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Background: Polygenic risk score (PRS) has proved useful in predicting the risk of
cardiovascular diseases (CVD) based on the genotypes of an individual, but most
analyses have focused on disease onset in the general population. The usefulness
of PRS to predict CVD risk among type 2 diabetes (T2D) patients remains unclear.

Methods: We built a meta-PRSCVD upon the candidate PRSs developed from
state-of-the-art PRS methods for three CVD subtypes of significant importance:
coronary artery disease (CAD), ischemic stroke (IS), and heart failure (HF). To
evaluate the prediction performance of the meta-PRSCVD, we restricted our
analysis to 21,092 white British T2D patients in the UK Biobank, among which
4,015 had CVD events.

Results: Results showed that the meta-PRSCVD was significantly associated with
CVD risk with a hazard ratio per standard deviation increase of 1.28 (95% CI:
1.23–1.33). The meta-PRSCVD alone predicted the CVD incidence with an area
under the receiver operating characteristic curve (AUC) of 0.57 (95% CI:
0.54–0.59). When restricted to the early-onset patients (onset age ≤ 55), the
AUC was further increased to 0.61 (95% CI 0.56–0.67).

Conclusion: Our results highlight the potential role of genomic screening for
secondary preventions of CVD among T2D patients, especially among early-
onset patients.
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Introduction

Despite great advances in prevention and treatment in the past
decades, cardiovascular diseases (CVD), the major cause of
morbidity and mortality worldwide, remain a severe global health
challenge (Vasan and Benjamin, 2016). CVD is even more prevalent
among patients with type 2 diabetes (T2D) (International Diabetes
Federation, 2015). According to a systematic review conducted in
2018, nearly 32.3% of T2D patients suffer from CVDworldwide, and
it is the major cause of death among T2D patients, especially
coronary artery disease (CAD) and stroke (Einarson et al., 2018).
Besides, an increased risk for T2D is found to be followed by an
increased risk for CVD (Fox et al., 2008).

As summarized previously (Wang et al., 2018), CAD, ischemic
stroke (IS), and heart failure (HF) are the three main severe subtypes
of CVD events. All three diseases have genetic components, with the
heritability varying from 40% to 60% for CAD, 16% to 40% for IS,
and 26% to 34% for HF (Bevan et al., 2012; Tayal et al., 2017;
Lindgren et al., 2018; Aragam and Natarajan, 2020). More
specifically, with the remarkable success of genome-wide
association studies (GWASs) in recent years, hundreds of single
nucleotide polymorphisms (SNPs) have been identified to be
associated with CVD and its subtypes (Mehta, 2011; Carty et al.,
2012; CARDIoGRAMplusC4D Consortium et al., 2013; Nikpay
et al., 2015; Nelson et al., 2017; Malik et al., 2018; Shah et al.,
2020). Polygenic risk scores (PRSs), the sum of risk alleles weighted
by the effect sizes inferred from GWAS summary statistics, were
subsequently constructed and have shown promise in predicting the
onset of CVD as well as its subtypes (Khera et al., 2018). A few
attempts have then been made to associate the PRS trained from
CVD events occurrence among T2D patients, but with some
limitations (Hong et al., 2020). These initial efforts were mainly
hampered by three challenges: 1) the small sample size (less than
5,000) to train and test PRS; 2) less optimal risk prediction models
for creating PRS; and 3) the same dataset used to construct PRS and
test for prediction performance without validations.

