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The knowledge of motion dynamics during running activity is crucial to enhance the
development of rehabilitation techniques and injury prevention programs. Recent studies
investigated the interaction between joints, using several analysis techniques, as cross-
correlation, sensitivity analysis, among others. However, the direction of the joints pairing
is still not understood. This paper proposes a study of the influence direction pattern
in healthy runners by using kinematic data together with partial directed coherence, a
frequency approach of Granger causality. The analysis was divided into three anatomical
planes, sagittal, frontal, and transverse, and using data from ankle, knee, hip, and trunk
segments. Results indicate a predominance of proximal to distal influence during running,
reflecting a centralized anatomic source of movements. These findings highlight the
necessity of managing proximal joints movements, in addition to motor control and core
(trunk and hip) strengthening training to lumbar spine, knee, and ankle injuries prevention
and rehabilitation.

Keywords: partial-directed coherence, Granger causality, kinematics, running, knee

1. INTRODUCTION

Running is a popular activity and about 38 million Americans practice this sport regularly (NSGA,
2011). In recreational and competitive forms, injuries are common and the incidence of muscu-
loskeletal kind ranges from 19.4% to 92.4% (van Gent et al., 2007), with the knee accounting for
50% of all lower extremity problems. Considering that these injuries are associated with altered
joints movement (Powers, 2003; Chuter and Janse de Jonge, 2012), a thorough understanding of
the complex nature of functional movements is important and could improve prevention, training,
and rehabilitation.

Knowledge of joint interaction pattern behavior, mainly the direction of the influence during
running, would improve the expertise about the normal and pathological movement, developing
musculoskeletal injury treatment (Powers, 2003; Pandy andAndriacchi, 2010). In abnormalmotions
of the lower extremity, joints could be influenced from the ground and ankle up (i.e., distal to
proximal influence) and from the trunk and hip down (i.e., proximal to distal influence) (Powers,
2003, 2010; Chuter and Janse de Jonge, 2012).

A variety of biomechanical studies already investigated the joint interaction and interjoint coordi-
nation during functional and athletic activities. Those studies used several analysis techniques, such
as cross-correlation and vector coding (Pohl and Buckley, 2008), sensitivity analysis (Nott et al.,
2010), coupling angle and continuous relative phase (Chang et al., 2008), and principal component
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analysis (Tanabe et al., 2014). Due to the fact that the trunk, pelvis,
and lower limb kinematic during running are complex, it is not yet
fully understood (Pandy and Andriacchi, 2010).

This study is to determine the directed interactions among
the three-dimensional (3D) joint kinematic data in healthy recre-
ational athletes during running, by using data channels from
ankle, knee, hip, and trunk. The 3D kinematic data were analyzed
by anatomical plane, in terms of proximal to distal or distal to
proximal influences, by using a frequency-domain approach of
Granger causality, named partial directed coherence.

Granger causality concept has been used to determine causal
influences among multivariate time series (Ding et al., 2006). In
summary, a causal interaction from a process x2 to a process x1
is suggested if there is a reduction of prediction error of x1 when
including the past of x2 (Chicharro, 2011).With a pairwise analysis
and assuming that the process is linear, Gaussian and stationary
(Chicharro, 2011), the analysis is developed in the time domain
from the covariance matrix of the noise terms of the autore-
gressive (AR) representation of two stochastics processes (Ding
et al., 2006). Partial directed coherence (PDC), introduced by
Baccalá and Sameshima (2001), is a different approach of Granger
causality applied in frequency-domain from Fourier Transform of
themultivariate autoregressive (MVAR) coefficientsmatrix (Graef
et al., 2013).

Several studies applied PDC approach. Faes and Nollo (2013)
discussed and employed two new measures extending PDC to
analyze blocks or groups of a set of time series. Taxidis et al.
(2010) assessed interactions between brain regions handling PDC
and generalized PDC (gPDC)1 in neuronal activity data. gPDC
analysis is also implemented in Gürkan et al. (2014) to identify
cortical connectivity. Although the extensive use of PDC in neural
signals, to the best of the authors’ knowledge, PDC had not
been previously employed in joint kinematic data during running.
There are some computational issues that concern to the PDC
implementation, such as the definition of the best order and
the estimation of the coefficients of the MVAR model and the
PDC calculation itself. PDC is also a quite new approach when
compared to regular methods.

