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Coronary artery bypass grafting (CABG) remains the most common procedure

used in cardiovascular surgery for the treatment of severe coronary

atherosclerotic heart disease. In coronary artery bypass grafting, small-

diameter vascular grafts can potentially replace the vessels of the patient.

The complete retention of the extracellular matrix, superior biocompatibility,

and non-immunogenicity of the decellularized vascular matrix are unique

advantages of small-diameter tissue-engineered vascular grafts. However,

after vascular implantation, the decellularized vascular matrix is also subject

to thrombosis and neoplastic endothelial hyperplasia, the two major problems

that hinder its clinical application. The keys to improving the long-term patency

of the decellularized matrix as vascular grafts include facilitating early

endothelialization and avoiding intravascular thrombosis. This review article

sequentially introduces six aspects of the decellularized vascular matrix as

follows: design criteria of vascular grafts, components of the decellularized

vascular matrix, the changing sources of the decellularized vascular matrix, the

advantages and shortcomings of decellularization technologies, modification

methods and the commercialization progress as well as the application

prospects in small-diameter vascular grafts.
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1 Introduction

The incidence of cardiovascular disease (CVD) has been increasing worldwide since

the beginning of the 21st century, becoming one of the prominent causes of mortality, and

has affected approximately 523 million people (Roth et al., 2020). In the European Union,

more than 3.9 million people have died because of CVD, accounting for 45% of the total

annual death toll (European Heart Network, 2017). Moreover, each year 11.3 million new

cases of CVD are reported in the European Union (Movsisyan et al., 2020; World Health

Organization, 2020). Although percutaneous coronary intervention and other traditional

operations are widely used, patients with severe coronary atherosclerotic heart disease

need to undergo vascular transplantation, such as coronary artery bypass grafting
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(CABG). When the arteriovenous vascular lesions have

progressed to an end-stage, conservative therapy or

conventional surgery cannot effectively cure patients. In the

United States alone, approximately 4,50,000 patients undergo

vascular bypass surgery each year (Kim et al., 2015; Benjamin

et al., 2017), concomitantly increasing the demand for vascular

grafts and broadening its application prospects.

Vascular grafts are generally of three types: allogeneic,

autologous, and synthetic. Allogeneic vascular grafts often lead

to immune rejection, while autologous vascular grafts, such as the

internal thoracic artery and saphenous vein, are the best

choices for patients undergoing CABG. Nevertheless, on

account of peripheral vascular diseases and other reasons,

not all patients have good autologous blood vessels to meet

the requirements of autologous transplantation. Among

synthetic vascular grafts, various polymer materials such as

polylactic acid, polyglycolic acid (PGA), and expanded

polytetrafluoroethylene (ePTFE) have become alternatives to

autologous vessels. Nonetheless, they have many deficiencies in

biocompatibility and vascular compliance. For instance,

polymer materials are cytotoxic to a certain extent and can

easily cause a rejection reaction. Their degradation rate also

limits the clinical application. Therefore, the field of tissue

engineering has emerged, capable of producing different

vascular grafts.

In recent years, tissue engineering has become a topic of

interest in biomedical research, especially in the cardiovascular

field. It utilizes advanced technologies for the preparation of

vascular grafts with good biological activity and biocompatibility.

Tissue-engineered vascular grafts (TEVGs) are broadly of three

categories: large-diameter vascular grafts with a

diameter >8 mm, medium-diameter vascular grafts with a

6–8 mm diameter, and small-diameter vascular grafts with a

diameter <6 mm. Among them, the initial application of small-

diameter vascular grafts involves CABG. Large and medium-

diameter TEVGs exhibit high blood flow and low vascular

resistance; therefore, the patency rate is ideal and can meet

clinical needs. A variety of high-performance synthetic

materials have been successfully used in the production of

TEVGs with large or medium diameters that have performed

well. On the contrary, when the blood in small-diameter

vascular grafts flows through the inner wall, the likelihood of

platelet attachment and thrombus formation increases.

Meanwhile, the vascular graft undergoes remodeling post-

implantation. The mismatch of mechanical properties

between the graft and the natural blood vessel also leads to

the excessive proliferation of smooth muscle cells like stromal

cells, forming new intima hyperplasia (Mallis et al., 2020a).

Among small-diameter vascular grafts, the decellularized

vascular matrix is one of the most popular materials

attributed to its superior biocompatibility and non-

immunogenicity. The extracellular matrix is the component of

the decellularized vascular matrix, which refers to the removal of

immunogenic cell components through decellularization

technologies of blood vessels from animals or humans and

TEVGs. The ultrastructure of the extracellular matrix is well

preserved while the cellular structure is exenterated; as a

consequence, its structure is more similar to that of the

natural vessel wall. In view of the above advantages, the

decellularized vascular matrix is expected to be a more

promising and efficiently performing vascular scaffold material

with good performance that satisfies clinical demands.

This review elaborately introduces the six aspects of the

decellularized vascular matrix. First, we introduce the design

criteria for vascular grafts. Second, the components of the

decellularized vascular matrix are analyzed. Third, with the

development in recent years, the source of the decellularized

vascular matrix has changed. Thus, the advantages and

shortcomings of different decellularization technologies

have been compared, and the evaluation criteria of

decellularization are described. In addition, the different

modification methods used to improve the performance

and long-term patency rate are listed. Lastly, we summarize

the commercialization process of the decellularized vascular

matrix and its potential application in small-diameter vascular

grafts.

2 Criteria for vascular graft design

A set of standardized design criteria have been developed

after years of attempts to manufacture vascular grafts. These

criteria are outlined in ISO 7198:2017, “Cardiovascular

implants and extracorporeal systems—tubular vascular grafts

and vascular patches” (Moore et al., 2022). The required

mechanical, biological, and immunological properties of

suitable vascular grafts as well as relevant definitions are

discussed below (Table 1).

2.1 Mechanical properties of vascular
grafts

The mechanical properties of vascular grafts should be as

close as possible to those of the internal mammary artery, the

obvious choice for a natural artery. In patients with severe

hypertension, the systolic pressure may be as high as

180 mmHg, while the burst pressure of natural blood vessels

exceeds 3,000 mmHg. According to the bioengineering

consensus, the graft with burst pressure (>1,000 mmHg) is

desirable (L’Heureux et al., 2006; Konig et al., 2009).

Concurrently, compliance should match as much as possible to

those of the natural blood vessels. The suture retention strength

exceeds 1 N, and the ultimate tensile strength is higher than 1 MPa,

with the compliance being 10%–20%/100 mmHg (Girerd et al.,

1992; L’Heureux et al., 2006; Konig et al., 2009; Stekelenburg et al.,
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2009; Seifu et al., 2013). A sufficient extracellular matrix can

provide appropriate ultimate tensile strength, suture retention

strength, and fracture strength for vascular grafts.