With much larger studies and improved PRS methods available
now, we set out to build a new PRS for CVD onset among T2D
patients. Since several studies have shown that utilizing a meta-
analytic strategy to build PRS can help better capture the genetic risk
information (Inouye et al., 2018); also considering that CAD, IS, and
HF are the major subtypes of CVD events with similar clinical
implications and management (Hong et al., 2020; Ma et al., 2022)
and there are strong genetic correlations among these three subtypes
to potentially boost power of PRS (Dichgans et al., 2014; Verweij
et al., 2017; Hong et al., 2020; Koyama et al., 2020), here we build a
new PRS by combining the three “optimal” PRSs trained for each of
these three CVD subtypes. With the newly-built meta-PRSCVD, we
then comprehensively evaluate its prediction performance for CVD
events among T2D patients. Besides, as several clinical variables
have long been used in classic CVD risk predictions, we also evaluate
the prediction performance of meta-PRSCVD when integrated with
those established clinical variables in predicting CVD occurrence.
Furthermore, we investigate the roles of genetic and clinical risk
factors in contributing to CVD among T2D patients with different
onset ages, with the hypothesis that meta-PRSCVD may have more
predictive power among younger patients while CVD events among
later-onset patients may be more driven by non-genetic factors.

Materials and methods

Study population

Our subjects are from the UK Biobank (UKBB), a large-scale
prospective study established for investigating both genetic and non-
genetic determinants of diseases among the middle-old aged
population (Sudlow et al., 2015). Starting in 2006,
502,618 individuals aged 40–69 years were enrolled through
22 assessment centers throughout the United Kingdom (UK).
Follow-up was conducted through linkages to Hospital Episode
Statistics (HES), national death registries, and cancer registries.
Specifically, HES used both the 9th and 10th revisions of the
International Classification of Diseases (ICD9 and ICD10) to
record diagnostic information, and OPCS-4 (Population, Census
and Census Office: Classification of Interventions and Procedures,
Version 4) to record surgical procedures. Currently available data
from HES cover all hospital admissions from the NHS hospitals in
England and Scotland from April 1994 to February 2021. And the
death registries include all deaths in the UK up to January 2021.

We restricted our analysis to the white British participants where
the ancestry was identified by a combination of self-reported
ancestry and genetically confirmed ancestry based on principal
component (PC) analysis of individuals’ genotypes (Bycroft et al.,
2018). Additional exclusion criteria included discordance between
reported and genotype inferred sex, poor heterozygosity or
missingness, sex chromosome aneuploidy, and withdrawal of
informed consent.

Ascertainment of disease onset

Disease occurrences were identified by episode records in HES.
The detailed ICD9, ICD10, and OPCS-4 we used to define T2D,
CAD, IS, and HF are provided in Supplementary Table S1. CVDwas
defined as the union of these three subtypes. Analyses were restricted
to subjects with T2D. Cases were identified as those who had onset of
CVD at least 1 day later than T2D based on the HES records. The
follow-up time was defined as the time duration between the T2D
onset and the earliest CVD onset.

PRS derivation

We calculated the PRS of CAD, IS, and HF using the
corresponding largest-to-date GWAS summary statistics (Nikpay
et al., 2015; Malik et al., 2018; Shah et al., 2020) and the linkage
disequilibrium (LD) reference panel of 503 European samples from
the 1000 Genomes Project phase III (Genomes Project Consortium
et al., 2015) based on several state-of-the-art PRS methods [P+T
(Chang et al., 2015), LDPred (Vilhjálmsson et al., 2015), PRS-CS (Ge
et al., 2019), and AnnoPred (Hu et al., 2017)] as described previously
(Ye et al., 2021).

To build the meta-PRS, we conducted a two-stage training. In
the first stage, we used UKBB white British participants who did not
have CVD records in the HES as the training dataset with the aim of
selecting the best-performing PRS for the onset of each of the three
CVD subtypes. In this training dataset, the cases were participants
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who self-reported CAD (IS/HF) history in an interview with a
trained nurse but were without explicit HES CAD (IS/HF) onset
record, and the controls were the remaining healthy population. In
the second stage, we used a five-fold cross-validation strategy; where
in each iteration, we randomly selected four-fifths of the participants
with explicit HES T2D onset records as the training dataset. Based
on the best-performing PRS of CAD, IS, and HF (named PRSCAD,
PRSIS, PRSHF) selected in the first stage, the meta-PRSCVD was built
as follows:

meta − PRSCVD,i � β1Zi1 + β2Zi2 + β3Zi3�������������������������������������
β21 + β22 + β23 + 2β1β2ρ1,2 + 2β1β3ρ1,3 + 2β2β3ρ2,3