The remainder of this paper is organized as follows. Section 2
introduces the necessary theory to perform pairwise PDC.
Section 3 presents the subjects used in this study, the 3D joint
kinematic data acquisition procedure, the simulated data used to
validate the approach and the developed routines. Section 4 shows
the results of the simulated data and the outcomes obtained from
the real data in the three anatomical planes. Section 5 discusses
the findings with different interpretations present in the litera-
ture. Section 6 highlights the main contribution of this study to
physical therapy related to lower limb injury and rehabilitation
programs.

2. THEORY

Granger causality uses a linear regression model to establish the
idea that if the prediction of a time series x1 could be improved

1gPDC is used in time series with widely different variances.

by including the knowledge of another time series x2, then one
says that x2 has a causal influence on x1 (Ding et al., 2006). A
pairwise analysis approach is developed in the time domain from
the covariance matrix of the noise terms of the AR representation
of two stochastics processes (Ding et al., 2006). The x2 has a
causal influence on x1 if there is a reduction in the variance of
the autoregressive prediction error after incorporating x2 past data
when predicting x1 (Ding et al., 2006).

PDC was introduced by Baccalá and Sameshima (2001) and
is one approach of Granger causality to a MVAR model in
frequency-domain to infer a direct connection between time
series. Consider an n-dimensional random process X(t)= [x1(t),
x2(t), . . . , xn(t)]T, where T denotes matrix transposition. The pth
order MVAR representation of X(t) is as follows:

X(t) =
p∑

r=1
ArX(t − r) + E(t), (1)

where Ar are the MVAR estimative coefficient matrices with ele-
ments aij(r) and E(t)= [e1(t), e2(t), . . ., en(t)]T is a noise vector.
According to Takahashi et al. (2007), by applying the Discrete
Time Fourier Transform (DTFT) on the Ar coefficients results in
A(f ):

A( f ) =
p∑

r=1
Are−ir2πf, (2)

where i =
√

−1. The PDC from xj to xi is given by

πij( f ) =
A′

ij( f )√
a′H
j ( f )a′

j ( f )
, (3)

where matrix A′ is calculated by:

A′( f ) = I − A( f ), (4)

and, in equation 3, a′
k is the kth column of A′, H denotes Hermi-

tian matrix and, in equation 4, I is identity matrix.

3. MATERIALS AND METHODS

3.1. Simulated Data Processing
For validation purpose, a five-channel process was used to gen-
erate a data set of 500 observations with 100-time points by
channel, similar to Baccalá and Sameshima (2001). The channels
are described by the following equations:

x1(t) = 0.95
√
2x1(t − 1) − 0.9025x1(t − 2) + e1(t) (5)

x2(t) = −0.5x1(t − 1) + e2(t) (6)

x3(t) = 0.1x1(t − 2) − 0.4x2(t − 2) + e3(t) (7)

x4(t) = −0.5x3(t − 1) + 0.25
√
2x4(t − 1)

+ 0.25
√
2x5(t − 1) + e4(t) (8)

x5(t) = −0.25
√
2x4(t − 1) + 0.25

√
2x5(t − 1) + e5(t) (9)

where ei(t) represents white noise processes with zero means and
variances equal to one. The generated data will represent the
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following causal relations among the channels (the arrows point
influence direction):

• x1→x2
• x1→x3 and x2→x3
• x3→x4 and x5→x4
• x4→x5.

The Python Nitime (http://nipy.org/nitime/) library was used
to estimate theMVAR coefficients, with order two to calculate the
PDC values.

