osteoblasts
and osteocytes. PGE2 plays an important role in ECM synthesis and
osteoblast differentiation, which is stimulated by TGF-β1. Moreover,
NO2- inhibits osteoblast activity, stimulates apoptosis, and promote
bone resorption (Wang et al., 2018). The gap junctions at the tips of
osteocyte cytoplasmic processes respond to alterations of the
mechanical environment via stimulation including mechanical
loading, and deliver signals through the osteocyte network to
osteoblasts. In response to fluid flow, functional gap junctions
between osteocytes and osteoblasts are created, which then stimulate
osteoblastic development. Thus, blocking GJIC suppresses mechanical
signal transmission from osteocytes to osteoblasts, leading to
impairment of osteoblastic differentiation (Loiselle et al., 2013). GCs
impair osteocyte–osteoblast communication by triggering
Cx43 degradation, causing severe adverse skeletal effects. GCs inhibit
β-catenin stabilization and production of cyclooxygenase-2 (COX-2)
and PGE2 (Wang et al., 2018). Loiselle et al. (2013) found that PEMFs
(15 Hz, 8 h per day, 4 days) upregulated total TGF-β1 and PGE2 in cells
of the murine long bone osteocyte-Y4 cell line (Murine Long bone
Osteocyte-Y4; MLO-Y4) over time, which is dependent on the
prostaglandin mechanism, including COX-1 (Lohmann et al., 2003).
In addition, PEMF stimulation mediates NO2- in a time-dependent
manner (Lohmann et al., 2003). Based on the evidence detailed above,
PEMFs might rescue GIOP by mediating the communication between
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osteoblasts/osteoclasts and osteocytes. In future, more studies are
needed to test this hypothesis in GIOP models.

4.4 Osteoclasts

Decreased osteoclast number and viability induced by PEMFs
might account for the antagonistic effects against GCs (He et al.,
2015; Tschon et al., 2018). Specifically, GC treatment stimulates
bone resorption, accompanied by the upregulation of osteoclast
number and activity observed in humans and mice (Dovio et al.,
2004; Yao et al., 2008). Excess GCs stimulate bone resorption
directly by extending the lifespan of mature osteoclasts (Lin et al.,
2016). For example, compared with normal rats, rats with GIOP have
lower ALP levels and higher TRAP levels in serum (Jiang et al., 2016).
Jiang et al. found that PEMF (50 Hz, 4.0 mT, 40 min per day)
stimulation significantly decreased serum TRAP levels and increased
serumALP levels (Jiang et al., 2016), suggesting that PEMFs could be an
efficient therapy for GIOP. The mechanism needs to be clarified.

Over the past several years the RANK/RANKL/OPG system has
been shown to play a vital role in bone remodeling (Borsje et al., 2010).
Osteocytes and osteoblasts primarily express RANKL, a cell surface
protein that combines with a specific receptor (RANK) located on the
osteoclast membrane, contributing to osteoclastogenesis. Osteoblast-
derived OPG inhibits osteoclastogenesis by suppressing osteoclast
maturation (Lacey et al., 1998). GC treatment stimulates the
production of RANKL and decreases the expression of the RANKL
decoy receptor osteoprotegerin (OPG) (Sivagurunathan et al., 2005).
Disturbing the RANKL/OPG ratio results in increased osteoclast
activity and bone resorption. Jiang et al. found that the OPG/
RANKL ratio, which is decreased in GIOP, improved after PEMF
treatment (Jiang et al., 2016), indicating that the OPG/RANK/RANKL
signaling pathway might participate in this process. PEMFs inhibit
RANKL expression and enhance OPG expression, leading to
upregulation of the OPG/RANKL ratio (Jiang et al., 2016). This
process might involve activation of the canonical Wnt signaling
pathway after PEMF stimulation in GIOP rats.

Proinflammatory cytokines might accelerate osteoclastogenesis
and this could be alleviated by PEMF stimulation, which has been
demonstrated in other osteoporosis models. For example, Chang
et al. (2004) found that in OVX rats, PEMF treatment (7.5 Hz,
0.8 μT, 9 days) inhibited osteoclastogenesis accompanied by reduced
levels of interleukin 1 beta (IL-1β), tumor necrosis factor-alpha
(TNF-α), and interleukin 6 (IL-6) in primary bone marrow. To
clarify the mechanism of PEMF stimulation, further experiments are
in progress to evaluate the role of proinflammatory cytokines in
bone metabolism in GIOP models.

