Skip to main content

CORRECTION article

Front. Bioeng. Biotechnol., 25 November 2022
Sec. Biomaterials

Corrigendum: Applications of chitosan and its derivatives in skin and soft tissue diseases

  • 1Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
  • 2Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
  • 3Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China

A Corrigendum on
Applications of chitosan and its derivatives in skin and soft tissue diseases

by Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z and Liu B (2022). Front. Bioeng. Biotechnol. 10:894667. doi: 10.3389/fbioe.2022.894667

In the published article, there was an error in Table 1 as published. The references in Table 1 were incorrectly presented. The corrected Table 1 and its caption appear below.

TABLE 1
www.frontiersin.org

TABLE 1. Antibacterial effect of chitosan and its derivatives on different microorganisms.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Alqahtani, F., Aleanizy, F., El Tahir, E., Alhabib, H., Alsaif, R., and Shazly, G. (2020). Antibacterial activity of chitosan nanoparticles against pathogenic N. Gonorrhoea. Int. J. Nanomedicine 15, 7877–7887. doi:10.2147/IJN.S272736

PubMed Abstract | CrossRef Full Text | Google Scholar

Anwar, Y. (2018). Antibacterial and lead ions adsorption characteristics of chitosan-manganese dioxide bionanocomposite. Int. J. Biol. Macromol. 111, 1140–1145. doi:10.1016/j.ijbiomac.2018.01.096

PubMed Abstract | CrossRef Full Text | Google Scholar

Cai, J., Dang, Q., Liu, C., Wang, T., Fan, B., and Yan, J. (2015). Preparation, characterization and antibacterial activity of O-acetyl-chitosan-N-2-hydroxypropyl trimethyl ammonium chloride. Int. J. Biol. Macromol. 80, 8–15. doi:10.1016/j.ijbiomac.2015.05.061

PubMed Abstract | CrossRef Full Text | Google Scholar

Cao, W., Yue, L., and Wang, Z. (2019). High antibacterial activity of chitosan - molybdenum disulfide nanocomposite. Carbohydr. Polym. 215, 226–234. doi:10.1016/j.carbpol.2019.03.085

PubMed Abstract | CrossRef Full Text | Google Scholar

Dasagrandhi, C., Park, S., Jung, W. K., and Kim, Y. M. (2018). Antibacterial and biofilm modulating potential of ferulic acid-grafted chitosan against human pathogenic bacteria. Int. J. Mol. Sci. 19 (8), 2157. doi:10.3390/ijms19082157

PubMed Abstract | CrossRef Full Text | Google Scholar

Ding, F., Nie, Z., Deng, H., Xiao, L., Du, Y., and Shi, X. (2013). Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydr. Polym. 98 (2), 1547–1552. doi:10.1016/j.carbpol.2013.07.042

PubMed Abstract | CrossRef Full Text | Google Scholar

Ghazaie, M., Ghiaci, M., Soleimanian-Zad, S., and Behzadi-Teshnizi, S. (2019). Preparing natural biocomposites of N-quaternary chitosan with antibacterial activity to reduce consumption of antibacterial drugs. J. Hazard. Mat. 371, 224–232. doi:10.1016/j.jhazmat.2019.03.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Guo, A., Wang, F., Lin, W., Xu, X., Tang, T., and Shen, Y. (2014). Evaluation of antibacterial activity of N-phosphonium chitosan as a novel polymeric antibacterial agent. Int. J. Biol. Macromol. 67, 163–171. doi:10.1016/j.ijbiomac.2014.03.024

PubMed Abstract | CrossRef Full Text | Google Scholar

He, G., Chen, X., Yin, Y., Cai, W., Ke, W., and Kong, Y. (2016). Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. J. Biomaterials Sci. Polym. Ed. 27 (4), 370–384. doi:10.1080/09205063.2015.1132616