2.2 Biological properties of vascular grafts

To ensure vascular patency, the lumen surface of vascular

grafts should have proper blood compatibility to prevent or

reduce the adhesion of platelets and the activation of the

coagulation system; this is a necessary condition, especially for

small-diameter vascular grafts. Likewise, vascular grafts also need

excellent cell compatibility on the lumen surface for cell adhesion

and proliferation. If there are endothelial cells—from autologous

veins or circulating progenitor cells—on the lumen surface, their

presence reduces the probability of thrombosis. Tissue

engineering can promote early endothelialization of the

vascular wall to thus improve the biocompatibility of vascular

grafts. Moreover, vascular grafts need to be able to be remodeled

as part of the body after implantation. Only when smooth muscle

cells and endothelial cells proliferate, the structure and function

of vascular grafts can gradually approach the natural blood

vessels.

2.3 Immunological properties of vascular
grafts

The extracellular matrix of vascular grafts needs to be

human-derived to minimize the risk of inflammation,

foreign body reaction, and immune recognition. If the

cells are not autogenous and have not been completely

removed, the recipient’s immune system recognizes

antigens from the donor’s graft surface after implantation,

triggering an autoimmune response. Vascular grafts can be

divided into allografts and xenografts depending on the cell

source.

The antigens that cause allograft rejection are

histocompatibility antigens. Among them, the

histocompatibility antigen that can cause strong rejection is

called major histocompatibility antigen. The histocompatibility

antigen that causes weak rejection is called secondary

histocompatibility antigen (mH antigen). The key to

successful transplantation depends on whether the tissue

capacitive antigens between the donor and recipient are

consistent or similar. After transplantation, T cells of the

recipient recognize MHC antigen on the surface of the graft

through direct and indirect ways to cause the immune response.

Human leukocyte antigen (HLA), encoded by the major

histocompatibility complex (MHC), is the most important

antigen of allograft rejection (Hamada et al., 2021). Especially

the antigen molecules located in the HLA-DR, followed by HLA-

A, HLA-B, HLA-DQ, and HLA-DP (Hubscher et al., 1990;

Fleischhauer et al., 2001; Lim et al., 2016; Wiebe et al., 2017;

Féray et al., 2021). There was no significant relationship between

HLA-C and transplant rejection (Piccinni et al., 2021).

The biggest problem caused by xenotransplantation is

immune rejection, especially hyperacute rejection.

Hyperacute rejection can kill cells from the donor vascular

graft within 24 h (Tector et al., 2020). The reason is that

natural antibodies in human blood bind to antigens on the

surface of the xenograft to activate the complement system.

When activated, the complement system forms membrane-

attacking complexes, triggering a series of chain reactions

including endothelial cell dysfunction, platelet aggregation

and thrombosis, leading to transplantation failure.

Xenograft immunogenicity is directly related to the

presence of several antigens including the α-Gal epitope,

the linked N-glycolyl neuraminic sialic acid (Neu5Gc) and

the Sd(a) (Byrne et al., 2011; Naso et al., 2013; Gao et al.,

2017). Mammals have these antigenic molecules except for

humans, apes and certain monkeys.

Consequently, the decellularized vascular matrix can only be

used as a vascular graft in the clinical application if it meets all the

above-discussed criteria. In general, these factors should also

consider market regulation, large-scale production, and other

requirements. So far, this goal has not been achieved and is still in

progress.

TABLE 1 Relevant parameters for the properties of vascular grafts.

Parameter Definition Test methods

Burst pressure The pressure at which one end of the vascular graft is closed and liquid is slowly and uniformly injected from the other
end until the vessel expands and ruptures

Bursting tester

Suture retention
strength

Defined as the peak strength when the surgical wire is pulled out the wall of the tube Universal tensile
tester

Ultimate tensile strength The maximum stress that the vascular graft can withstand when stretched before rupture Universal tensile
tester

Compliance The ability of the vascular graft to expand radially due to internal pressure Compliance tester

Patency After vascular implantation, the grafts remained unobstructed without any intervention Ultrasound
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3 Components of decellularized
vascular matrix

The decellularized vascular matrix refers to the non-cellular

part of blood vessel wall. It often includes an intricate 3D

structure and is filled with an invisible gelatinous structure. In

the past, it was considered as a simple supporting structure of

blood vessels. Recent discoveries have completely overturned this

old view. The decellularized vascular matrix is not only a

supporting structure, but also a microenvironment for cell life.

It is closely related to cell survival, regeneration, repair, and

immunity (Xing et al., 2020; Kotla et al., 2021; Kretschmer et al.,

2021).

The composition of decellularized vascular matrix varies in

different functional and developmental stages of blood vessels.

For example, the content of elastin in the vascular matrix of

arteries is much higher than that of veins. Besides, fibronectin

and collagen IV decreased with age, while collagen I, collagen III

and laminin increased with age (Williams et al., 2014).

Considering the source and application of vascular grafts, this

article only focuses on the main components of mammalian

natural blood vessels. Simply stated, the decellularized vascular

FIGURE 1
Components of the decellularized vascular matrix. (A) Structural protein and invisible gelatinous structures. (B) Linked/adhesive protein.
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matrix consists of three components: structural protein, linked/

adhesive protein, and invisible gelatinous structures. Specifically,

structural proteins mainly include collagen and elastin. The

linked/adhesive proteins mainly include integrin, fibronectin

and laminin. Invisible gelatinous structures mainly include

proteoglycan and hyaluronic acid (Figure 1).

3.1 Structural proteins

3.1.1 Structural protein refers to the fibrous
protein in the decellularized vascular matrix,
which forms a 3D structure

Collagen is the most important protein of the decellularized

vascular matrix. This component is also the most closely related to

vascular remodeling. Collagen constitutes fibers that form the three-

dimensional structure of the extracellular matrix, provide living

space for cells, and support the physiological morphology of vessels

(Pankov and Yamada, 2002). On the other hand, the three-

dimensional structure constructed using collagen can regulate cell

adhesion, proliferation, and differentiation, as well as the immune

response of immune cells through biological force transduction, thus

regulating vascular remodeling and regeneration (Chu et al., 2017;

Velez et al., 2019). Years of research have led to the discovery of

28 kinds of collagens (Bielajew et al., 2020). According to their

molecular structure and function, collagens are further classified into

fiber collagen, fiber bound collagen, basement membrane collagen,

long chain collagen, filamentous collagen, short chain collagen,

multi-cluster collagen, and transmembrane collagen. These

several types of collagens can perform their roles, resemble the

actual microenvironment of natural blood vessels and play a better

role in repair and regeneration.