4.5 Blood vessels

The vasculature plays a critical role in the growing skeleton, and
angiogenesis is intimately coupled to osteogenesis. As an essential
part of skeletal development, osseointegration, and bone formation,
the formation of blood vessels is important in transporting growth
factors to achieve cell viability and interaction (Diomede et al.,
2020). High doses of GCs are known to inhibit angiogenesis and
induce osteoporosis and growth failure (Sivaraj and Adams, 2016).
Liu reported that GC treatment induced vascular endothelial cell
senescence in young mice, and alleviation of this alteration not only
improved GC-impaired bone angiogenesis with coupled
osteogenesis but also bone loss. GC treatment inhibits ANG, a
ribonuclease secreted by metaphyseal osteoclasts, leading to blood
vessel cell senescence and bone loss through binding to PLXNB2 in
vascular cells (Liu et al., 2021). Peng demonstrated that chronic GC
exposure led to reduced POC numbers and PDGF-BB and thus
inhibited type H vessel formation, ultimately resulting in
osteoporosis, bone growth retardation, and osteonecrosis (Peng
et al., 2020b). In addition, exposure to GCs inhibits the
angiogenic molecule VEGF (Pufe, 2003; Athanasopoulos et al.,
2007) and stimulates the angiostatic glycopeptide
thrombospondin-1 (Rae et al., 2009). We can infer that excess
GC causes a decrease in bone water volume and skeletal blood
flow (Goans et al., 1995; Drescher et al., 2000) and contributes to a
reduced mineral apposition rate (Reeve et al., 1988). Recently, our
studies found that the type H vessel number was significantly
reduced in the GC group compared to the controls, while PEMFs
(8 Hz, 3.8 mT, 1 h per day for 4 weeks) maintained this change,
suggesting that PEMFs can show angiogenic–osteogenic effects on
bone marrow during GC treatment (Wang et al., 2021; Wang et al.,
2022a). Another study performed by Wang demonstrated that
PEMFs (15 Hz, 2.4–2.6 mT, 1 h per day for 8 weeks) substantially
countered OVX-induced bone loss by inducing coupling promotion
of osteogenesis and type H vessels in a mouse model. This beneficial
effect might be mediated by HIF-1α signaling in type H vessels
(Wang et al., 2022b). These results open up new directions for
research into the therapeutic effects of PEMFs on the reversal of
osteoporosis by targeting angiogenesis. This speculation needs to be
tested in GIOP models in both young and adult mice in the future.

5 Evidence for therapeutic effects

PEMFs prevent bone loss because of piezoelectrical effects,
modulating calcium deposits in bone and regulating mineral

FIGURE 1
Mechanism of PEMF-treated OP. PEMFs may be considered a
potential and non-side-effect therapy for GIOP. PEMFs stimulate
osteoblastogenesis, suppress osteoclastogenesis, and influence the
activity of bone marrow mesenchymal stem cells (BMSCs),
osteocytes and angiogenesis. Finally, it leads to the retention of bone
mass and strength.
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metabolism. For example, our team found that PEMFs reduce bone
loss in postmenopausal women and improve their pain and balance
function (Liu et al., 2013). Moreover, PEMFs improve bone loss in
OVX osteoporosis animal models, enhance the biomechanical
properties of bone, and inhibit inflammation [!!! INVALID
CITATION !!! (3 and 4)]. In addition to OVX-induced bone
loss, other groups found that PEMFs also acted as a therapy for
osteoporosis induced by diabetes-mellitus and disuse (Chang and
Chang, 2003; Liu et al., 2013). At present, the application of PEMFs
to GIOP is not yet popularized in clinical applications, but some
animal experiments have shown promising results. Jiang et al. (2016)
reported that PEMF therapy antagonized the negative effects of GCs
in bone by activating the Wnt/β-catenin signaling pathway. Our
group found that PEMFs rescued bone loss in GIOP models by
eliminating senescent cells (Wang et al., 2021; Wang et al., 2022a).
Furthermore, PEMFs eliminate the side-effects of GCs on
osteoblasts (Esmail et al., 2012). Based on the evidence, we
conclude that PEMF treatment may be an effective, safe, and
non-invasive therapy for GIOP and might provide some potential
benefits for patients with GIOP.