PubMed Abstract | CrossRef Full Text | Google Scholar

Hebeish, A. A., Ramadan, M. A., Montaser, A. S., and Farag, A. M. (2014). Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite. Int. J. Biol. Macromol. 68, 178–184. doi:10.1016/j.ijbiomac.2014.04.028

PubMed Abstract | CrossRef Full Text | Google Scholar

Hu, Z., Zhang, L., Zhong, L., Zhou, Y., Xue, J., and Li, Y. (2019). Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohydr. Polym. 219, 290–297. doi:10.1016/j.carbpol.2019.05.017

PubMed Abstract | CrossRef Full Text | Google Scholar

Jou, C. H. (2011). Antibacterial activity and cytocompatibility of chitosan-N-hydroxy-2, 3-propyl-N methyl-N, N-diallylammonium methyl sulfate. Colloids Surfaces B Biointerfaces 88 (1), 448–454. doi:10.1016/j.colsurfb.2011.07.028

PubMed Abstract | CrossRef Full Text | Google Scholar

Jung, J., Cavender, G., and Zhao, Y. (2014). The contribution of acidulant to the antibacterial activity of acid soluble alpha- and beta-chitosan solutions and their films. Appl. Microbiol. Biotechnol. 98 (1), 425–435. doi:10.1007/s00253-013-5334-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Kim, S. S., and Lee, J. (2014). Antibacterial activity of polyacrylonitrile-chitosan electrospun nanofibers. Carbohydr. Polym. 102, 231–237. doi:10.1016/j.carbpol.2013.11.028

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, B., Shan, C. L., Zhou, Q., Fang, Y., Wang, Y. L., and Xu, F. (2013). Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar. Drugs 11 (5), 1534–1552. doi:10.3390/md11051534

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, D., Gao, X., Huang, X., Liu, P., Xiong, W., and Wu, S. (2020). Preparation of organic-inorganic chitosan@silver/sepiolite composites with high synergistic antibacterial activity and stability. Carbohydr. Polym. 249, 116858. doi:10.1016/j.carbpol.2020.116858

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, J., Wu, X., Shi, Q., Li, C., and Chen, X. (2019). Effects of hydroxybutyl chitosan on improving immunocompetence and antibacterial activities. Mater. Sci. Eng. C 105, 110086. doi:10.1016/j.msec.2019.110086

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, Z., Hu, W., Zhao, Y., Ren, L., and Yuan, X. (2018). Integrated antibacterial and antifouling surfaces via cross-linking chitosan-g-eugenol/zwitterionic copolymer on electrospun membranes. Colloids Surfaces B Biointerfaces 169, 151–159. doi:10.1016/j.colsurfb.2018.04.056

PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, Y., Wang, S., and Lan, W. (2018). Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int. J. Biol. Macromol. 107, 848–854. doi:10.1016/j.ijbiomac.2017.09.044

PubMed Abstract | CrossRef Full Text | Google Scholar

Luo, Q., Han, Q., Wang, Y., Zhang, H., Fei, Z., and Wang, Y. (2019). The thiolated chitosan: Synthesis, gelling and antibacterial capability. Int. J. Biol. Macromol. 139, 521–530. doi:10.1016/j.ijbiomac.2019.08.001

PubMed Abstract | CrossRef Full Text | Google Scholar

Malhotra, K., Shankar, S., Chauhan, N., Rai, R., and Singh, Y. (2020). Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections. Mater. Sci. Eng. C 110, 110648. doi:10.1016/j.msec.2020.110648

CrossRef Full Text | Google Scholar

Mallakpour, S., and Abbasi, M. (2020). Hydroxyapatite mineralization on chitosan-tragacanth gum/silica@silver nanocomposites and their antibacterial activity evaluation. Int. J. Biol. Macromol. 151, 909–923. doi:10.1016/j.ijbiomac.2020.02.167