√ ,

where Zi1, Zi2, and Zi3 were the standardized PRSCAD, PRSIS, and
PRSHF for the i th individual; β1, β2, and β3 were the regression
coefficients of the Cox regression models on standardized PRSCAD,
PRSIS, and PRSHF for CVD occurrence among T2D patients; and
ρm,n was the Pearson correlation coefficient between Zm and Zn.
Both regression coefficients and Pearson correlation coefficients
were calculated as the mean values from five iterations in the
training dataset as described before, the remaining one-fifth of
the participants with explicit HES T2D onset records were then
regarded as the testing dataset to evaluate the prediction
performance of meta-PRSCVD for CVD. The overall prediction
performance was defined as the average of the results from the
five iterations.

Clinical risk factors

To evaluate the performance of meta-PRSCVD when integrated
with clinical variables, we collected a set of established clinical risk
factors from two classic prediction models for CVD onset, including
the Framingham Risk Model (Gordon et al., 1977) and the Pooled
Cohort Risk Equations (PCE) (Muntner et al., 2014). Specifically, the
Framingham Risk Model included age, sex, blood pressure, total
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and
smoking (Gordon et al., 1977); the PCE included age, sex, ancestry,
blood pressure, TC, HDL-C, and smoking (Muntner et al., 2014).
Besides, evidence showed that hyperglycemia could be a potential
explanation for CVD risk among T2D patients (Joseph et al., 2022).

Hence taking the overlaps between UKBB available data and risk
factors as mentioned above, we included age of T2D onset, sex, body
mass index (BMI), current smoking status, hypertension, TC, low-
density lipoprotein cholesterol (LDL-C), HDL-C, Triglyceride (TG),
cholesterol-lowering medication, and glucose level in our basket.
Ancestry was not included since our analyses were all based on the
white British European samples. The clinical risk model was then
built using these clinical factors using the Cox regression model
based on the training dataset as described in the second-stage
training of meta-PRSCVD.

Statistical analysis

We applied the Cox regression models to assess the associations
between four PRSs (meta-PRSCVD, PRSCAD, PRSHF, and PRSIS) and
CVD occurrence among patients with T2D. Each model was

adjusted for the age of T2D onset, sex, and the first 10 principal
components. Follow-up started from the earliest onset date of T2D
and was censored at CVD, death, or 5th February 2021, whichever
was the earliest. During the first stage of the training of the meta-
PRSCVD, we only calculated the area under the receiver operating
characteristic curve (AUC) in the training set as the measurement to
select the best-performing PRS for each subtype (PRSCAD, PRSHF,
and PRSIS). Then in the testing set, both AUC and hazard ratios
(HRs) with their 95% confidence intervals (CIs) were calculated to
assess the prediction performance of different PRS and the
integrated model combining meta-PRSCVD with clinical risk factors.

We followed a strategy proposed in the Ripatti’s paper (Mars
et al., 2020) to investigate the contributions of meta-PRSCVD and
clinical risks in developing CVD among T2D patients with different
onset ages, where we first divided the patients into early- and late-
onset groups with 55 years old of onset as the cut point. By defining
the participants at the top 20% of meta-PRS as the high PRS risk
group and those at the top 20% of predicted clinical risk score as the
high clinical risk group, we then compared the proportions of
individuals with high PRS or high clinical risk scores or both in
each age group. Besides, we compared the absolute risk reduction
(ARR) across the high PRS risk group and the remaining by
calculating the differences in CVD incidence rate between early-
and late-onset groups. All the statistical analyses were conducted in
R (version 4.2.0). Statistical significance was set as 0.05 for each test.