3.2. Subjects
Twenty-nine healthy recreational runners participated in this
study (average (SD); age 27.67 (5.43) years, mass 72.05 (13.61) kg,
body mass index 23.74 (2.92) kg/m2, height 1.73 (0.09)m, average
running distance of 35.70 (18.25) km/week, and running expe-
rience 4.13 (4.02) years). All the participants met the following
criteria: they were rearfoot strikers, familiar with treadmill run-
ning and ran a minimum of 20 km/week at least 3months prior to
study enrollment.

All the subjects were evaluated by a licensed physical therapist.
The exclusion criteria were the presence of bone, joint, or ligament
injury occurred in the least 3months prior the assessment, lower
limb surgery, the presence of pain in the ankle, knee, hip, or
trunk while running or wearing orthotics that could interfere with
their running pattern. The testing protocol was approved by the
Federal University of São Carlos Ethics Committee for Human
Investigations, and the subjects signed a written informed consent
form to participate in this study.

3.3. Data Acquisition Procedure
The acquisition session started with a 5-min warm-up on a tread-
mill (model LX 160 GIII, Movement, Manaus, Brazil) at 1.38m/s.
The subjectswere then instructed to start running at a comfortable
speed, determined by the volunteer and adjusted by the assessor
for 2min. A neutral running shoe (Asics Gel-Equation 5, ASICS,
Kobe, Japan)was provided for all runners. Each stored signal had a
total length of 1min and 30 s and was acquired without informing
subjects about the exact moment of sampling nor the variables
were studied.

The kinematic data2 of the dominant lower limb (5 left,
26 right) and trunk were recorded at 240Hz during running
with a six-camera Qualisys motion analysis system (Qualisys
Inc., Gothenburg, Sweden). Twenty reflective markers located
on anatomical landmarks and five cluster tracking markers were
placed on each subject (Figure 1). The reliability of the analyzed
variables was Intraclass Correlation Coefficient (ICC) 0.73–0.91,
with 95% of confidence interval (CI).

The Cardan angles were calculated using the joint coordinate
system definitions recommended by the International Society of
Biomechanics (Wu et al., 2002) relative to the static standing
trial using the Visual 3D software (C-Motion Inc., Rockville,
MD, USA). The kinematic data were filtered with the Visual 3D
software using a fourth order, zero lag, low-pass Butterworth

2Available in https://github.com/lablps/FBB2017.

FIGURE 1 | Subject running on a treadmill with the reflective markers (little
white circles) in the trunk, hip, knee, and ankle during a kinematic data
collection trial.

filter at 12Hz. For each plane (X—sagittal, Y—frontal, and
Z—transverse), four joints were collected: ankle, knee, hip, and
trunk.

3.4. Real Data Processing
As a preprocessing procedure, each kinematic data channel was
normalized by their root mean square (RMS) value. For each
subject, MVAR estimative coefficient matrix was computed using
the Nitime library, covering all channels, following equation 1.
The MVAR order was evaluated by using the Bayesian Informa-
tion Criterion (BIC) for each order in a range from one to one

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2017 | Volume 5 | Article 673

http://nipy.org/nitime/
https://github.com/lablps/FBB2017
http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


Nakashima et al. Directed Interactions During Running

thousand, and the order with smallest BIC value was chosen.
The pairwise analysis was performed in each plan, and PDC
values were calculated according to equation 3. From the values
of PDC over the frequency range of an interaction, the maximum
represented the influence between the two channels (Baccalá and
Sameshima, 2001; Faes and Nollo, 2013).

A set of the 29 maximum PDC values was generated for the
twelve possible interactions between the joints. The Shapiro–Wilk
test was employed in order to assess the presumption of normality
(Razali and Wah, 2011). Mean values (Gürkan et al., 2014) were
used in order to verify the hypothesis that the proximal–distal and
distal–proximal interactions were equal. The t-test was applied
to the groups in which there was an indication that the data
follow a normal distribution, and permutation test (Ernst, 2004),
with N = 10,000 permutations, for all groups. Both tests used
adjusted p-values determined by Bonferroni correction (Goeman
and Solari, 2014) with α= 0.025 and were shown in three tables,
each one for one plane. Also, mean values were plotted in three
distinct graphs.