There are many potential mechanisms that could account for
this. Bone mass maintenance is attributed to a balance between
osteoblastic bone formation and osteoclastic bone resorption.
Numerous studies have reported that the RANKL–RANK
signaling and Wnt signaling pathways are two of the most
necessary pathways regulating bone quality and bone
metabolism. The Wnt/β-catenin pathway might be associated
with the protection of osteogenesis by PEMFs antagonizing GCs.
For example, GCs disturb the BMSC differentiation balance by
upregulating adipogenesis-related genes and downregulating
osteogenesis-associated genes by suppressing the Wnt/β-catenin
pathway (Li et al., 2013). The mRNA and protein expression
levels associated with the Wnt/β-catenin pathway were
significantly upregulated in GIOP rats after PEMF stimulation

for 12 weeks, indicating that the canonical Wnt signaling
pathway was activated during PEMF stimulation (Ding et al.,
2011; Jing et al., 2013; Jiang et al., 2016). Meanwhile, high levels
of GCs also promote the expression of Wnt inhibitors such as SOST
and DKK1 to suppress osteogenesis (Mak et al., 2009). PEMFs not
only increase the expression of genes involved in the Wnt signaling
pathway, such as Lrp5, Lrp6, Wnt1a, and Wnt3a but also
downregulate SOST and DKK1 (Zhou et al., 2015; Cai et al.,
2020). Moreover, dying osteocytes are the main sources of SOST
and DKK1, indicating that PEMFs could also alleviate osteocyte
apoptosis induced by GCs (Ramli and Chin, 2020). With regard to
the ECM, chronic GC treatment suppresses mineralization (Canalis,
1983; Wang et al., 2005), which can be reversed by PEMFs (Sollazzo
et al., 2010).

In addition to osteogenesis, GCs increase osteoclast survival
indirectly by inhibiting OPG production by osteoblastic cells,
thereby upregulating available RANKL and inhibiting osteoclast
apoptosis. Jiang et al. (2016) found that the OPG/RANKL ratio,
which decreased in the GIOP group, improved after PEMF
treatment, indicating that the OPG/RANK/RANKL signaling
pathway might participate in this process. PEMFs inhibit RANKL
expression and enhance OPG expression, leading to an upregulation
in the ratio of OPG/RANKL (Jiang et al., 2016). Another osteoclast
population, termed POCs, positively regulate osteogenesis by regulating
angiogenesis. Chronic GC treatment has been demonstrated to lead to
reduced POC numbers and thus inhibition of type H vessel formation,
ultimately resulting in osteoporosis, bone growth retardation, and
osteonecrosis (Peng et al., 2020b). In addition, exposure to GCs
inhibits the angiogenic molecule VEGF (Pufe, 2003; Athanasopoulos
et al., 2007; Rae et al., 2009), causing a decrease in bone water volume
and skeletal blood flow (Goans et al., 1995; Drescher et al., 2000).
PEMFs exert angiogenic–osteogenic effects on bonemarrow during GC
treatment by maintaining this change (Wang et al., 2021; Wang et al.,
2022a).

FIGURE 2
Signaling pathway of PEMF-treated GIOP.
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Recently, cellular senescence was demonstrated to play a
fundamental role in GIOP (Liu et al., 2021; Wang et al., 2021;
Wang et al., 2022c). Nestin+ MSCs in young mice and LepR+ MSCs
of adult mice undergo senescence in response to GCs (Li et al., 2017; Su
et al., 2020; Wang et al., 2021). Clearance of senescent cells by PEMF
treatment (8 Hz, 3.8 mT, 1 h per day) for 4 weeks rescued GC-induced
bone loss (Wang et al., 2021) through the EZH2–H3K27me3 axis.

Overall, GCs cause osteoporosis by inhibiting bone formation and
enhancing bone resorption, which is prevented by PEMFs through
different mechanisms. Thus, PEMFs should be considered a promising
method for treating GIOP. Moreover, it seems that PEMFs with
different parameters including frequency, intensity, and duration can
still influence GIOP (Cai et al., 2020; Wang et al., 2022b). However,
studies have focused on the physiological effects of PEMFs on bone cells
or on other types of osteoporosis; thus, the effects of PEMFs on GIOP
are still questionable. The positive effects of PEMFs on osteoporosis are
still unclear due to the use of different parameters including the PEMF
waveform, daily exposure time, treatment starting point and duration,
and other subject-related factors. Moreover, there are great differences
between clinical experiments and animal experiments. To verify these
findings, more high-quality, reliable, randomized controlled trials with
large sample sizes and long-term follow-up are needed in the future. In
addition, the contraindications of long-term PEMFs should be
considered in further studies.

6 Conclusion

Current studies of PEMFs and their potential roles in regulating
bone metabolism in GIOP are summarized in this review (Figures 1,
2). PEMFs should be recommended based on more reliable evidence
from high-quality, randomized controlled trials, which require
clinical studies with large sample sizes and long-term follow-up.
Moreover, gene-knockout mice should be used to determine the
specific target for treating GIOP by PEMFs. After that, the usage of
PEMFs can be considered a safe treatment for GIOP.
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