Results

Population characteristics and clinical
risk factors

Based on the disease defined in Supplementary Table S1, the
demographics and baseline clinical information of the study subject
are summarized in Table 1 and Supplementary Figure S1. A total of
21,092 T2D patients from UKBB were included in this study.
Among these T2D patients, 4,015 developed CVD after 1 or
more days following their T2D occurrence. Consistent with
previous clinical research, the incidence rate of CVD was
significantly higher in older patients; obesity, hypertension,
hyperlipidemia, hyperglycemia, and ever smoking were all
significantly associated with CVD occurrence among T2D patients.

Prediction performance of meta-PRSCVD

Among the four state-of-the-art PRS methods considered in our
study (P+T, LDPred, PRS-CS, and AnnoPred), the empirical results
based on the first-stage training dataset suggested that AnnoPred
achieved the best onset prediction performance for all three CVD
subtypes. These selected optimal PRSs were named PRSCAD, PRSHF,
and PRSIS (Supplementary Table S2), each of which involved around
3 million variants.

For the prediction of CVD occurrence, meta-PRSCVD was always
better than the single PRS, with larger HRs and higher AUC
(Figure 1; Table 2). Specifically, the HR per standard deviation
(SD) of meta-PRSCVD was 1.28 (95% CI: 1.23–1.33) and the AUC
was 0.567 (95% CI: 0.544–0.589) when predicting CVD among T2D
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patients. T2D patients in the top 10% of meta-PRSCVD had an
incidence rate of 27.3%, which was 1.9 folds higher compared to
T2D patients in the bottom 10% of meta-PRSCVD (with an incidence
rate of 14.3%). We further compared individuals with the top and
bottom 10% of four PRSs through survival curves and the Cox
proportional model. The survival curves for individuals with the top
and bottom 10% meta-PRSCVD were significantly different
(Supplementary Figure S3). Consistently, the meta-PRSCVD
showed the highest adjusted HR of 1.43 (95% CI: 1.25–1.63,
p-value = 2.73E-06), suggesting that patients at the top 10% had
a 43% higher risk for CVD than patients in the bottom 10%. The
model with clinical factors alone achieved an AUC of 0.612 (95% CI
0.59–0.635). And when integrating the meta-PRSCVD with clinical
factors, we built a full prediction model with even better prediction
capacity with an AUC being 0.623 (95% CI 0.601–0.645).
Additionally, for risk prediction of three CVD subtypes, the
meta-PRSCVD also showed the most significant AUC
(Supplementary Table S3) and the highest HR (Supplementary
Figure S2). Additionally, we established calibration models for
four PRSs on CVD risk prediction and all four PRSs showed
good calibration (Supplementary Figure S4).

Contributions of meta-PRSCVD and clinical
risk in patients at different onset age

To compare the contributions of genetic risk and clinical risk to
the risk of CVD across the onset ages, we summarized the
proportions of T2D patients with the top decile meta-PRSCVD or
the top decile clinical risk scores or both in the early- (≤55) and

late-onset (>55) groups. We observed that individuals with high
meta-PRSCVD accounted for 25.96% in the early-onset group, which
was almost two folds higher than that in the late-onset group
(13.89%). On the other hand, in the late-onset group, individuals
with high clinical risk scores accounted for 18.73%, while in the
early-onset group, the proportion was dramatically reduced to
1.74% (Figure 2). This indicates that the clinical risk factors had
a stronger impact on the risk of CVD in the late-onset patients (>55),
while in the early-onset patients, the risk of CVDwasmore driven by
the genetic risk. Furthermore, we compared the distributions of PRS
and clinical risk scores between CVD cases and controls among
early- and late-onset groups (Supplementary Figure S5). The PRS
could better distinguish cases and controls among early-onset
groups compared to among late-onset groups (Supplementary
Figures S3A, C).