All computational routines were developed in Python 2.7.4
(Python Software Foundation, USA), and executed on an Intel
Core i5 (Intel Corporation, USA) CPU at 1.70GHz, 4 GB RAM
and Ubuntu 13.04 operating system (Canonical Ltd., UK).

4. RESULTS

4.1. Simulated Data Processing
The synthetic data generated following the equations presented
in Section 3.1 produced the result shown in Figure 2. The PDC
values for influences from j (column) channel to i (line) channel
are presented for the entire frequency range as the gray shaded
areas. A cell in the third line and second column shows the
influence from channel two to channel three.

From Figure 2 is possible to infer the influence among the five
channels, x1 receives no influences; x2 is influenced only by x1;
x3 is influenced by x1 and x3; x4 receives influence from x3 and
x5; and x5 is influenced by x4. All other influences are depicted
as gray areas equal or very near to zero. The result obtained is in
agreement with the equations used to generate the synthetic data
in Section 3.1 and indicates the computational routine is working
properly.

4.2. Real Data Processing
The PDC values obtained for each pair of 3D joint kinematic data
channels were analyzed for each of the three planes separately.
Ankle, knee, hip, and trunk kinematic joints interactions were

FIGURE 2 | PDC values computed from the simulated data. For each cell, the influence is from j-channel to i-channel. Thus, in the second line, the first plot shows
the influence from channel one (j=1) to channel two (i= 2).
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FIGURE 3 | PDC values computed from 3D kinematic data, in the sagittal plane, collected during usual running from one subject. For each cell, the influence is from
j-channel to i-channel. Thus, in the second line, the first plot shows the influence from the ankle (j= 1) to the knee (i= 2).

properly evaluated in sagittal, frontal, and transverse planes. For
illustration purposes, the Figure 3 presents a four by four matrix,
where in each cell was plotted PDC values for the entire frequency
range between pairs of channels from a single subject. As in
simulated data, the influences are from j (column) channel to
i (line) channel. Thus, the first graphic in line two shows the
interaction from the ankle (channel one) to the knee (channel
two).

Figure 4 shows the influence patterns in the frontal plane for a
single evaluated subject. The joints are represented as nodes in the
graph, and the maximum computed PDC values for each pair of
data channels are drawn as directed edges, where their direction
is the same as the influence and thickness reflect the maximum
PDCvalue. Thus, a wider edge indicates a higher influence pattern
between two joints, e.g., the influence from hip to ankle has a
higher value than the interaction from hip to knee.

Additionally, the average and SD ofmaximumPDCvalues were
calculated for all subjects and each influence plane. The influence
pattern analysis consists in using a hypothesis test (t-test and
permutation test with a significance level defined by Bonferroni
correction of 0.025) to compare the obtained average values and
infer how the influence happens, from distal to proximal or from
proximal to distal.

Distal and proximal are anatomical terms of location; the distal
term designates a location that is distant from the body center or
some anatomical point of reference, and the proximal term is the
location closer from them. Accordingly, in the ankle–knee pair,
distal–proximal influence describes the interaction from ankle to
knee, and proximal–distal, from knee to ankle. The paired t-test
and permutation tested the null hypothesis that average value
from distal to proximal influence was equal to proximal to distal
average value. The t-test was applied only when there was an
indication of normality.

In the sagittal plane, a greater proximal to distal influences was
found in comparison to distal to proximal in three of six combina-
tion pairs of joints (ankle–knee, ankle–hip, and trunk–ankle), the
other three combination pairs resulted in a similar influence, as
shown in Table 1. In Figure 5, these influences are represented in
a directed graph of the sagittal plane. By inspecting the graph, it is
evident that the ankle is the joint that suffers the greater influence
in the sagittal plane.

Table 2 presents the average values computed for the frontal
plane kinematics. Proximal to distal influence was greater in five
(ankle–knee, ankle–hip, knee–hip, trunk–knee, and trunk–ankle)
of six pairs of joints, the other pair resulted in a similar influence.
Figure 6 shows the graph representation of those influences.
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FIGURE 4 | Causal influence in the kinematic data during the running of one
subject, in the frontal plane. The nodes are the 3D kinematic joints. Each edge
represents the maximum PDC computed between the joints.

