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Computational modeling has emerged as a critical tool in investigating the
complex molecular processes involved in biological systems and diseases. In
this study, we apply Boolean modeling to uncover the molecular mechanisms
underlying Parkinson’s disease (PD), one of the most prevalent neurodegenerative
disorders. Our approach is based on the PD-map, a comprehensive molecular
interaction diagram that captures the key mechanisms involved in the initiation
and progression of PD. Using Boolean modeling, we aim to gain a deeper
understanding of the disease dynamics, identify potential drug targets, and
simulate the response to treatments. Our analysis demonstrates the
effectiveness of this approach in uncovering the intricacies of PD. Our results
confirm existing knowledge about the disease and provide valuable insights into
the underlying mechanisms, ultimately suggesting potential targets for
therapeutic intervention. Moreover, our approach allows us to parametrize the
models based on omics data for further disease stratification. Our study highlights
the value of computational modeling in advancing our understanding of complex
biological systems and diseases, emphasizing the importance of continued
research in this field. Furthermore, our findings have potential implications for
the development of novel therapies for PD, which is a pressing public health
concern. Overall, this study represents a significant step forward in the application
of computational modeling to the investigation of neurodegenerative diseases,
and underscores the power of interdisciplinary approaches in tackling challenging
biomedical problems.
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1 Introduction

The interpretation of omics data is crucial to develop meaningful hypotheses to
understand complex disease mechanisms (García Del Valle et al., 2019). To interpret
these data, pathway databases play a role in providing an overview of the processes
involved in disease mechanisms. Community-driven initiatives, such as disease maps,
have been established to encode disease mechanisms in a computable form (Mazein,
2018). The disease maps can be further visualized through the use of dedicated
biocuration and visualization tools (Wiese, 2004; Funahashi, 2007; Kuperstein, 2013;
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Gawron, 2016; Balci, 2020). The information provided by pathway
databases and disease maps can then be utilized to develop
computational models, which are crucial in advancing our
understanding of the dynamic properties of complex diseases
(Silk, 2014). By integrating experimental data with computational
models, researchers can identify key molecular players and pathways
involved in disease initiation and progression, and predict the effects
of therapeutic interventions. Therefore, the use of disease maps and
computational modeling represents a promising approach in the
field of biomedical research, with potential implications for the
development of personalized medicine and precision therapies
Dynamic modeling approaches such as Boolean or Multi-valued
models, Petri nets, and Ordinary Differential Equations (ODEs)
(Walter, 1998; Dubrova, 2006; Aalst, 2009) can be used to represent
the complex dynamics of biological systems and diseases. However,
parameterizing these models remains a significant challenge (Ilea,
2012). Logical models provide a valuable alternative for researchers,
as they can be more easily constructed and parameterized specially
with limited amount of data (Naldi, 2018).

By utilizing logical models, disease maps can be encoded in a
computable form, and the dynamics of diseases can be analyzed in a
more straightforward manner. These logical models can be further
integrated with experimental data to create more comprehensive
and accurate representations of disease dynamics. This approach has
the potential to facilitate the discovery of novel drug targets and the
development of personalized medicine.

Therefore, further research is needed to better understand the
molecular mechanisms underlying diseases and advance
personalized medicine. By leveraging community-driven
initiatives such as disease maps and computational modeling
approaches, researchers can gain a deeper understanding of
complex diseases, and ultimately, develop more effective
treatments.

Logical modeling in systems biology is a mathematical approach
that uses Boolean algebra to represent the interactions between
components in a biological system (Albert and Thakar, 2014).
Logical modeling is a valuable tool for understanding the behavior
of cellular networks and gene regulation networks, as well as for
predicting the effects of perturbations such as drug treatments
(Maldonado et al., 2017). There are several types of logical
modeling used in systems biology, including Boolean models (BMs),
probabilistic BMs, Petri nets, and rule-based models (Aalst, 2009).

Boolean models are the most commonly used type of logical
modeling in systems biology (Albert and Thakar, 2014). Boolean
models represent variables with binary values of one (ON) or
zero (OFF) (Albert and Thakar, 2014). The behavior of the
output biomolecules is described by Boolean functions (BFs)
that define the interactions between the inputs. Updating
schemes determine the order in which BFs are calculated
(Hemedan et al., 2022). BFs have been primarily used to
describe gene regulation, but they have also been applied to
signaling networks using various logical formalisms, including
Boolean, differential, and fuzzy equations (Terfve, 2012;
Bloomingdale, 2018; Eduati, 2020).Boolean models provide a
qualitative representation of the system and its interactions,
without the need for detailed kinetic information (Aalst, 2009).
However, in some cases, presenting data in a simple BM may not
provide the best description of the biological system, and

integration with other quantitative methods may be necessary
(Maldonado et al., 2017).