To further verify the important role of genetic risk in early-onset
patients, we then investigated the prediction performance of PRSs for
CVD in two groups of patients stratified by the onset age. And we
observed that all the PRSs (includingmeta-PRSCVD and single subtype
PRSs) were more predictive in the young patients (onset age ≤ 55)
compared to the old patients (onset age > 55) (Supplementary Table
S4). It is worth noting that meta-PRSCVD still performed the best in all
settings. More specifically, when using meta-PRSCVD to predict CVD
risk among T2D patients, the HR for CVD based on young patients
was 1.51 (95% CI 1.38–1.66) versus 1.23 (95% CI 1.18–1.28) among
old patients (Figure 3A), and the AUC was 0.614 (95% CI
0.561–0.665) for early-onset patients and 0.557 (95% CI
0.532–0.581) for late-onset patients (Figure 3C). Adding the
clinical variables further increase the AUC to 0.761 (96% CI
0.716–0.806) (Supplementary Figure S6). To further explore

TABLE 1 Baseline characteristics of T2D patients.

Characteristics All T2D patients (n = 21,092) T2D patients with CVD (n = 4,015) HR (95% CI) p-value

Age (years), n (%)a 1.04 (1.03–1.04) <2e−16

≤55 3,589 (17%) 682 (17%) — —

>55 17,503 (83%) 3,333 (83%) — —

Sex, number of Male (%) 12,611 (60%) 2,845 (71%) 1.53 (1.41–1.66) <2e−16

BMI, n (%)a 1.02 (1.02–1.03) 7.44e−14

<24 1,520 (7%) 186 (5%) — —

24–28 4,886 (23%) 796 (20%) — —

>28 14,686 (70%) 3,033 (76%) — —

Hypertension, n (%) 16,780 (80%) 3,525 (88%) 1.37 (1.24–1.53) 3.82e−09

TC mmol/L, mean (SD) 5.93 (1.28) 5.86 (1.36) 1.06 (0.93–1.21) 3.53e−01

TG mmol/L, mean (SD) 2.25 (1.27) 2.32 (1.3) 0.96 (0.92–1) 4.67e−02

HDL-C mmol/L, mean (SD) 3.93 (0.83) 3.95 (0.83) 1.02 (0.84–1.23) 1.75e−08

LDL-C mmol/L, mean (SD) 1.21 (0.33) 1.13 (0.3) 0.54 (0.44–0.67) 8.77e−01

Lipid lowering medication, n (%) 11,397 (54%) 2,814 (70%) 1.24 (1.12–1.35) 1.92e−06

Glucose mmol/L, mean (SD) 6.64 (2.95) 7.31 (3.45) 1.03 (1.02–1.04) 2.94e−11

Ever smoking, n (%) 11,919 (57%) 2,584 (64%) 1.27 (1.19–1.37) 4.47e−09

aThe hazard ratio (HR) per SD and p-value is calculated based on the continuous variables. CVD, cardiovascular disease; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein

cholesterol; LDL-C, low density lipoprotein cholesterol.
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interactions between onset age and genetic risk, we compared the
absolute risk reductions (ARRs) for CVD between high PRS and the
remaining group. Within expectation, the ARR was 2.92 folds higher
in the high-PRS group than in the remaining group (Figure 3B),
showing that the meta-PRSCVD can predict risk for CVD more
accurately for early-onset CVD.

We also evaluated the prediction performances of four PRSs for
CVD among male and female patients. No significant differences

were identified (Supplementary Figure S7). One possible
explanation was the insufficient power (Supplementary Figure S8).

Discussion

In this study, we have developed a meta-PRSCVD to predict the
risk for major cardiovascular outcomes among T2D patients. By

FIGURE 1
Prediction performance of meta-PRSCVD for CVD among T2D patients. We compared the prediction performance of four PRSs (meta-PRSCVD,
PRSCAD, PRSStroke, and PRSHF) for CVD among patients with T2D. (A) Hazard ratio (HR) increase per standard deviation was calculated for four PRSs
through Cox regression models. The X-axis is HR increase per standard deviation, y-axis differentiate four PRSs, different colors indicate different PRSs.
Among four PRSs, meta-PRSCVD provided the highest HR for CVD. (B) Among T2D patients, we divided four PRSs into 10 quantiles and calculated the
CVD incidence rate in each quantile. All four PRSs were able to stratify high-risk individuals, and meta-PRSCVD was with the largest stratification capacity.
(C) Based on meta-PRSCVD, two prediction models for CVD were compared with or without clinical variables, where the prediction accuracy was
measured by ROC and AUC. And we found that while meta-PRSCVD along can predict the risk of CVD with a high AUC, adding clinical variables could still
improve the prediction performance by 8.8%.