Elastin is the main component of elastic fibers in the

extracellular matrix. The fibers with elastin can provide elastic

recoil for blood vessels (Vindin et al., 2019). The high content of

hydrophobic amino acids in elastin makes it one of the proteins

with the strongest chemical resistance, rendering it with

reversible ductility in the cyclic loading process (Rosenbloom

et al., 1993). Elastin plays a key role in cell adhesion and

migration and participates in intracellular signaling pathways

in blood as well (Oleggini et al., 2007). In the vessel development

process, the assembly of elastin into elastin fibers changes with

the vessels’ maturation and aging (Robert et al., 1984). In aging

vessels, matrix metalloproteinases participate in elastin

decomposition, resulting in a significant decrease in its

content and, consequently, the elasticity of blood vessel walls

(Hynes and Naba, 2012).

3.2 Linked/adhesive proteins

Linked/adhesive proteins refers to a series of proteins with

adhesiveness and connectivity. They are usually spherical,

responsible for connecting the fibrous protein structure in the

decellularized vascular matrix with cells.

Integrin is one of the most important globular proteins that

serve multiple functions. For example, as a “bond,” integrin

connects the cytoskeleton to the vascular matrix. This

connection not only stabilizes cells, but also allows vascular

cells to feel the changes of external mechanical information

(such as pressure), thus regulating the biological function of

cells (Sun et al., 2016). In addition, integrin, as a receptor, can

realize the information transmission between vascular matrix

and cells (Singh et al., 2010).

Fibronectin is widely distributed and has the ability to

combine with a variety of vascular matrix components. The

multiple structures of fibronectin enable it to simultaneously

combine with cell surface receptors (such as integrin), collagen,

proteoglycans, and other adhesion molecules (Nelson and Bissell,

2006; Barkan et al., 2010). This property also enables it to mediate

the assembly of a variety of extracellular matrix proteins. In short,

fibronectin thus shapes the matrix structure and plays a

connecting role (Avila Rodriguez et al., 2018).

Laminin is the main component of basement membrane. The

α, β, and γ peptide chains are interlinked to form a cross

structure. It is closely connected with basal cells to fix them.

Laminin affects adhesion, differentiation, migration and

phenotype stability, and provides resistance to apoptosis of

related cells (Domogatskaya et al., 2012).

3.3 Invisible gelatinous structures

In addition to the components mentioned above, there are

proteoglycans, glycoproteins, amino polysaccharides,

proteases, bioactive molecules, electrolytes, and water in

invisible gelatinous structures of the decellularized vascular

matrix.

Proteoglycan is a huge molecule with a protein chain as the

core and glycosaminoglycans (GAGs) as the side branches.

Because GAGs can attract water, it forms a gelatinous

structure to fill the vascular matrix (Scott and Panitch,

2013). This gel maintains the stability of

microenvironment, provides nutrition for cells and

transmit signals (Koyama et al., 1998).

Hyaluronic acid is a huge single chain molecule only

composed of disaccharides. It can combine with many

proteoglycans to form a huge proteoglycan polymer and

work together with elastin and collagen to resist damage to

tissues and body caused by external impact (Li et al., 2020; Li

et al., 2021).

None of the components are isolated. Collagen and elastin

provide mechanical strength and flexibility to the

decellularized vascular matrix. Linked/adhesive proteins

participate in mechanical information transmission, act as

receptors to transmit chemical information and regulate the
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activity of biological molecules. Invisible gelatinous structures

can transmit signals, store important bioactive substances,

and endow blood vessels with flexibility and buffering capacity

against external forces. All of these components play

indispensable roles in creating the most suitable

environment for the survival of cells and the body. Thus,

the decellularized vascular matrix retains the complex

extracellular three-dimensional structure and biological

activity, much like the structure and function of the native

vessels. Undoubtedly, it is more in line with the standards of

TEVGs and has broad application prospects.

4 Sources of decellularized vascular
matrix

There are two main sources of the decellularized vascular

matrix, including directly obtained from animals or humans and

artificially prepared by tissue engineering (Figure 2). The sources

of the decellularized vascular matrix are constantly evolving and

are being updated through experimental techniques.

4.1 Vascular matrices prepared by
decellularization of obtained vessels

Early protocols regarding the preparation of decellularized

vascular matrices were mainly based on the decellularization of

blood vessels obtained directly from animals or humans to obtain

decellularized vascular matrices.

4.1.1 Animal-derived decellularized vascular
matrix

Rosenberg et al. (1966) first attempted the decellularization

technique in 1966. They decellularized the bovine carotid artery

and performed bypass grafting of the femoral-popliteal and

iliofemoral arteries in 16 patients. However, this trial resulted

in occlusion of the vascular graft postoperatively by the 2 year.

In 1995, (Sandusky et al., 1995), implanted the porcine small

intestine submucosa (SIS) as a carotid artery interposition graft

in dogs. No aneurism formation was found and the patency rate

was equal in both the vascular graft and autogenous

saphenous vein.

Katzman et al. (2005) in 2005 similarly used the mesenteric

vein bioprosthesis (MVB) as a vascular graft for hemodialysis,

and the patency rate of MVB was superior to that of ePTFE

synthetic vascular grafts. At 12 months, the primary patency was

35.6% of MVB and 28.4% of synthetic grafts. And at 24 months,

the secondary patency was 60.3% ofMVB and 42.9% of synthetic.

In the same year, (Cho et al., 2005), performed carotid artery

replacement in dogs. They decellularized the canine carotid

arteries with .5% v/v Triton X-100, .05% v/v ammonium

hydroxide and seeded the grafts with dog bone marrow

mesenchymal stem cells (MSCs). Then they implanted grafts

as carotid arteries interposition grafts, and their experiment

demonstrated successful vascular graft remodeling in vivo.

Chemla and Morsy (2009) in 2009 decellularized the bovine

ureter and applied it into 60 patients as arteriovenous conduits.

The comparison between ePTFE and decellularized bovine ureter

showed that there were no significant advantages of the

decellularized bovine ureter compared with ePTFE.

FIGURE 2
Sources of the decellularized vascular matrix. There are two main methods to create the decellularized vascular matrix by obtaining vessels
from humans or animals. Vessels are either directly processed by decellularization technologies, or cells can be extracted and isolated from vessels,
including smooth muscle cells, fibroblasts, and endothelial cells. With culture and amplification in vitro, cells are seeded into a degradable polymer
scaffold and then matured in a bioreactor. After a period, the scaffold degrades, and the decellularized vascular matrix is obtained by
decellularization technologies.
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In 2014, (Mancuso et al., 2014), decellularized the ovine

carotid artery with 1% w/v SDS, .05% v/v Trypsin, .02% EDTA.

