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Cardiac tissue engineering requires materials that can faithfully recapitulate and support
the native in vivo microenvironment while providing a seamless bioelectronic interface.
Current limitations of cell scaffolds include the lack of electrical conductivity and suboptimal
mechanical properties. Here we discuss how the incorporation of graphene into cellular
scaffolds, either alone or in combination with other materials, can affect morphology,
function, andmaturation of cardiac cells. We conclude that graphene-based scaffolds hold
great promise for cardiac tissue engineering.
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INTRODUCTION

Cardiomyocytes are electrically and mechanically active cells. Therefore, to efficiently support their
activities, the cardiac substrates/scaffolds must have matching properties in order to faithfully
recapitulate the functional behavior of the myocardium. Despite technological advances, this task
remains very challenging, and new materials that can address these problems are in high demand.

Graphene, the newest member of the carbon allotrope family, is an exceptional candidate for this
role. Although other members of this family are already famous [e.g., diamonds (discovered in the
4th century BC in India), graphite (discovered in the 16th century in England), and fullerenes
(synthesized in 1985)], graphene could outshine them all. Graphene, a two-dimensional (2D) carbon
crystal, is often described using superlatives: graphene is the thinnest (0.335 nm), the lightest (0.77
mg/m2), and the strongest (42 N/m) material (Novoselov et al., 2004; Lee et al., 2008; Geim, 2009;
Geim and Novoselov, 2007; Novoselov et al., 2012). Electrical, mechanical, magnetic, optical, and
thermal properties of graphene are as just as exceptional, which makes graphene a material
unsurpassed in its potential for bioelectronic interfaces and cellular scaffolds. As discussed in
this mini-review, the integration of graphene into 2D cell substrates and threedimensional (3D)
scaffolds (Figure 1) produces more physiological microenvironment with such features as electrical
conductivity, nano-scale topography, stretchability, and flexibility.

GRAPHENE AND ITS FUNDAMENTALS

Graphene came into the spotlight in 2010 with the Nobel Prize in Physics awarded “for
groundbreaking experiments regarding the two-dimensional material graphene” (Geim, 2009;
Novoselov et al., 2012). It became clear that exceptional physicochemical properties of graphene
materials create exciting opportunities for development of novel and efficient graphene-based
bioengineering systems.

Edited by:
Leslie Yeo,

RMIT University, Australia

Reviewed by:
Miriam Mba,

University of Padua, Italy
Omid Akhavan,

Sharif University of Technology, Iran

*Correspondence:
Alex Savchenko

asavtchenko@nanotoolsbio.com
Elena Molokanova

emolokanova@nanotoolsbio.com

Specialty section:
This article was submitted to

Nanobiotechnology,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 18 October 2021
Accepted: 10 November 2021
Published: 07 December 2021

Citation:
Savchenko A, Yin RT, Kireev D,

Efimov IR and Molokanova E (2021)
Graphene-Based Scaffolds:

Fundamentals and Applications for
Cardiovascular Tissue Engineering.

Front. Bioeng. Biotechnol. 9:797340.
doi: 10.3389/fbioe.2021.797340

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org December 2021 | Volume 9 | Article 7973401

MINI REVIEW
published: 07 December 2021

doi: 10.3389/fbioe.2021.797340

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2021.797340&domain=pdf&date_stamp=2021-12-07
https://www.frontiersin.org/articles/10.3389/fbioe.2021.797340/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.797340/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.797340/full
http://creativecommons.org/licenses/by/4.0/
mailto:asavtchenko@nanotoolsbio.com
mailto:emolokanova@nanotoolsbio.com
https://doi.org/10.3389/fbioe.2021.797340
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2021.797340


In graphene, carbon atoms are positioned 0.142 nm apart in a
hexagonal lattice. All atoms are sp2-hybridized, and each atom
allocates 3 electrons from its 4 outer shell electrons to form
equivalent covalent σ-bonds with its three neighboring atoms.
The 4th electron which occupies a pz orbital is forming a π bond.
Unlike the sp2 orbitals, the pz orbitals do not directly overlap, and
these 4th electrons (π electrons) operate in the 3rd dimension
(above and below a 2D graphene sheet), allowing them to be
highly mobile, behave as massless particles, and experience
ballistic transport without scattering (Novoselov et al., 2005;
Zhang et al., 2005; Geim and Novoselov, 2007; Castro Neto
et al., 2009; Tielrooij et al., 2013).