PubMed Abstract | CrossRef Full Text | Google Scholar

Min, T., Zhu, Z., Sun, X., Yuan, Z., Zha, J., and Wen, Y. (2020). Highly efficient antifogging and antibacterial food packaging film fabricated by novel quaternary ammonium chitosan composite. Food Chem. x. 308, 125682. doi:10.1016/j.foodchem.2019.125682

PubMed Abstract | CrossRef Full Text | Google Scholar

Ng, I. S., Ooi, C. W., Liu, B. L., Peng, C. T., Chiu, C. Y., and Chang, Y. K. (2020). Antibacterial efficacy of chitosan- and poly(hexamethylene biguanide)-immobilized nanofiber membrane. Int. J. Biol. Macromol. 154, 844–854. doi:10.1016/j.ijbiomac.2020.03.127

PubMed Abstract | CrossRef Full Text | Google Scholar

Olanipekun, E. O., Ayodele, O., Olatunde, O. C., and Olusegun, S. J. (2021). Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Int. J. Biol. Macromol. 183, 1971–1977. doi:10.1016/j.ijbiomac.2021.05.162

PubMed Abstract | CrossRef Full Text | Google Scholar

Potara, M., Jakab, E., Damert, A., Popescu, O., Canpean, V., and Astilean, S. (2011). Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 22 (13), 135101. doi:10.1088/0957-4484/22/13/135101

PubMed Abstract | CrossRef Full Text | Google Scholar

Raghavendra, G. M., Jung, J., Kim, D., and Seo, J. (2016). Microwave assisted antibacterial chitosan-silver nanocomposite films. Int. J. Biol. Macromol. 84, 281–288. doi:10.1016/j.ijbiomac.2015.12.026

PubMed Abstract | CrossRef Full Text | Google Scholar

Rao, K. M., Suneetha, M., Park, G. T., Babu, A. G., and Han, S. S. (2020). Hemostatic, biocompatible, and antibacterial non-animal fungal mushroom-based carboxymethyl chitosan-ZnO nanocomposite for wound-healing applications. Int. J. Biol. Macromol. 155, 71–80. doi:10.1016/j.ijbiomac.2020.03.170

PubMed Abstract | CrossRef Full Text | Google Scholar

Regiel-Futyra, A., Kus-Liskiewicz, M., Sebastian, V., Irusta, S., Arruebo, M., and Stochel, G. (2015). Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl. Mat. Interfaces 7 (2), 1087–1099. doi:10.1021/am508094e

PubMed Abstract | CrossRef Full Text | Google Scholar

Sahariah, P., Cibor, D., Zielinska, D., Hjalmarsdottir, M. A., Stawski, D., and Masson, M. (2019). The effect of molecular weight on the antibacterial activity of N, N, N-trimethyl chitosan (TMC). Int. J. Mol. Sci. 20 (7), 1743. doi:10.3390/ijms20071743

PubMed Abstract | CrossRef Full Text | Google Scholar

Senthilkumar, P., Yaswant, G., Kavitha, S., Chandramohan, E., Kowsalya, G., and Vijay, R. (2019). Preparation and characterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. Int. J. Biol. Macromol. 141, 290–298. doi:10.1016/j.ijbiomac.2019.08.234

PubMed Abstract | CrossRef Full Text | Google Scholar

Shahid Ul, I., Butola, B. S., and Verma, D. (2019). Facile synthesis of chitosan-silver nanoparticles onto linen for antibacterial activity and free-radical scavenging textiles. Int. J. Biol. Macromol. 133, 1134–1141. doi:10.1016/j.ijbiomac.2019.04.186

PubMed Abstract | CrossRef Full Text | Google Scholar

Wahid, F., Wang, H. S., Lu, Y. S., Zhong, C., and Chu, L. Q. (2017). Preparation, characterization and antibacterial applications of carboxymethyl chitosan/CuO nanocomposite hydrogels. Int. J. Biol. Macromol. 101, 690–695. doi:10.1016/j.ijbiomac.2017.03.132