After that, they seeded the grafts with MSCs and recellularized

the grafts successfully. The histological analysis with H&E,

Masson’s Trichrome, and Verhoeff van Gieson showed the

ECM structure was preserved well.

Additionally, (Daugs et al., 2017), in 2017 applied the

decellularization technique successfully into bovine carotid

arteries with 1% w/v SD, 1% w/v CHAPS, 1% v/v Triton X-

100 or .1% SDS. The histological analysis also revealed the

excellent preservation of ECM structure and the results of

mechanical tests showed biomechanical properties of

decellularized bovine carotid arteries.

The first decellularized vascular grafts derived from bovine

blood vessels and ureters. With the development of tissue

engineering technology, Artecraft®, Solcograft®, ProCol®

(LeMaitre Vascular, Inc., Burligton, MA, United States) have

been subsequently produced as vascular grafts based on these

materials and put on the market today (Pashneh-Tala et al.,

2016). SIS has also been proposed for the production of large and

small TEVGs (Zhao et al., 2020).

4.1.2 Human-derived decellularized vascular
matrix

The first human-derived vascular grafts used in vascular

transplantation were obtained from femoral veins from

cadavers. Decellularized vessels can also be obtained from

human-derived femoral arteries and iliac veins (Teebken et al.,

2009; Porzionato et al., 2018). In 2005, (Madden et al., 2005),

compared decellularized femoral veins from cadavers with

ePTFE in a large-scale clinical trial and observed that the time

required for aneurysm formation was five times longer in

homogeneous vascular grafts than when using ePTFE. This

demonstrated the ability of homogeneous decellularized

vessels, compared to ePTFE, to reduce the likelihood of

hemangioma. In 2012, (Olausson et al., 2012), decellularized

iliac veins and cultured the patient’s own endothelial and smooth

muscle cells, and then implanted them in patients with

extrahepatic venous obstruction. These grafts were originally

used as arteriovenous fistula (AVF) allografts (Wilshaw et al.,

2012). Now they have been commercialized and called

Synergraft® (CryoLife, Inc., Kennesaw, GA, United States).

From 1974, the human umbilical vein (hUV) is being used as

material for vascular bypass grafts and was subsequently

commercialized as Biograft® (Oblath et al., 1978; Andersen

et al., 1985). In 1994, (Jarrett and Mahood, 1994), performed

a large-scale clinical trial in which the human umbilical vein was

used for femoropopliteal artery bypass grafts in 171 patients. The

trial outcomes were a mortality rate of 6% in patients within 1-

year post-surgery and a patency rate of 50% within 5 years. The

results of these studies indicated that hUV may be used as a

source of SDVGs production. Although the results were

promising, due to major defects, hUV was stopped be applied

as a vascular graft (Aalders and van Vroonhoven, 1992). HUV is

technically more difficult to apply than the saphenous vein or

synthetic vascular graft. In addition, hUV may be lack of

elasticity and more fragile.

To attack these problems, later in 2008, (Kerdjoudj et al.,

2008), performed rabbit carotid artery grafting by de-

endothelializing human umbilical artery (hUA) with trypsin,

and the graft was patent for more than 12 weeks. Soon in

2009, (Gui et al., 2009), performed in vitro hUA

decellularization, leaving intact structures of the extracellular

matrix, followed by in vivo abdominal aortic grafting. Their

postoperative results suggested thrombosis of the vascular

graft, although there were no vessel ruptures. In 2020, (Mallis

et al., 2020b), performed similar in vivo and in vitro trials by

decellularizing hUA and performing common carotid artery

grafting after 30 days. These trials suggested that the vascular

grafts underwent remodeling despite thrombosis and sustained

the blood flow. Compared with hUV, hUAmay be a better source

of SDVGs. However, extended validation tests should be

conducted to better determine the stability and functionality

of these grafts.

FIGURE 3
Tissue-engineered vascular graft (TEVG) in the bioreactor. (A)
Dynamic culture of TEVG in the bioreactor (Kural et al., 2018). (B)
Macroscopic view of a mature TEVG (L’Heureux et al., 1998).
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4.2 Preparation of decellularized vascular
matrix by tissue engineering

Besides the decellularization of obtained vessels, a more

popular attempt is to prepare decellularized vascular matrix

by tissue engineering.

In the 1970s, Charles Sparks made one of the early attempts

to prepare decellularized vessels through tissue engineering to

obtain the “Sparks Mandril” structure of artificial blood vessels

(Sparks, 1969). The process involved subcutaneous implantation

of Mandril of 5.1 mm diameter in the legs of patients, followed by

covering with loosely woven synthetic polymer Dacron. A tube

composed of fibrous tissue was formed outside Mandril.

However, this method was abandoned because of the

formation of a thrombus or aneurysm post-implantation.

Weinberg and Bell published a report in 1986 announcing the

in vitro production of the first tissue-engineered vascular graft

(TEVG) (Weinberg and Bell, 1986). They cast collagen gel

around the mandril supported using a polyester mesh sleeve

and implanted fibroblasts into the outer layer. The tube wall was

filled with smooth muscle cells, and the inner wall comprised

endothelial cells. The artificial blood vessel could not be

successfully implanted in vivo because of the low rupture

strength and the inability to conduct in vivo tests without a

polyester stent; however, this approach represents important

conceptual progress. It encourages the co-culturing of other

cells and endothelial cells to prepare TEVGs further.

The first case of a completely biological TEVG was proposed

by L’Heureux et al. (1998). It comprised concentric layers of cell

sheets, which rolled to form a tubular structure and matured in

the bioreactor finally (Figure 3). First, fibroblasts and smooth

muscle cells were co-cultured into monolayer cells for 30 days.

The fused fibroblasts were separated from the matrix, rolled

around the Mandril to form tubular structures, and then

dehydrated as the intima of blood vessels. Multiple layers of

smooth muscle cells were wrapped on the intima as the media

layer, and the lumen was inserted into a silicone tube and placed

into a bioreactor for periodic expansion. To be exact, the

bioreactor was filled with culture medium and equipped with

a pulsatile pump instead of heart. Pulsatile radial stress was

applied to smooth muscle cells at certain beats per minute. These

conditions not only provided mechanical support, but also

mimicked the pulsation of blood in vessels. After maturing in

the bioreactor for a week, smooth muscle cells appeared as

elongated cells with circumferential or longitudinal

orientations. Finally, fibroblasts were wrapped around smooth

muscle cells to form an outer membrane, and endothelial cells

were planted on the lumen surface. The whole process took

nearly 3 months. Compared with the bursting pressure of the

saphenous vein, the bursting pressure of this vascular graft was

more than 2,500 mmHg, with better mechanical properties. The

vascular graft was implanted in 10 patients with end-stage renal

disease as a hemodialysis pathway. Three months post-

implantation, the patency rate was 60% (McAllister et al.,

2009; L’Heureux et al., 2007).