TABLE 1 | Average values (SD) computed from causal influence in the sagittal plane
kinematic data during running.

Pair Distal–prox Proximal–distal t-test Permutation
test

Influence

Ankle–knee 0.24 (0.14) 0.72 (0.13) – 0.000 Prox–distal
Ankle–hip 0.21 (0.10) 0.69 (0.16) – 0.000 Prox–distal
Knee–hip 0.24 (0.12) 0.26 (0.13) – 0.593 ∼
Trunk–hip 0.30 (0.27) 0.23 (0.12) – 0.200 ∼
Trunk–knee 0.28 (0.26) 0.23 (0.15) – 0.327 ∼
Trunk–ankle 0.29 (0.27) 0.68 (0.13) – 0.000 Prox–distal

Analogous to the findings for the sagittal plane, the ankle is again
the joint that suffers most of the other joints influence, followed
by the knee.

In the transverse plane, of six pairs of joints, two of them
presented more proximal to distal influence (ankle–knee and
ankle–hip), and one pair presented distal to proximal influence
(trunk–hip), the other three resulted in similar influence for both
directions. The obtained values are shown in Table 3 and its
graph representation is presented in Figure 7. Differently from the
sagittal and frontal planes, for the transverse plane, an influence
distal to proximal was indicated.

5. DISCUSSION

This study was to determine the patterns of directional influ-
ence among ankle, knee, hip, and trunk, in the sagittal, frontal,
and transverse planes separately in kinematic data from healthy
runners. Such pattern is of interest for physical therapists, as
it can be used to distinguish between normal and pathological
running movement, thus aiding runners training, injury preven-
tion programs, and rehabilitation. The patterns were investigated

FIGURE 5 | Average values computed from maximum PDC values of the
sagittal plane kinematic data during running. As in Figure 4, the nodes are
the kinematic data.

TABLE 2 | Average values (SD) calculated from causal influence in the frontal plane
kinematic data during running.

Pair Distal–prox Proximal–distal t-test Permutation
test

Influence

Ankle–knee 0.45 (0.17) 0.75 (0.15) – 0.000 Prox–distal
Ankle–hip 0.35 (0.13) 0.73 (0.17) – 0.000 Prox–distal
Knee–hip 0.35 (0.11) 0.48 (0.18) 0.002 0.002 Prox–distal
Trunk–hip 0.36 (0.15) 0.36 (0.12) 0.890 0.885 ∼
Trunk–knee 0.33 (0.12) 0.47 (0.18) 0.003 0.001 Prox–distal
Trunk–ankle 0.32 (0.12) 0.77 (0.12) 0.000 0.000 Prox–distal

using the PDC model, a frequency-domain approach of Granger
causality.

In the PDC calculation, the first stepwas theMVARcoefficients
estimation, which covered all data channels acquired simultane-
ously. The model order is necessary to estimate the AR coeffi-
cients, and BIC was chosen to evaluate the best order in a range
from one to one thousand. Most of the processing time, individu-
ally, about 2 h 17m56 swas due to themodel order determination;
input and normalization data, 3m 40 s, PDC processing, 22 s and
output data and graphs, 16 s.

In a case study with the entire group of subjects, the final
results derived frommean and maximum values were identical in
sagittal and frontal planes; in transverse plane, there was only one
different finding between trunk and ankle. From this conclusion
and considering that Baccalá and Sameshima (2001) and Faes
and Nollo (2013) employed the maximum value computed, this
value was used as the descriptor of the interaction between two
joints.

The sagittal plane results (Table 1; Figure 5) reveal that, in
this plane, the ankle was strongly influenced by the trunk, hip,
and knee, in agreement with the study Saha et al. (2008), which
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FIGURE 6 | Average values computed from maximum PDC values of the
frontal plane kinematic data during running. Also, nodes are the kinematic
data.

TABLE 3 | Average values (SD) computed from causal influence in the transverse
plane kinematic data during running.