PubMed Abstract | CrossRef Full Text | Google Scholar

Wahid, F., Yin, J. J., Xue, D. D., Xue, H., Lu, Y. S., and Zhong, C. (2016). Synthesis and characterization of antibacterial carboxymethyl Chitosan/ZnO nanocomposite hydrogels. Int. J. Biol. Macromol. 88, 273–279. doi:10.1016/j.ijbiomac.2016.03.044

PubMed Abstract | CrossRef Full Text | Google Scholar

Wahid, F., Zhou, Y. N., Wang, H. S., Wan, T., Zhong, C., and Chu, L. Q. (2018). Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity. Int. J. Biol. Macromol. 114, 1233–1239. doi:10.1016/j.ijbiomac.2018.04.025

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, G., and Fakhri, A. (2020). Preparation of CuS/polyvinyl alcohol-chitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G- bacteria. Int. J. Biol. Macromol. 155, 36–41. doi:10.1016/j.ijbiomac.2020.03.077

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, X., Cheng, F., Wang, X., Feng, T., Xia, S., and Zhang, X. (2021). Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int. J. Biol. Macromol. 168, 59–66. doi:10.1016/j.ijbiomac.2020.12.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, Y. L., Zhou, Y. N., Li, X. Y., Huang, J., Wahid, F., and Zhong, C. (2020). Continuous production of antibacterial carboxymethyl chitosan-zinc supramolecular hydrogel fiber using a double-syringe injection device. Int. J. Biol. Macromol. 156, 252–261. doi:10.1016/j.ijbiomac.2020.04.073

PubMed Abstract | CrossRef Full Text | Google Scholar

Wiarachai, O., Thongchul, N., Kiatkamjornwong, S., and Hoven, V. P. (2012). Surface-quaternized chitosan particles as an alternative and effective organic antibacterial material. Colloids Surfaces B Biointerfaces 92, 121–129. doi:10.1016/j.colsurfb.2011.11.034

PubMed Abstract | CrossRef Full Text | Google Scholar

Yan, F., Dang, Q., Liu, C., Yan, J., Wang, T., and Fan, B. (2016). 3, 6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism. Carbohydr. Polym. 149, 102–111. doi:10.1016/j.carbpol.2016.04.098

PubMed Abstract | CrossRef Full Text | Google Scholar

Yang, J., Lu, H., Li, M., Liu, J., Zhang, S., and Xiong, L. (2017). Development of chitosan-sodium phytate nanoparticles as a potent antibacterial agent. Carbohydr. Polym. 178, 311–321. doi:10.1016/j.carbpol.2017.09.053

PubMed Abstract | CrossRef Full Text | Google Scholar

Yin, M., Lin, X., Ren, T., Li, Z., Ren, X., and Huang, T. S. (2018). Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. Int. J. Biol. Macromol. 120, 992–998. doi:10.1016/j.ijbiomac.2018.08.105

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhou, B., Hu, Y., Li, J., and Li, B. (2014). Chitosan/phosvitin antibacterial films fabricated via layer-by-layer deposition. Int. J. Biol. Macromol. 64, 402–408. doi:10.1016/j.ijbiomac.2013.12.016

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: chitosan, soft tissue disease, biological property, drug-delivery carrier, regenerative medicine

Citation: Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z and Liu B (2022) Corrigendum: Applications of chitosan and its derivatives in skin and soft tissue diseases. Front. Bioeng. Biotechnol. 10:1082945. doi: 10.3389/fbioe.2022.1082945

Received: 28 October 2022; Accepted: 31 October 2022;
Published: 25 November 2022.

Approved by:

Frontiers in Editorial Office, Frontiers Media SA, Switzerland

Copyright © 2022 Xia, Wang, Liu, Su, Jin, Wang, Han, Jiang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Ziping Jiang, waterjzp@jlu.edu.cn; Bin Liu, l_bin@jlu.edu.cn

These authors have contributed equally to this work

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.