In this study, we utilized Boolean modeling to represent the
complex molecular mechanisms underlying Parkinson’s disease
(PD). By using the Parkinson’s disease map Fujita et al. (2014)
PD mechanisms in a computable form, we simulated the dynamics
of the disease and proposed potential drug targets. By abstracting the
disease mechanisms in a logical form, we can simulate disease
dynamics and identify potential therapeutic targets, ultimately
facilitating the development of personalized medicine. For
example, LRRK2 mutations have been found to increase the
aggregation of cytosolic proteins, leading to apoptosis and cell
dysfunction, which could be targeted by therapeutic interventions
(Gopalakrishna and Alexander, 2015).

The PDmap is translated into BMs in an automated fashion using
CaSQ tool (Aghamiri et al., 2020). The complexity of disease pathways
is studied by simulating the effect of genomic perturbations from
omics data. BMs are created at different scales of the complexities to
ensure its ability and reliability to simulate disease mechanisms. These
different levels of complexity refer to the different scales at which
disease pathways can be represented and analyzed. First, the simple
and knownmechanisms are simulated to investigate the model ability
to represent the already known behaviour. Further, the BMs are used
to re-simulate complex molecular interventions data, comparing the
results with the literature. Creating and validating BMs at different
levels of complexity is a crucial step towards developing accurate
simulations of biological processes. Gradually increasing the
complexity of the model allows us to identify key factors that
impact the accuracy of the simulation, such as specific biological
components and interactions, and refine the model accordingly.
Through this process, we can better understand the complexity of
disease mechanisms and develop more reliable results that can
ultimately contribute to the development of effective treatments.
BMs were created in different modelling formats, facilitating the
interoperability and the simulation across different tools. This
includes SBML-qual, which is used for creating, storing and
exchanging qualitative models (Chaouiya et al., 2013). Analysis of
the models’ structural and dynamic properties was used to verify their
accuracy. The dynamic verification and sensitivity analysis results
showed that the BFs accurately represented the original interactions
and the model was robust against single perturbations. The validation
was performed by simulating models in different scales of complexity.
We analyzed and validated a number of pathways based on the
literature and experimental evidence. These included the TCA cycle,
dopamine transcription, FOXO3, and the Wnt-PI3k/AKT signaling
pathway. Our results demonstrated the utility of Boolean modeling in
simulating the behavior of these pathways and predicting the effects of
perturbations, providing valuable insights into the molecular
mechanisms underlying PD.

2 Material and methods

2.1 Construction of a Boolean model

The diagrams analyzed in this paper were obtained from the
MINERVA Platform (Gawron, 2016) (see the Supplementary
Material). This platform provides the capability to export specific
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diagrams from themap. The diagrams in CellDesigner SBML format
were then automatically transformed into SBML-qual format using
the CaSQ (CellDesigner as SBML-qual) tool. CaSQ uses specific
rewriting rules to reduce diagrams from Process Description to
Activity Flow notation, and to infer the logical functions and
translate the interactions. Aghamiri et al. (2020).

Rule 1: In a reaction, where a receptor and a ligand form
complex, the receptor reactant is removed.

Rule 2: In a reaction, where two proteins form a complex, the
reactants are removed and modifiers are linked directly to the
product.

Rule 3: Inactive forms of a biomolecule in a single reaction are
removed (do not participate in other interactions).

Rule 4: In a single transport reaction a reactant is removed and
the reactions are linked to the product (in case product and reactant
are the same).

The translation process involves converting the Process
Description notation into the Activity Flow notation (see
Figure 1). Biomolecules in Process Description diagrams may
exist in various states (such as phosphorylated or methylated),
however, during the translation to the Activity Flow notation,
each biomolecule is represented as a single node with its different
states depicted as distinct logical states of the node, such as active or
inactive.