In 1999, (Niklason et al., 1999), were the first to describe the

latest preparation process of tissue-engineered arteries. PGA

scaffold, which degraded rapidly, was wrapped around the

silicone tube and placed in the bioreactor. In the bioreactor,

smooth muscle cells were planted on the PGA scaffold, and

mechanical stimulation of vascular pulsation and stretching was

simulated. After 8 weeks of culturing in the bioreactor, the matrix

secreted by smooth muscle cells was deposited on the scaffold,

and PGA was degraded. The generated tissues were

decellularized to generate decellularized vascular matrix. This

technology is used to produce human acellular vessels (HAVs)

(Figure 4). It is also being tested for hemodialysis access and

vascular reconstruction following trauma.

Bioreactors for the production of TEVGs can be designed for

different functions and types in accordance with research purposes

(Supplementary Figure S1). The main body of the bioreactor is a

glass reservoir fitted with a silicone stopper. The vessels are

cannulated with glass pipettes, secured with silk sutures, and

placed into the bioreactor. Silicone tubing is attached to the glass

pipettes, reservoir inlet, and outlet to complete the perfusion

loop. The flow rate, intramural pressure, and wall shear stress

can be tuned effectively by adjusting various conditions, for

instance, pump speed, tubing resistance, media viscosity, and so on.

Since these groundbreaking studies, significant

breakthroughs have been made in the research on vascular

grafts using tissue engineering techniques. Some of these have

shown promising results in animal models; nonetheless,

supporting clinical research data is still required.

5 Decellularization technologies in
decellularized vascular matrix

When donor cells enter the receptor who receives the

treatment of vascular grafts, they can induce inflammation

and immune-mediated rejection as foreign antigens.

Decellularization technology involves a variety of methods to

remove cells and nucleic acids, which usually cause immune

rejection, and retain the extracellular matrix. Extracellular matrix

obtained by decellularization techniques is used to construct

tissue engineering vascular scaffold. It can facilitate the

acceptance of the vascular graft by the host and avoid

rejection after implantation.

Ideally, after decellularization treatment, the cellular

components of the vessel should be completely removed, and

the extracellular matrix can be retained to the maximum extent.

The vessel should still have good mechanical properties after

decellularization. Moreover, since decellularization reagents

often contain toxic substances, residual toxic substances in the

protocol need to be removed post-decellularization to ensure the

biocompatibility of the vascular matrix.
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Currently, studies have reported the use of physical, chemical,

and biological methods, or their combination, all of which have

achieved more desirable decellularization results. Among these,

physical methods include freeze-thaw, high hydrostatic pressure,

and mechanical agitation; chemical methods include ionic, non-

ionic, and amphoteric detergents; and biological methods include

using trypsin to digest the cell structure (Gilbert et al., 2006; Crapo

et al., 2011; Gilpin and Yang, 2017). We describe here the evaluation

criteria for the effectiveness of the techniques for decellularization

and summarize the respective advantages and shortcomings of

different decellularization techniques.

5.1 Evaluation of the decellularization
effect

Different decellularization techniques often provide different

decellularization results. Post-decellularization, a small amount of

residual cellular structure remains, making it difficult to obtain

decellularized vessels comprising entirely of extracellular matrix.

Hence, a set of reasonable and sound evaluation criteria are needed

to judge the effectiveness of decellularization protocols. DNA

quantification and qualitative evaluation of cell removal are

common methods (Naso and Gandaglia, 2022). Particularly,

Gilbert et al. (2006), Crapo et al. (2011), and Keane and Badylak

(2014) have conducted numerous trials in different animals and

tissues and have proposed the following evaluation criteria for the

effectiveness of decellularization: <50 ng/double-stranded (ds)

DNA/mg extracellular matrix dry weight; <200 bp DNA

fragmented length; Lack of visible nuclear materials after staining

either with 40,6-diamidino-2-Phenylindole or hematoxylin and

eosin. However, the effect of cell residues on host response is not

only caused by DNA, but may be the result of the interaction of

multiple structures. Therefore, we summarize a set of common but

comprehensive evaluation criteria and test methods for the

decellularization effect (Table 2) (Naso and Gandaglia, 2022).

5.2 Physical decellularization techniques

The advantage of physical decellularization is the relative

simplicity of the procedure. Nevertheless, if the goal is to

minimize the destruction of the extracellular matrix, physical

decellularization cannot be used alone and needs to be used in

combination with other decellularization protocols to achieve

good results (Table 3).

FIGURE 4
Production of human acellular vessels (HAVs). HAVs are prepared in the bioreactor by seeding human donor vascular cells onto biocompatible
and biodegradable mesh scaffolds. In a few weeks, cells grow and produce new tissues, which form tubular vascular structures, while the mesh
scaffolds degrade. Then, the generated vessels are decellularized to remove the immunogenicity and components that may induce an immune
response. After decellularization, the extracellular matrix structure of HAVs is complete, and the biomechanical properties of blood vessels are
also retained. HAVs stored in the bioreactor can be easily transported and used immediately when needed.
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5.3 Chemical decellularization techniques

The chemical decellularization techniques include a variety of

reagents and is the main choice among current decellularization

approaches (Table 4). Nonetheless, different reagents bring about

different decellularization effects. For example, mild reagents are

less destructive to the extracellular matrix, while the effects of

powerful reagents are the opposite. Accordingly, the reagents

should be carefully chosen after combining the structure and

properties of the material to be decellularized.

TABLE 2 Common test methods for evaluation of the decellularization effect.

Evaluation index Characterization modes Test methods Details

DNA Quantitative Commercial Kit For DNA extraction and quantification

Nucleus Localization Immunofluorescence assessment and Histological
staining

4′,6-diamidino-2-phenylindole (DAPI),
Ematoxylin and Eosin

Collagen Qualitative Immunofluorescence assessment and Histological
staining

Picro Sirius Red, Masson, Mallory and Van Gieson
Trichromic staining and anti-collagen I, II, and III
antibodies

Quantitative Experiments Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS–PAGE), High-performance
liquid chromatography with fluorescence detection
(HPLC-FLD)

Elastin Qualitative Immunofluorescence assessment and Histological
staining

Verhoeff and anti-elastin antibodies

Quantitative Experiments NaOH extraction, Desmosine-base assay

Structural cell proteins Qualitative Immunofluorescence assessment α-Smooth Muscle Actin (αSMA), β-Actin,
Vimentin

Antigens Qualitative Immunohistochemistry assessment Anti-Neu5Gc, anti α-Gal, and anti-SDa antibodies
and Major Histocompatibility Complex (MHC)

Quantitative ELISA

TABLE 3 Physical treatments used for decellularization.