Pair Distal–prox Proximal–distal t-test Permutation
test

Influence

Ankle–knee 0.41 (0.13) 0.58 (0.15) 0.001 0.000 Prox–distal
Ankle–hip 0.34 (0.14) 0.56 (0.16) 0.000 0.000 Prox–distal
Knee–hip 0.36 (0.14) 0.41 (0.13) 0.110 0.131 ∼
Trunk–hip 0.47 (0.15) 0.35 (0.12) 0.001 0.001 Distal–prox
Trunk–knee 0.46 (0.16) 0.38 (0.14) 0.040 0.045 ∼
Trunk–ankle 0.45 (0.17) 0.54 (0.17) – 0.063 ∼

reported that healthy subjects that adopted forward trunk lean
had presented greater hip, knee, and ankle flexion angles dur-
ing walking. It was hypothesized that the increased trunk and
hip flexion (proximal joints) could lead to an anterior shift of
the center of mass. As an adaptation to produce a posterior
shift of the trunk and maintain balance, the subjects performed
greater knee flexion resulting in a greater ankle dorsiflexion (distal
joint). These kinematic adaptations could lead to the crouching
posture characterized by greater hip, knee, and ankle flexion
angles.

The results cited were the first evidence of a greater proximal
influence of the trunk, hip, and knee movement over the most
distal joint (ankle) during running, which corroborate with our
results, a greater proximal to distal influence from the trunk, hip,
and knee to the ankle. Giving that the ankle is the first joint
to contact the floor, helping to absorb the impact load during
running; the physical therapist might aim to instruct the patient to
manage the trunk, hip, and knee kinematics to achieve an optimal
ankle angle in the sagittal plane during running.

In the frontal plane, the experiments pointed to a higher proxi-
mal to distal influence between ankle–knee, ankle–hip, knee–hip,

FIGURE 7 | Average values computed from maximum PDC values of the
transverse plane kinematic data during running. Also, nodes are the kinematic
data.

trunk–knee, and trunk–ankle, shown by Table 2 and Figure 6.
As in sagittal plane, the ankle receives the bigger influences from
the proximal joints (trunk, hip, and knee). In this plane, the knee
appeared as the destination of the interactions from trunk and
hip. In fact, for the frontal plane, it has been previously reported
that greater ipsilateral trunk angle and knee abduction occurred in
combination during jumping in female athletes with non-contact
anterior cruciate ligament injury (Hewett et al., 2009), single leg
squat (Nakagawa et al., 2012), and running (Noehren et al., 2012)
in subjects with patellofemoral pain.

This probably occurs because the trunk comprises more than
half of the body’s mass. Thus, ipsilateral trunk motion increases
the ground reaction force passing lateral to the knee and, con-
sequently, the knee abduction load (Hewett et al., 2009). Addi-
tionally, peak ipsilateral trunk lean was found to be positively
associated with knee abduction in healthy subjects during single
leg squat (Nakagawa et al., 2015). Given that the greater hip (prox-
imal) influence on the knee (distal), it is important to note that the
knee valgus may be a result of hip adduction in the frontal plane
(Powers, 2003). A higher knee valgus may increase the dynamic
quadriceps angle, with larger lateral vector on the patella, which
potentially increase the stress on the lateral compartment of the
patellofemoral joint (Powers, 2003).

The results corroborate with previous studies and add the infor-
mation that the coupling between joints in the frontal plane during
running is a result of proximal joints kinematic influencing on the
distal joints. This new information is especially important when
we take into consideration that the joint movements in the frontal
plane are involved in several knee injuries. In light of this, the
clinicians should consider training the control of the trunk and
hip movement during prevention program and rehabilitation to
avoid abnormal and risk movement patterns at the knee.
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In the transverse plane, a significantly greater proximal to
distal influence between ankle–knee and ankle–hip is shown by
Table 3 and Figure 7. Distal to proximal interaction was sug-
gested between trunk–hip. In this plane, it seems that the four
kinematic joints were divided into three segments: 1-trunk, 2-hip,
and 3-knee and ankle, and that segment two (hip) influences both
ankle (proximal–distal) and trunk (distal–proximal). The lower
limb joints coupling in the transverse plane have been extensively
studied (Chang et al., 2008; Pohl and Buckley, 2008), as excessive
or prolonged foot pronation has been linked to the development of
numerous overuse injuries affecting the lower limb (Tiberio, 1987;
Beckett et al., 1992; Kaufman et al., 1999).