2.2 Topological analysis of the models

The structural and functional correctness of BM was evaluated
by analyzing the interactions between the biomolecules. To this end
the topological features of the BMwere analyzed as a network. To do
so, Simple Interaction Format (SIF) was created as a simple way to
represent pairwise interactions among biomolecules in a network
graph. To transform an SBML model into SIF format, the model is
first converted into a graph representation with nodes representing
biomolecules and edges representing interactions between
biomolecules. Relevant information such as the source and target
nodes of each edge is then extracted from the graph representation

and mapped to the SIF format. The resulting SIF representation is a
list of pairwise interactions between nodes, which can be useful for
evaluating the structural correctness of biological models.
Established tools Trinh and Kwon (2019), were employed to
analyze the network, including the in/out degree, feedback loops,
and centrality measures. Among the centrality measures,
betweenness and stress centrality were utilized to quantify the
significance of each node in the network.

Betweenness centrality measures the importance of a node as an
intermediary between other nodes, by quantifying how frequently a
node lies on the shortest path between pairs of other nodes in the
network. Stress centrality measures the importance of a node in
connecting other nodes by quantifying the number of shortest paths
that pass through the node. (Ma’ayan 2011; Ashtiani et al., 2018).

Betweenness centrality:

CB v( ) � ∑
s,t∈V

σ s, t|v( )
σ s, t( ) (1)

where V is the set of nodes in the network, σ(s, t) is the total
number of shortest paths from node s to node t, and σ(s, t|v) is the
number of those shortest paths that pass through node v.

Stress centrality:

CS v( ) � ∑
s,t∈V

gst v( ) (2)

where V is the set of nodes in the network, and gst(v) is the
number of shortest paths from node s to node t that pass through
node v. Molecular targets for perturbation were prioritised based on
their centrality and sensitivity measures. First, we computed
betweenness centrality and stress centrality scores for all nodes in
the network and identified the top-ranked nodes with high centrality
values. Next, we simulated perturbations (Knockouts and
overexpressions) to the network and measured the similarity and
identity based distances between the original and perturbed states to
assess the sensitivity of each node to the perturbations. By
combining the centrality and sensitivity scores, we prioritized the
molecular targets for perturbation that were highly central and
sensitive.

FIGURE 1
This figure represents the causal molecular interactions in both Process Description and Activity Flow. The logic equation depicted in the Process
Description indicates that the activity of MAPTP as a product is determined by the presence of CD5:P25 and the absence of PIN1.
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2.3 Model analysis

2.3.1 Model updating schemes
The updating schemes of Boolean functions (BFs) were

evaluated and compared, including synchronous updating,
asynchronous updating (Garg et al. (2008).

The synchronous updating scheme updates all biomolecules
simultaneously according to their BFs (Garg et al. (2008); Wang
(2012).

σt+1i � Bi σti1 , σ
t
i2
, . . . , σt

ikj
( ) (3)

The asynchronous scheme updates the variables in a non-
synchronous manner. The new value of each variable σ is
denoted by an asterisk and is given by:

σ*i � Bi σ i1, σ i2, . . . , σ ikj
( ) (4)

Here, the values of the inputs on the right-hand side of the equation
can be either current or prior, depending on the individual
timescales (Wang, 2012).

Probabilistic Boolean models (PBMs) was also be used to update
BFs in a probabilistic manner by assigning probabilities to BFs and
updating biomolecules based on these probabilities (Grieb, 2015;
Schwab, 2020). A PBM can be described as follows:

P Xt � xt | Xt−1 � xt−1, . . . , X0 � x0( ) � ∏
n

i�1
P Xi,t � xi | pai, θi( )

(5)
where Xt is the state of the network at time t, xt is a vector of

binary values representing the state of each node in the network at
time t, pai is the set of parent nodes of node i in the network, and θi is
a vector of probabilities representing the conditional probability
distribution of node i given its parent nodes. The equation states that
the probability of the network being in state xt at time t, given its
previous states and the network structure, is the product of the
conditional probabilities of each node in the network.

Synchronous updating scheme was simulated using BoolNet tool in
which all the biomolecules in the network updated simultaneously,
based on the states of their regulators (Müssel, 2010). Asynchronous
updating scheme was simulated using pyMaBoSS Stoll et al. (2017), see
Stochastic Boolean model simulation section.