The band structure of pristine graphene consists of a filled
valence band and an empty conduction band that cross at the
Dirac points. Undoped graphene does not have a band gap and,
therefore, is considered a zero-gap semiconductor, or semimetal

(Novoselov et al., 2005; Meric et al., 2008). Graphene has very low
electrical resistivity, the intrinsic mobility of its electrons is very
high (Bolotin et al., 2008) (∼ 200,000 cm2/Vs vs. ∼ 1,400 cm2/Vs
in silicon), and the graphene’s current density is ∼ 1,000,000 times
greater than in copper (Chen et al., 2008).

Strong carbon-carbon in-plane σ-bonds (the bonding energy
of 4.93 eV) (Brenner and Harrison, 2002) make graphene the
strongest material in nature: e.g., the tensile strength of
graphene is 130 GPa compared to 0.4 GPa for structural steel
or 70 GPa for Kevlar. Composite materials with graphene
greatly benefited from its low density (∼2300 kg/m3) and
large Youngs modulus (∼1 TPa) (Lee et al., 2008). Defect-free
graphene sheets exhibit impressive elastic properties and can
restore its initial size after strain. Being pliable, graphene can
take any form desired. Graphene is also stretchable up to 20% of
its initial length.

FIGURE 1 | Overview of graphene materials (inner circle) used in 2D and 3D scaffolds (outer circle) for cardiac tissue engineering.
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Graphene oxide (GO) is an oxidized form of graphene
containing oxygen functional groups, the presence of which,
among other consequences, leads to the disruption of the sp2
structure, increased interlayer spacing, and low electrical
conductivity. Reduced graphene oxide (rGO) is a deoxygenized
form of GO. Although the graphene structure in rGO is not
completely restored by the reduction processes due to some
remaining oxygen groups and surface defects, removal of
oxygen groups and the increased C/O ratio leads to
restoration of the sp2 structure, increased mechanical strength,
surface area and stability, hydrophobic properties, and the
increase of electric conductivity up to 6300 S cm−1 and high
mobility of 320 cm2 V−1 s−1 (Smith et al., 2019; Lesiak et al., 2021).

BIOCOMPATIBILITY

The utmost requirement for any biomedical material is
biocompatibility. The very first biological studies of graphene
sometimes produced contradictory and/or inconclusive results
(Pinto et al., 2013) due to the novelty of graphene materials, the
lack of the systematic classification (Wick et al., 2014; Park et al.,
2017), and challenges associated with the interdisciplinary nature
of nanobiotechnology (Reina et al., 2017). One of the striking
examples of biocompatibility controversy surrounding graphene
materials is their purported antibacterial properties. Initially,
several studies claimed that all graphene materials exhibit
antibacterial properties (Akhavan and Ghaderi, 2010; Hu
et al., 2010). However, a comprehensive evaluation of
graphene samples from different commercial and academic
sources by a group from the University of Manchester that
included Prof. Novoselov, the Nobel Prize laureate for
graphene research, discovered that, in fact, the presence of
such cytotoxic impurities as sulfur, boron, and sodium nitrate
in graphene samples was the determinant factor for their ability to
kill E. Coli (Barbolina et al., 2016).

Over subsequent years, it was established that a chemical
synthesis route, purity, the number of layers, lateral
dimensions, edge effects, defects, doping (intended and
unintended), surface functionalization (intended and
unintended), and dosage are the factors affecting how
graphene may interact with cells (Pang et al., 2017; Seifi and
Kamali, 2021). After becoming aware of the criticality of these
parameters, scientists can now devise rational bioengineering
approaches to synthesize cell-friendly graphene materials and
to fabricate biocompatible graphene-based biointerfaces. For
example, green-chemistry synthesis methods are highly
advisable (Fernández-Merino et al., 2010; Khosroshahi et al.,
2018; Regis et al., 2021), and graphene materials should be
processed to eliminate various contaminants that might be
cytotoxic on their own. Using large-surface graphene-
integrated substrates could eliminate such problems as
potential physical damage from sharp edges of graphene
sheets. Using large (> few microns) graphene flakes or
combining of graphene with other materials (e.g., polymers,
polysaccharides, hydrogels) can help to avoid endocytosis and
potential generation of redox species occurring at the nanoscale.