Category Definition Advantages Shortcomings References

Freeze-thaw An ice crystal structure is formed to
increase cytoplasm concentration and
cause cell dissolution

-Less effective on the
structural and mechanical
properties

-Still contains cell components Teo et al. (2011); Lu et al. (2012);
Burk et al. (2014); Cheng et al. (2019);
Fernandez-Perez and Ahearne (2019)

-Significant effect of
chemical methods after
freeze-thaw

-Requires further decellularization
by chemical methods or enzymes

High
hydrostatic
pressure

The cell membranes are damaged by
deformation under pressure higher than
600 MPa

-No chemical reagent added -Damages the collagen and elastin
to affect mechanical properties

Diehl et al. (2005); Morimoto et al.
(2015); Morimoto et al. (2017);
Kurokawa et al. (2021); Matsuura
et al. (2021)

-Avoids damage from the
toxic effects of solvents

Supercritical
fluids

Cell residues can be removed when
supercritical carbon dioxide passes
through tissues at a controlled rate
similar to critical point drying

-Less impact on the
mechanical properties

-Poor solubility for
macromolecules and polar
substances

Kim et al. (2013); Huang et al. (2021);
Kim et al. (2021); Reis et al. (2022)

-Much simpler procedure -Easily introduces new impurities
after adding entrainment agents to
improve solubility

Mechanical
Agitation

Uses a magnetic stirring tray or shaker
throughout the decellularization process

-Facilitates the full contact
and penetration of
chemicals into the tissue

-Poor effect when used singly Yang et al. (2010); Syedain et al.
(2011); Sarig et al. (2012); Boriani
et al. (2017); Duisit et al. (2018)

-Significantly improves the
efficiency
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5.4 Biological decellularization techniques

Biological decellularization techniques are currently less diverse

and seem to be less developed, and are less effective when used alone

(Table 5). Thus, decellularization through a biological approach is

usually performed in combination with chemical decellularization

reagents to achieve satisfactory results similar to those obtained by

physical decellularization techniques.

TABLE 4 List of chemical treatments used for decellularization.

Category Definition Advantages Shortcomings References

Hypotonic or
hypertonic
buffer

Changes cellular osmolarity -Hypotonic buffer can lead to cell
swelling and damage the minimal
structure

-Needs to be combined with other
chemical technologies in most cases

Wainwright et al. (2010); Yang
et al. (2010); Kim et al. (2016);
Vafaee et al. (2018)

-Hypertonic buffer can dissociate
DNA from proteins

Acid or base Application of acid or base to lyse
the cytoplasmic components

-Removes nucleic acid and other
substances

-Denatures proteins to affect their
structure and function

Wainwright et al. (2010); Syedain
et al. (2014); Mimler et al. (2019)

-NaOH can lead to fracture and
degradation of collagen fibers within
the vascular matrix

Non-ionic
detergent

A mild detergent that disrupts
interconnections between DNA,
proteins, and lipids, thereby
disrupting cell structure

-Maintains the ultrastructure -More toxic. For example, TritonX-
100 easily leads to cell death and
needs to be washed thoroughly after
decellularization

Wainwright et al. (2010); Yang
et al. (2010); Lu et al. (2012); Xu
et al. (2014); Baert et al. (2015);
Kim et al. (2016); Daugs et al.
(2017); Huh et al. (2018); Simsa
et al. (2018); Cheng et al. (2019);
Fernandez-Perez and Ahearne
(2019); Laker et al. (2020);
Marin-Tapia et al. (2021)

-Retains the biological activity
effectively

Ionic detergent A powerful detergent that
destroys cell membranes and
completely denatures proteins

-Effective in dissolving membranes,
lipids, and DNA.

-Causes disruption of collagen
integrity and loss of
glycosaminoglycans

Wainwright et al. (2010); Pan
et al. (2014); Xu et al. (2014);
Baert et al. (2015); Daugs et al.
(2017); Huh et al. (2018); Simsa
et al. (2018); Vafaee et al. (2018);
Cheng et al. (2019);
Fernandez-Perez and Ahearne
(2019); Laker et al. (2020);
Marin-Tapia et al. (2021)

Amphoteric
ionic detergent

A relatively mild
decellularization reagent and the
effect between non-ionic
detergent and ionic detergent

-SB-10 and SB-16 exhibit better
preservation of the extracellular
matrix and better cell removal
compared to non-ionic detergents

-Tends to cause the denaturation of
the protein structure

Kim et al. (2016); Daugs et al.
(2017); Simsa et al. (2018); Bae
et al. (2021); Marin-Tapia et al.
(2021)

-CHAPS retains more collagen,
glycosaminoglycans, and elastin
compared to ionic detergents

TABLE 5 List of enzymes used for decellularization.

Category Definition Advantages Shortcomings References

Trypsin Selectively cleaves the cell adhesion protein on
the carboxyl side of arginine or lysine to detach
cells from the tissue surface and destroys the
extracellular matrix around the collagen fiber
to generate small channels and promote
penetration

-Too strong decellularization
effect and is required in low
concentrations

-Easier to destroy the
structure in large quantities

Xu et al. (2014); Giraldo-Gomez et al.
(2016); Huh et al. (2018); Lin et al.
(2018); Rahman et al. (2018)

Nuclease Endonucleases, including deoxyribonuclease
and ribonuclease, hydrolyze the
deoxyribonucleic acid chain and ribonucleic
acid chain, respectively

-Helps remove residual nucleic
acid added to the detergent

-May destroy the
mechanical stability

Mancuso et al. (2014); Mangold et al.
(2015); Simsa et al. (2018); Vafaee
et al. (2018); Bae et al. (2021)

-Reduces the
glycosaminoglycans
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6 Modification methods of
decellularized vascular matrix

Despite the above-mentioned advantages of the decellularized

vascular matrix, such as superior cytocompatibility and non-

immunogenicity, it still suffers from post-transplant vascular

lumen thrombosis, neoplastic endothelial proliferation, and weak

physical and mechanical properties. As a consequence, researchers

worldwide have tried various modification methods to improve the

decellularized vascular matrix.

There are various modification methods for decellularized

vascular matrix, which can be broadly classified into physical,

chemical, and biological methods of modification. Among them,

biological modification methods for the construction of artificial

blood vessels are currently receiving increasing attention owing

to their excellent biocompatibility.