TABLE 2 Prediction of CVD by different models of meta-PRSCVD and separate PRS of each subtype.

Candidate PRSs\Models PRS onlya PRS + baselineb

meta-PRSCVD 0.567 (0.544, 0.589)c 0.56 (0.538, 0.581)

PRSCAD 0.558 (0.536, 0.58) 0.555 (0.533, 0.576)

PRSStroke 0.544 (0.522, 0.567) 0.545 (0.523, 0.566)

PRSHF 0.519 (0.497, 0.541) 0.533 (0.512, 0.554)

aModel for CVD with corresponding PRS only.
bModel for CVD with corresponding PRS, age of T2D onset, sex, and first 10 PCs.
cThe numbers in each entry are the area under curve (AUC): AUC (lower bound, upper bound); CAD, coronary artery disease; HF, heart failure.
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comprehensive analyses based on around 20,000 T2D patients, we
showed that the newly-developed meta-PRSCVD was able to
effectively stratify the T2D patients into groups with different
risks of CVD incidence. By combining the meta-PRSCVD with
established clinical variables, we further increased the prediction
accuracy for CVD. Furthermore, our investigation of patients with
different onset ages suggested that the risk of CVD among late-onset
patients was more driven by clinical factors while the risk of CVD
among early-onset patients was dominated by genetic risks.

Our results showed the superior prediction accuracy of
AnnoPred over P+T, LDPred, and PRS-CS. This further
validated the importance of biological annotation in generic
risk prediction and was consistent with previous studies (Hu
et al., 2017).

Previously, the use of PRS to predict cardiovascular events
among T2D patients was not clear. Hong et al. (Hong et al.,
2020) constructed PRS for CVD on 2,378 T2D patients and
explored its prediction performance in the same dataset. One
great limitation of this study was the lack of an independent
validation dataset for PRS performance analysis, while in our
study, we built the subtype PRSs using large-scale GWASs and
tested the performance through cross-validation, which was more
appropriate. Besides, the previous research (Hong et al., 2020) had a

limited sample size (2,378) and number of SNPs (15, 47, and 231).
We included around 20,000 T2D patients and over 3million SNPs in
our analysis, significantly boosting the prediction accuracy and
statistical power.

We also showed that, with more advanced PRS algorithms, a
larger study sample size, and by focusing on CVD events in the
training design, the meta-PRS built in this study could achieve
greater risk discrimination with the AUC being 0.56 (95%
CI: 0.54–0.58).

Besides, our results also confirmed the significant role of clinical
risk factors in the prediction of CVD events among T2D patients,
which was shown in several previous studies (Hong et al., 2020).
More specifically, the prediction accuracy of the meta-PRSCVD was
further increased to an AUC of 0.62 by combining with the clinical
variables including hypertension, BMI index, high-density
lipoprotein cholesterol, low-density lipoprotein cholesterol, total
cholesterol content, smoking status, and whether to receive
cholesterol treatment (Figure 1C).

In addition, we found that adding meta-PRSCVD to the existing
clinical risk factor model is more helpful for the clinical management
of T2D patients with early-onset age in predicting the risk of CVD.
In our population, 25.96% of early-onset (≤55) patients were at high
risk of CVD predicted by meta-PRSCVD, much higher than 1.74%