Currently, the scientific community appears to be in
agreement that properly engineered graphene materials are not
only biocompatible but often superior in providing a
microenvironment necessary for cell growth, differentiation,
and development (Kim et al., 2013; Lee et al., 2014; Wang
et al., 2017; Kenry et al., 2018).

To evaluate the graphene effects on cell stress, several studies
monitored such highly sensitive cell viability indicators as
autophagy levels and mitochondrial morphology and
membrane potential (Rastogi et al., 2017; Rastogi et al., 2020;
Lasocka et al., 2021). These studies determined that graphene has
no detectable adverse effect on cell stress and suggested that
graphene affects the cell-substrate interactions and promotes cell
adhesion and cell proliferation through unique surface
topography and adaptable surface chemistry.

Excellent biocompatibility of graphene was also demonstrated
in several in vitro models of cardiac syncytium (e.g., neonatal rat
ventricular cardiomyocytes, mouse embryonic stem cell (ESC)-
derived cardiomyocytes, and human induced pluripotent stem
cell (hiPSC)-derived cardiomyocytes) cultured on graphene-
based planar substrates fabricated from rGO or chemical-
vapor-deposition (CVD) graphene. Further, zebrafish embryos
injected with graphene flakes (5–20 μm in diameter) were
exhibiting the basal heart rates similar to control embryos, and
all but one zebrafish retained full viability 3 days later, which
confirms biocompatibility of graphene in vivo (Savchenko et al.,
2018).

2D SCAFFOLDS

Graphene substrates are highly biocompatible with monolayer
cardiomyocyte cultures (Kim et al., 2013) and appear to be a
superior alternative to Matrigel, a substrate commonly used
during cardiomyocyte differentiation from stem cells
(Hitscherich et al., 2018). Incorporation of graphene into cell
substrates was shown to markedly enhance the maturity and
electrophysiological properties of hiPSC-cardiomyocytes that
otherwise exhibit embryonic rather than adult-like phenotypes.
Recent studies evaluating hiPSC-cardiomyocytes cultured on a
single graphene layer demonstrated that these cells exhibit a more
mature phenotype with improved myofibril alignment and
density, increased Cx43 expression, and faster conduction
velocity (from 2.2 to 5.3 cm/s). Calcium handling of hiPSC-
cardiomyocytes on graphene also became more mature: the
expression levels of ryanodine receptors and sarcoendoplasmic
reticulum Ca2+-ATPase were increased, and calcium transients
exhibited a greater amplitude (Wang et al., 2017). This study
suggested that a conductive surface of graphene mimicked the
heart’s microenvironment and facilitated its intrinsic electrical
propagation properties to promote maturation of hiPSC-
cardiomyocytes.

Graphene can be combined with other materials to provide
multifaceted advantages for hiPSC-cardiomyocytes. One such
example is a hybrid collagen/graphene substrate, where
collagen provides the biological support while graphene
modulates the substrate stiffness and provides the electrical
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conductivity similar to conductivity of human cardiac tissues.
When murine ESC-derived cardiomyocytes were cultured on
such substrates (Ryan et al., 2018), they became more aligned
and elongated with improved cross-striated sarcomeric
structures, suggesting improved maturity.

Hybrid rGO-collagen substrates also produced significant
improvements in mechanical and electrical properties of
cardiomyocytes in 7 days and led to upregulation of cardiac
gene expression involved in electrical coupling (Cx43), muscle
contraction and relaxation (troponin-T), and cytoskeleton
alignment (actinin-4) even without electrical stimulation
(Norahan et al., 2019).

Cardiomyocytes on a vitronectin-coated graphene substrate
exhibited enhanced expression of cardiomyogenic markers and
cardiac-specific extracellular matrix genes even without addition
of cardiomyogenic factors. These results suggest that, by
promoting the absorption and correct presentation of
vitronectin, graphene induces mesodermal and endodermal
lineage signaling which supports the cardiac development (Lee
et al., 2014).