6.1 Physical modification methods

Liu and Zhang (2016) observed that the polyelectrolyte

multilayers constructed with heparin and SDF-1α bind firmly to the

surface of decellularized blood vessels in rats. Besides good

hemocompatibility and anticoagulation, these polyelectrolyte

multilayers could significantly enhance the migration ability of rat

bonemarrowMSCs andpromote the recellularizationof vascular grafts.

Huang et al. (2008) subjected decellularized vascular matrix

to vacuum thermal cross-linking treatment; the process

improved the mechanical strength and biological stability of

the decellularized vascular matrix attributed to inter- and

intramolecular dehydration of collagen and the formation of

urethane bonds, concurrently maintaining a certain degree of

hydrophilicity and porosity.

Xia et al. (2009) treated decellularized rabbit abdominal aorta

with plasma and observed a significant reduction in contact

angle, inhibition of platelet adhesion, and increased

hydrophilicity of the decellularized vascular matrix.

6.2 Chemical modification methods

The most commonly used chemical cross-linking agents are

glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide hydrochloride (EDC)/n-hydroxysuccinimide (NHS).

GA is the most commonly used cross-linking modification

reagent in collagen-based tissue engineering materials due to its

low cost and high efficiency. Compared to uncross-linking

decellularized vascular matrices, vascular grafts with GA

cross-linking show greater improvements in mechanical

properties and immunogenicity. However, with the increase in

the cross-linking time, the cytotoxic effects of chemical cross-

linking agents become apparent and are more likely to cause

tissue calcification (Braile et al., 2011; Sinha et al., 2012).

EDC cross-linking decellularized vascular matrices have

better biocompatibility and higher cell differentiation potential

compared to those obtained by GA treatment. These vascular

matrices obtained after EDC treatment are catalytic; thus, EDC/

NHS is also gradually and widely used for the chemical cross-linking

of collagen biomaterials. Among them, NHS is used to stabilize the

crosslinking effect of carbodiimide (Olde Damink et al., 1996).

6.3 Bio-modification methods

Heparin is used to prevent thrombosis because it inhibits the

thrombin coagulation cascade reaction. (Conklin et al., 2002)

could inhibit thrombus formation by bridging heparin on

decellularized treated porcine carotid arteries.

Zhang et al. (2010) used the sheep forelimb artery for

acellular treatment, applied the light crosslinking method to fix

the CD34 antibody on the inner surface of the acellular vessel, and

then implanted it into the rabbit femoral artery. This experiment

showed that the CD34 antibody-modified decellularized vascular

scaffold was superior to the unmodified decellularized vascular

scaffold in terms of early anticoagulation and patency rate.

Fu et al. (2021) introduced Silk Fibroin into decellularized

vascular scaffolds to improve the physical properties of the scaffolds

and also assessed the performance of the scaffolds. They found that

Silk Fibroin effectively improved the overall mechanical properties

of the stent and reduced the stent degradation rate.

With advances in biology, chemistry, and materials sciences,

the improvement in performance and long-term patency by

applying various modifications in the decellularized vascular

matrix has positive implications, while the effects have yet to

be validated in clinical trials.

7 Commercialization process of
decellularized vascular matrix

The twomost common artificial vascular grafts commercially

available today are prepared from common plastics, namely

ePTFE (called Gore-Tex) and polyethylene terephthalate (PET;

called polyester). Both vascular grafts are robust and can be easily

stored for ready access. Furthermore, they can be mass-produced

to the desired diameter and length specifications.

Nonetheless, these synthetic materials are more rigid than

natural blood vessels. Except for rough material surfaces, they are

highly hydrophobic and not able to replicate the key structures and

components of natural vessel walls. These characteristics result in

poor interaction with various cells in the blood and predispose them

to activate the blood coagulation cascade (Dekker et al., 1991; Filipe

et al., 2018; Bao et al., 2020). Compared to synthetic materials,

decellularized vascularmatrices have a broader commercial prospect

as vascular grafts, being highly cytocompatible and non-

immunogenic. Therefore, many companies around the world are
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already trying to prepare decellularized vascular matrices as vascular

grafts and are working to advance their commercialization. Four

well-known corporations and their representative productions are

briefly introduced here (Figure 5; Table 6).

7.1 Cytograft tissue engineering Inc

Cytograft Tissue Engineering Inc., was one of the early

companies to develop artificial vessels and The Lifeline™ graft

as a typical product. Early research into the use of cell sheet

engineering to reconstruct artificial vessels gave rise to the idea of

developing “human textiles” (L’Heureux et al., 2006). Small

biopsy skin samples of skin and superficial veins were

obtained, and endothelial cells and fibroblasts were extracted.

Fibroblast sheets were produced in as little as 6 weeks. The

obtained TEVGs consisted of three components: a living

adventitia, a decellularized internal membrane and an

endothelium. This procedure cost upwards of $15,000 and

required 6–9 months to produce patient-specific vascular

grafts. However, it is unlikely that this vascular graft can be

applied clinically owing to high production costs and long

waiting times. Despite all this, its method of preparation

provided a new idea for research on artificial vascular grafts.

7.2 Humacyte, Inc

Humacyte, Inc., was founded in 2004 by Laura E.

Niklason of Yale University. The firm aims to develop

FIGURE 5
Representative products of four companies. (A) Cytograft Tissue Engineering Inc.—The Lifeline™ graft: a completely biological, living, and
autologous human blood vessel. The Lifeline™ graft displays remarkably high burst pressure, even though it contains no scaffolding materials, and
also shows good suture retention abilities as well as remarkable flexibility (L’Heureux and McAllister, 2008). (B) Humacyte, Inc., —Human acellular
vessels (HAVs): gross photos of engineered human acellular vessels, 6 mm in diameter (Niklason and Lawson, 2020). (C) Vascudyne, Inc.
—Arteriovenous graft (AVG): side view and end-on view image of a 6-mm-diameter decellularized tissue-engineered vascular graft (Syedain et al.,
2017). (D) LeMaitre Vascular, Inc., —Artegraft

®
: a bovine carotid artery (BCA) graft before tunneling (Pineda et al., 2017).
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innovative technologies for regenerative vessels and focuses

on a new type of vascular graft known as HAVs (Dahl et al.,

2011). HAVs are completely decellularized and mechanically

robust with circumferentially aligned extracellular matrix

without any chemical cross-linking or synthetic components

(Niklason and Lawson, 2020). They have been favorably

repopulated by host cells in multiple advanced-stage

clinical trials in vascular trauma repair, arteriovenous

access for hemodialysis, and peripheral arterial disease. In

eight clinical trials to date, HAVs have been implanted in

more than 500 patients. The firm is currently conducting

three Phase Ⅲ clinical trials, one Phase Ⅱ clinical trial, and

three Phase Ⅰ clinical trials worldwide (Kirkton et al., 2019;

Lauria et al., 2022) (Figure 6).