FIGURE 2
The proportions of early- and late-onset T2D cases with CVD in groups of high clinical/polygenic risk or neither. The high PRSwas defined as the top
20% of the meta-PRS distribution. The clinical high risk was defined as the top 20% of the predicted risk score from the regression model for CVD with
only clinical risk factors. According to the onset ages, patients were divided early- (≤55) and late-onset (>55) groups. In each onset age group, we
calculated the proportions of patients with CVD that can be identified by PRS or clinical risk; where we found that early-onset group had a larger
proportion of high PRS population than the late-onset group, while the late-onset group had a larger high clinical risk proportion than the early-
onset group.
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predicted by clinical variables, while clinical variables identified a
larger proportion of high-risk subjects in the late-onset group (>55)
(18.73% vs. 1.74%). Therefore, for T2D patients who are younger
than 55, we may use PRS to predict their risk of CVD and to select
the population which needs secondary prevention therapies
accordingly, such as targeted lipid-lowering therapy and lifestyle
modification for risk factor reduction, including a healthy diet,
smoking cessation, exercise. And for patients who are 55 or older
at the initial events, they would be better monitored using clinical
risk variables for CVD risk predictions instead. Our results are
consistent with a recent study (Mars et al., 2020), which suggested
the impact of PRS on health outcomes would differ across different
age groups.

We also note some limitations of the current work. First, since
our meta-PRSCVD was trained on the occurrence of three CVD
subtypes (CAD, IS, and HF) among all subjects instead of among
T2D patients, the difference between the endpoints of the original
GWAS and our analysis may lead to potential information loss.
The different definitions of diseases across cohorts may further

exacerbate the information loss. Second, although we already have
a larger sample size compared to previous studies, the sample size
is still limited as the number of T2D cases who developed CVD
events in the UKBB of the interested populations is rather small.
Third, some cases included in the main analysis showed a short
interval between T2D onset and CVD onset (less than 30 days),
which might hinder the impact of T2D on CVD outcome and thus
detriment the interpretations. We conducted further sensitivity
analysis including 20,370 subjects with follow-up longer than
30 days. The prediction of PRSs for CVD was similar to our
main analysis where the meta-PRSCVD had the best
performance (Supplementary Figure S9). The sensitivity analysis
suggested that subjects had shorter follow-up time were not
different or had little impact on our results. Finally, we did not
incorporate variables such as ancestry, psychosocial factors,
comorbidities of CVD including chronic kidney disease (CKD),
peripheral artery disease (PAD), and chronic obstructive
pulmonary disease (COPD) in our prediction models.
Specifically, we used the white British European population

FIGURE 3
Prediction performance of meta-PRS for CVD among early- and late-onset T2D groups. We compared the prediction performance of four PRSs
(meta-PRSCVD, PRSCAD, PRSStroke, and PRSHF) for CVD among patients with early- (onset age ≤ 55) and late-onset (onset age > 55) T2D. (A) Hazard ratio
(HR) increase per standard deviation was calculated for four PRSs through Cox regressionmodels. The X-axis is HR increase per standard deviation, y-axis
differentiate four PRSs, different colors indicate different onset age groups. All four PRSs showed better prediction performance among early-onset
group. (B) Based on the meta-PRSCVD distribution, we divided all T2D patients into high (top 20%) and remaining subjects, and calculated the incidence
rate for CVD in early- and late-onset groups respectively. The absolute risk reduction (ARR) was the difference in CVD incidence rate between two onset
groups. We noticed that the ARRwas higher in high-PRS group. (C) Based onmeta-PRS, two predictionmodels for CVD among early- and late-onset T2D
patients were compared, where the prediction accuracy wasmeasured by ROC and AUC. Meta-PRSCVD showed better prediction accuracy among early-
onset T2D patients.
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from UKBB to establish the meta-PRSCVD model, while the
classical prediction models we referred to for clinical risk
factors (Framingham Risk Model, Pooled Cohort Risk
Equations) were based upon the US population. Further
analyses are necessary to dissect the potential roles of these
factors in CVD occurrence among T2D patients.

Conclusion

In summary, we constructed a meta-PRSCVD that can effectively
predict the risk of severe cardiovascular diseases among T2D
patients. Our results highlight the great potential of meta-
PRSCVD in secondary prevention among early-onset T2D patients.
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