Another study transferred graphene films onto polymeric
topographic substrates to create a conductive nanopatterned
anisotropic scaffold. Cardiomyocytes on this scaffold
demonstrated more mature structural and functional
properties. These cardiomyocytes exhibited significantly
increased z-band widths, greater sarcomere lengths, and
increased expression of Cx43. Additionally, the amplitude of
calcium transients and the action potential duration were
significantly greater, suggesting enhanced maturation of
cardiomyocytes (Smith et al., 2017).

3D SCAFFOLDS

Since cardiac tissues in vivo are inherently 3D, a similar geometric
arrangement of engineered heart tissues (EHTs) would be more
desirable to ensure faithful recapitulation of cell-to-cell coupling,
and complex organization and function. Incorporation of
graphene into cardiac 3D scaffolds can lead to anisotropic
nanotopology, greatly enhanced electroconductive properties,
and provide the ability to perform cell stimulation and
monitoring via cell scaffolds.

A graphene foam (Hu et al., 2016; Krueger et al., 2016) itself
can serve as a 3D sponge-like scaffold with interconnected pore
structure, extended surface area, and nano-micro-scale
topographical surface. This scaffold allows for more efficient
cell-cell communication and transport of oxygen and nutrients
than 2D substrates. Rat neonatal cardiomyocytes on a graphene-
enhanced nickel foam were efficiently integrated into the scaffold
with adequate biocompatibility and exhibited increased Cx43
gene expression even without direct electrical stimulation
(Bahrami et al., 2019). An electrically active graphene foam
was also developed to culture cardiomyocytes and directly
monitor their extracellular action potentials at the same time
(Ameri et al., 2016).

Another option is to directly embed graphene materials into
3D preparations. This approach was shown to increase the

number of successfully differentiated 3D embryoid bodies and
improve the mechanical and electrical properties of differentiated
cardiomyocytes (Ahadian et al., 2016). Furthermore, when
electrical stimulation was applied to these graphene-enhanced
embryoid bodies, they exhibited more mature sarcomeric
structures and became more physiologically active.

Park et al. combined GO flakes (1–6 μm in diameter) with
MSCs and discovered that it led to more efficient engrafting of
cells at the ischemic lesion site (Park et al., 2015). It appears that
the addition of GO may combat the reactive oxygen species
abundant in ischemia, prevent anoikis, and improve the
therapeutic efficacy of MSCs implantation. This study also
determined that paracrine secretion by engrafted cells
successfully promoted angiogenesis, alleviated apoptosis in the
infarcted region, and decreased infarction size.

Alternatively, cardiomyocytes and graphene materials can be
combined to fabricate a complex multilayer cell construct. Shin
et al. deposited a poly-L-lysine-GO nanofilm layer onto a
homogenous layer of cardiomyocytes, seeded another layer of
cells on top of the graphene-enhanced nanofilms, and then
repeated these steps until the constructs comprised of 3 or
more cell layers (Shin et al., 2014). This scaffold exhibited the
elastic modulus of ∼ 10 kPa, resulted in increased expression of
α-actinin, and supported strong spontaneous synchronous
contraction (20–30 BPM).

ELECTROSPUN 3D SCAFFOLDS

Graphene-containing 3D scaffolds can also be fabricated by
electrospinning to develop the scaffolds with enhanced
mechanical and electrical properties (Zhao et al., 2018; Chen
et al., 2019; Ghasemi et al., 2019).

(Hitscherich et al., 2018) employed electrospinning to create a
3D nanofibrous graphene and poly (caprolactone) scaffold where
graphene, distributed throughout the scaffold, enabled electrical
stimulation of cells. This scaffold enhanced cell-cell coupling and
improved the calcium handling in mouse ESC-derived
cardiomyocytes as evidenced by increased Cx43 expression,
improved cardiomyocyte organization and sarcomere
alignment, and significantly increased calcium transient
amplitudes and fractional release of calcium ions per beat.

Nazari et al. incorporated rGO-silver nanocomposites into
polyurethane nanofibers using used electrospinning and
demonstrated that human cardiac progenitor cells cultured on
these scaffolds displayed great biocompatibility and cell attachment,
and exhibited the upregulation of several cardiac-specific genes (e.g.,
GATA-4, Tbx18, troponin T, and α-MHC) (Nazari et al., 2019).