Tiberio (1987) and Chuter and Janse de Jonge (2012) sug-
gested a model where foot motion has more effect on tibia,
femur, and hip in the transverse plane. Furthermore, research
evidence supports the presence of a dynamic coupling mech-
anism between lower limb segments (Chang et al., 2008; Pohl
and Buckley, 2008), the direction of the coupling is inconclu-
sive. Since PDC analysis gives the direction interaction informa-
tion between joints data, it has the potential to fill this gap of
knowledge.

Notably, a proximal to distal influence from the hip and knee
to the ankle were found, an indication contrary to what had
been previously proposed that the influence among these joints
is greater in the distal to proximal direction. Corroborating with
our results that hip influences ankle and trunk, the hip muscle
weakness and altered kinematics has been implicated in the lower
limb and lumbar spine injuries (Dananberg, 1993; Barnes et al.,
2008). In fact, in the transverse plane, the hip joint presents a
great range of motion and large muscles (especially the gluteus
maximus), as compared to the other evaluated joints explaining
its potential to influence the distal and proximal joints. Clini-
cally, these results support hip muscle strengthening and kine-
matic training to manage and prevent lower limb and trunk
injuries.

Most influences are greater in the proximal to distal direc-
tion, when considering all the planes, indicating a centralized
anatomic source of movements. Overall, our results highlight the
importance of managing proximal joints kinematic, in addition to
core (trunk and hip) strengthening and motor control training, in
order to prevent and rehabilitate lumbar spine, knee, and ankle
injuries. Since joints can have an interplane influence between
each other and muscular activation may cause kinematic adapta-
tions, future studies should consider analyzing PDC approach in
the interplane kinematic data and between electromyographic and
kinematic data, respectively.

6. CONCLUSION

In physical therapy, the biomechanical knowledge of running is
of great interest since that could improve rehabilitation programs
and prevent injuries. In order to provide information of directed
pattern influences among 3D kinematic data during running
experiments, this work implemented and analyzed results from

PDC concept, a frequency approach of Granger causality, which
indicates directional influence.

From kinematic data collection during running, the movement
of the ankle, knee, hip, and trunk joints were analyzed, in all
three anatomical planes, sagittal, frontal, and transverse. PDC
values were computed for each plane and pair of segments. In
the sagittal plane, the ankle was more strongly influenced by
the trunk, hip, and knee; whereas, in the frontal plane, the knee
appeared as the destination of the interactions from trunk and hip.
Finally, the hip influenced both ankle (proximal–distal) and trunk
(distal–proximal) and knee influenced ankle (proximal–distal) in
the transverse plane.

Overall, it was demonstrated a greater proximal to distal influ-
ences among the four joints, with the ankle being more influ-
enced by knee, hip, and trunk in all three planes. This prevalence
of proximal to distal influences indicates that physical thera-
pist should consider including the motor control training of the
proximal joints kinematic in the prevention injury programs and
rehabilitation of lower limb and trunk conditions.

Future studies are necessary to further investigation of the
directed influence of interplane kinematic data, electromyo-
graphic data, between stance and swing phases, during distinct
running techniques. Besides, it would be interesting to investigate
the effect of different running technique and musculoskeletal
injuries on the directed influence of kinematic data between joints.

Moreover, the risk of injury could be indicated by the com-
parison between results obtained from the kinematics of healthy
and injured volunteers, by contrasting the direction of influence
between joints in runners with and without lower limb injury,
before and after rehabilitation, with different running technique,
and between stance and balance phase of running. An automated
decision support system could be developed by using the findings
from such type of studies.
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