7.3 Vascudyne, Inc

Vascudyne, Inc., was founded by Jeff Franco and Kem

Schankereli. It licensed its proprietary TRUE™ Tissue technology,

developed in 2017 by Professor Robert Tranquillo and his colleagues

from the University of Minnesota (Supplementary Figure S2). The

current products are TRUE™ Tissue, including TRUE™ Graft,

TRUE™ Valve, and TRUE™ Patch (Syedain et al., 2021). The

biological and mechanical properties of TRUE™ Graft are very

similar to those of native tissue; preclinical studies have shown

that TRUE™ Graft regenerate and grow with the patient. In July

202, Vascudyne, Inc., announced the first successful in-human use of

its TRUE™ Vascular Graft in patients with the end-stage renal

disease requiring hemodialysis access.

TABLE 6 Properties comparison of the representative products of four companies.

Company Graft Burst pressure
(mmHg)

Suture retention
strength (gf)

Ultimate tensile
strength (MPa)

Compliance
(%)

Primary
patency

Cytograft Tissue
Engineering Inc.

Lifeline™ 3,486 ± 500 162 ± 15 Not mentioned 1.5 ± 0.3 66.7% for
13 months

Humacyte, Inc. Human acellular
vessels (HAVs)

2,914 ± 928 440 ± 85 Not mentioned Not mentioned 89% for 1 year

Vascudyne, Inc. Arteriovenous
graft (AVG)

3,164 ± 342 199 ± 56 3.8 ± 0.7 Not mentioned 60% for
6 months

LeMaitre
Vascular, Inc.

Artegraft® 2,422 ± 354 Not mentioned Not mentioned 3.3 ± 0.9 73.3% for
1 year

FIGURE 6
Clinical trials of Humacyte, Inc. The clinical trials conducted by the company for the treatment of trauma and arteriovenous access are in Phase
Ⅲ. Peripheral vascular bypass grafting has completed Phase Ⅱ. Pediatric heart surgery and coronary artery bypass grafting (CABG) are in the preclinical
trials.
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7.4 LeMaitre vascular, Inc

Artegraft® approved by FDA in 1970, is a bovine carotid

vascular graft. Its decellularized matrix is treated for use as

hemodialysis access and lower extremity bypass. The

biological fibrous matrix of this graft has been processed to

enhance long-term patency and provides a tightly woven,

cross-linking conduit that is flexible and compliant. During

the past 50 years, Artegraft® has been implanted in more than

5,00,000 patients.

In October 2020, Hancock Jaffe Laboratories, Inc., (HJLI)

announced the first use of grafts in CABG. The first-in-human

CoreoGraft study of HJLI was completed, and the patient was

discharged from the hospital. In May 2022, Medical 21, Inc.,

announced that they have been developing an artificial graft

called MAVERICS, a small-diameter flexible tube encased in a

nickel-titanium alloy stent that eliminates the need to harvest

blood vessels from the patient’s legs, arms, and chest. The goal is

to improve the quality of life of patients by reducing pain,

shortening surgery and recovery time, and reducing the risk

of infection and complications.

As already stated, these four representative corporations

have been working towards the commercialization process of

the decellularized vascular matrix as vascular grafts. Vascular

grafts are class III implantable biological medical devices in

the International Organization for Standardization (ISO), the

US Food and Drug Administration (FDA) and EU

classification standards. ISO is an independent non-

governmental organization that has created thousands of

international standards for many industries, including

medical equipment. ISO standards are voluntary,

consensus-based documents that provide guidance on

specific aspects of technology and manufacturing. For

medical device manufacturers, ISO standards are not only

FIGURE 7
The prospects of the use of the decellularized vascular matrix in small-diameter vascular grafts.
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important for building high-quality medical devices, but also

for maintaining compliance with regulatory requirements.

Most of the ISO standards have been recognized by regulatory

agencies such as FDA, or have been harmonized with

regulations in other regions of the world (such as the EU).

Even if ISO standards do not have legal force, they are also

basic guidelines for medical devices and in vitro diagnostic

equipment companies. We list the ISO Standard aspect to

which commercial vascular grafts are subject before they can

be put on the market (Supplementary Table S1). In addition,

commercial decellularized vascular grafts need to be accord

with an international standard publishes in 2021 (ASTM

International, 2021). The commercialization process of

vascular grafts is tortuous and arduous; in terms of clinical

application, it still has a long way to go. For example,

the research on product development is not mature

enough, and the clinical trials have not been completed

yet. On the whole, the commercialization process of

vascular grafts is still improving and advancing. Through

the active efforts of researchers across the world, the clinical

needs of vascular grafts are expected to be met in the near

future.

8 Conclusions and prospects

Although the research on the decellularized vascular

matrix in tissue engineering has progressed significantly,

small-diameter vascular graft still faces the risks of

infection, restenosis, and thrombosis after implantation for

some time to come. Among them, post-implantation

restenosis due to insufficient endothelialization is the main

reason why small-diameter vascular graft such as

decellularized vascular matrix is difficult to use clinically.

Despite these drawbacks, the decellularized vascular matrix

is still considered an ideal choice for vascular grafts and has

promising application prospects. For example, in CABG

surgery, decellularized vascular grafts benefit a vast number

of cardiovascular patients. Besides its application in CVD, the

decellularized vascular matrix is also widely used to treat other

diseases, for example, arteriovenous bypass grafting in

patients with the end-stage renal failure before

hemodialysis and peripheral vascular bypass grafting with

peripheral vascular damage due to trauma (Figure 7).

Promoting rapid endothelialization of the lumen of

vascular grafts is the key to improving the patency rate.

The ultimate goal of promoting endothelialization is to

inhibit the formation of thrombus and the proliferation of

neointima. By using various technologies, such as surface

modification and cross-linking treatment, or multiple

materials to optimize the material ratio, vascular grafts are

endowed with better mechanical, biological and

immunological properties.

However, the relevant technologies across the globe are not

mature enough. For example, in addition to the exact effect of the

current decellularization technologies, the long-term efficacy and

safety of foreign substances, such as modified materials, in the

human body have not been widely confirmed. This requires

clinical trials and follow-ups for a long time as an effective and

reliable basis for judgment. Consequently, the application of

decellularized vascular matrix in small-diameter vascular

grafts has a long way to go before it can be realized. To solve

this series of problems, there is a need for cooperation between

materials science, tissue engineering, biology, and other

disciplines to jointly promote the development of tissue

engineering. In this way, small-diameter artificial blood vessels

such as decellularized vascular matrix can be used better in

vascular transplantation.
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