In another development, poly (caprolactone) (PCL)/poly (glycerol
sebacate) (PGS) nanofibers were fabricated via electrospinning, and
graphene (0.25, 0.75, or 1% wt) was added to PCL/PGS nanofibers.
Addition of graphene to PCL/PGS nanofibrous scaffolds led to
improved electrical conductivity, balanced hydrophilicity, and
increased surface roughness. Adhesion, growth, migration,
proliferation, and viability of cultured human cardiomyocytes were
increased with the increase of the ratio of graphene in PCL/PGS
scaffolds (Fakhrali et al., 2021).
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Talebi et al. used electrospinning technique to fabricate highly
hydrophilic fibrous scaffolds composed of polycaprolactone/
chitosan/polypyrrole (PCP) and graphene (Talebi et al., 2020).
PCP-graphene scaffolds were able to more closely mimic the
elasticity and electrical conductivity of the native myocardial
tissue, and to support biological and functional performance
of murine ESC-derived cardiomyocytes.

To improve nanotopology and electrical conductivity of silk
fibroin (SF) scaffolds, rGO nanosheets were incorporated into SF
nanofibers via electrospinning. When used for cardiac
differentiation of human iPSCs transfected with TBX18 gene,
rGO-SF scaffolds exhibited improved mechanical and electrical
properties, acceptable biocompatibility, considerable cell
attachment, enhanced maturity and upregulation of cardiac
genes (e.g., GATA-4, c-TnT, and α-MHC) (Nazari et al.,
2020). Alternatively, a layer of rGO can be deposited on the
surface of electrospun SF substrates, also resulting in enhanced
electrical conductivity of scaffolds and improved maturity of
neonatal rat cardiomyocytes (Zhao et al., 2018).

HYBRID HYDROGELS

The incorporation of graphene materials into hydrogels results in
hybrid electroactive scaffolds with improved cell adhesion,
desirable mechanical properties, and low immunogenicity.

In Vitro Applications
Zhang et al. used a microcontact printing to create patterned
genipin-cross-linked gelatin hydrogels containing GO. When
cultured on this substrate, neonatal rat ventricular
cardiomyocytes were aligned along the micropatterned
scaffolds and demonstrated significant improvements in their
structural and functional maturity: 1) more cardiomyocytes were
binucleated and had longer sarcomere lengths much sooner; 2)
the cardiac gene expression (e.g., Actn and cTnT) improved; 3)
cardiomyocytes reached synchronized contractions within 48 h,
contracted in a more uniaxial manner and with increased
amplitude, and continued contracting for up to 3 months
(Zhang et al., 2019).

rGO can be incorporated into a gelatin methacryloyl (GelMA)
hydrogel, which leads to significant enhancement of electrical and
mechanical properties of the hybrid material (Shin et al., 2016).
Neonatal rat cardiomyocytes on hybrid rGO-GelMA scaffolds
exhibited uniformly distributed cell-cell junctions between
neighboring cells, better defined and partially uniaxially
aligned sarcomeric structures, improved cell viability,
proliferation, maturation, stronger contractility, and faster
spontaneous contraction rate compared cardiomyocytes to
pristine GelMA hydrogels.

Another study utilized GelMA hydrogels with incorporated
carbon nanotubes, GO, or rGO to compare the effects of these
materials on the structural organization and functionality of
hiPSC-cardiomyocytes (Lee et al., 2019). It was determined that
electrically conductive rGO-GelMA scaffolds were more
efficient in promoting mature morphology of cardiomyocytes,
supporting their viability, and increasing the expression of

functional cardiac markers than relatively non-conductive
GO-GelMA scaffolds. Cardiomyocytes on rGO-GelMA
scaffolds exhibited more mature rod-like morphology and
higher expression levels of functional cardiac markers (e.g.,
Cx43 and troponin I), indicative of improved metabolic
coupling and more mature excitation-contraction apparatus.
Expression of mechanosensors (e.g., integrin, vinculin, and
alpha-actinin) was also increased, leading to more robust
contractions. Interestingly, cardiomyocytes on GO-GelMA
scaffolds exhibited an atrial-like electrophysiological
phenotype, while cardiomyocytes on rGO-GelMA scaffolds
presented a mixed atrial/ventricular phenotype (Lee et al.,
2019).

To engineer advanced EHTs, Tsui et al. used a decellularized
extracellular matrix harvested from the left ventricular
myocardium of porcine hearts to create a hydrogel composite
scaffold with a preserved tissue-specific protein profile and a
tunable stiffness enhanced by rGO (Tsui et al., 2021). Mechanical
and electrical properties of these hydrogels were tuned by
modulating rGO content and degree of reduction. Cardiac
tissues engineered with this scaffold showed the increased
expression levels of CX43, indicating improved cell-cell
connectivity. Multiple functional improvements such as
calcium handling, action potential duration, twitch forces, and
conduction velocity were also induced by these hybrid rGO-
containing scaffolds.

Jing et al. developed polydopamine-based chitosan/GO
composite hydrogels and demonstrated that addition of GO
increased the hydrogel’s adhesion strength by 300%, and
improved its electrical conductivity (Jing et al., 2017). Further,
π-π stacking, hydrogen bonding, and supramolecular interactions
endowed chitosan/GO hydrogels with high stability, excellent
mechanical properties, extended lifespan, self-healing properties,
and fast-recovery ability. These hydrogels enhanced cell
proliferation and viability and supported faster spontaneous
beating rates in hESC-derived cardiomyocytes. These findings
were confirmed in another study that tested porous chitosan/GO
conductive scaffolds using cardiac H9C2 cell line and established
that chitosan/GO scaffolds promoted cell attachment, viability,
and upregulation of certain cardiac-specific genes (Jiang et al.,
2019).

In Vivo Applications
Myocardial infarction causes irreversible damage to myocardium
and results in an increased risk of heart failure and sudden cardiac
death. One strategy to address this problem is to integrate new
MSCs or cardiomyocytes into the remaining myocardium.
Graphene-containing injectable hydrogels could improve the
efficiency of engraftment and enhance the survival of
implanted cells.

An injectable rGO-enhanced alginate hydrogel was used for
culturing MSCs (Karimi Hajishoreh et al., 2020), resulting in
the cell viability two-fold higher as compared to a pure alginate
or a plastic substrate. Further, rat neonatal cardiac cells
encapsulated in the alginate-rGO had significantly
upregulated gene expression of TrpT-2, Cx43, and Actn4
even without electrical stimulation.
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Another study combined methacryloyl-substituted
tropoelastin with GO nanoparticles to engineer an injectable,
stretchable, conductive hydrogel with an enhanced elasticity and
toughness (Annabi et al., 2016). This GO-containing advanced
hydrogel exhibited high biocompatibility, promoted the growth
and proliferation of cells, and triggered minimal inflammatory
response. Neonatal rat cardiomyocytes cultured on this hydrogel
developed well-aligned sarcomeric structures that are similar to
that of the native ventricular myocardium. Importantly, these
cardiomyocytes could be depolarized at a lower excitation
threshold, which points to their improved maturity.

To address the loss of vasculature at the ischemic site, Paul et al.
employed an injectable graphene-enhanced hydrogel composed of a
low-modulus methacrylated gelatin wtih polyethylenimine
functionalized GO nanosheets to deliver a proangiogenic vascular
endothelial growth factor plasmid DNA to the damaged myocardium
(Paul et al., 2014). In a rat model of acute myocardial infarction, this
hydrogel significantly decreased the scar area, alleviated inflammation
at the infarction site, and improved systolic function as demonstrated
by an improved ejection fraction.

Zhao et al. developed an injectable Reverse Thermal Gel
(RTG) functionalized with GOs (GO–RTG) and capable of
forming a 3D matrix at 37°C (Zhao, 2019). Using neonatal rat
ventricular cardiomyocytes, this study demonstrated that these
conductive 3D GO–RTG scaffolds can promote cell proliferation
and alignment, support long-term survival and maturation, and
enhance function properties of cardiomyocytes.

CONCLUSION

Numerous reports provided compelling evidence that graphene
can play an essential role in creating a more physiologically

accurate microenvironment for cardiac cells and EHTs.
However, more research needs to be done to optimize the
composition and geometry of graphene-based scaffolds for
complex long-term in vivo applications. It is important to note
that the graphene research is still in its infancy, and new
fundamental discoveries and new practical applications are
emerging every day, further fueling the development of the
next wave of biomedical applications. We wholeheartedly
share the sentiment expressed by scientists from the
University of Manchester, a home of 2010 Nobel Prize
Laureates for the research on graphene that “the potential of
graphene is limited only by our imagination”.
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