The behavior of a BM under different update schemes was
visualized through state transition graphs (see section 5 in the
supplementary file), which represent all possible states of the
system and the transitions between them (Garg et al., 2008). The
state transition graph illustrates the range of outcomes for a given
initial condition based on the update scheme used. Both update
schemes demonstrated the ability to simulate expected system
behavior.

2.3.2 Attractor search
Attractors are states in a state transition graph that have no

outgoing edges and can be stable or complex. The basin of attraction
is the set of states that lead to an attractor and can provide insight
into potential biological scenarios (Klemm and Bornholdt, 2005;
Hopfensitz, 2012). During the verification of models, several search
algorithms were examined to compare their speed and reachability.

One method used was an exhaustive search, which aimed to find all
possible attractors by performing synchronous transitions between
states. To increase efficiency, a SAT-based technique was employed,
where the problem of attractor identification was framed as a
Boolean satisfiability problem (SAT). This allowed for
determining if a particular formula was satisfiable or not and to
limit the search to loops of a specific length (Biere, 2008). The SAT-
based technique involves representing the state of the network as
Boolean variables, and representing the Boolean rules that govern
the transitions between states as logical constraints. Finding
solutions to the SAT problem that correspond to attractors in the
network allows for the attractor search.

The SAT-based technique can be formulated mathematically as
follows:

Let x1, x2, . . ., xn be the Boolean variables that represent the state
of the network, where xi is either 0 or 1. Let f1, f2, . . ., fm be the
Boolean functions that represent the transitions between states,
where each function is a logical constraint that depends on the
values of the Boolean variables. The goal of the SAT-based technique
is to find a set of values for the Boolean variables that satisfy the
logical constraints and correspond to an attractor in the network.
This can be represented as a SAT problem as follows:

Find x1, x2, . . ., xn such that ∧m
i�1fi(x1, x2, . . . , xn) � 1

The SAT problem can be efficiently solved using SAT solvers to
determine the attractors in the network.

Another approach, the decomposition method, aimed to
optimize speed and reduce complexity by breaking down the
model into strongly connected components (SCCs). The method
can be represented mathematically as:

f x( ) � ∑
n

i�1
gi xi( ) (6)

where f(x) is the original problem, n is the number of subproblems, and
gi(xi) is the solution to each subproblem. The subproblems are usually
defined so that they can be solved independently and then combined to
obtain a solution to the original problem. The decompositionmethod is
an approximation of the Boolean system and may not work well in all
cases, depending on the network simulated.

In addition, a heuristic search and an asynchronous search were
conducted. The heuristic search involved selecting a subset of
possible states as initial conditions and performing synchronous
transitions until an attractor was reached. The asynchronous search
used random asynchronous transitions to identify steady states and
complex attractors from the chosen initial conditions. To evaluate
cyclic attractors, we performed multiple simulation runs starting
from different random initial states until all cyclic attractors were
identified. We identified all the attractors present in the system
during each simulation run and considered them as potential steady
states or complex attractors that the system could reach under
certain initial conditions. By performing multiple simulation runs
and identifying all the attractors present in the system, we were able
to gain a more comprehensive understanding of the system’s
behavior and the potential biological scenarios it could represent.

2.3.3 Perturbation analysis
A perturbation analysis was conducted to evaluate the effect on

the topological robustness, dynamic resilience, and attractors
reached by the models (Trinh and Kwon, 2019). Specially, we
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focused on node perturbations, which altering the state of a single
biomolecule through knockout and overexpressions.

The evaluation was performed by performing sensitivity analysis
on a selected set of models, examining each biomolecule. Sensitivity
analysis is a technique that assesses how changes in a model or
system’s inputs affect its output, in this case, the two attractors
reached by the model (unperturbed and perturbed). To quantify the
difference between the two attractors, similarity-based distance and
identity-based distance were used. Similarity-based distance
assessed the similarity between the two attractors by taking into
account the common and unique states in both. The similarity-based
distance between the unperturbed attractor (Aunpert) and the
perturbed attractor (Apert) can be defined as:

dsim � |Aunpert ∩ Apert|
|Aunpert ∪ Apert| (7)

Identity-based distance, on the other hand, measured the percentage
of states present in both attractors.

did � 1 − |Aunpert ∩ Apert|
|Aunpert| (8)

2.3.4 Stochastic Boolean model simulation
The simulations of the specified biological models were

conducted using pyMaBoSS, a python API for the MaBoSS
software (Stoll et al., 2017). This framework provides a tool for
probabilistic Boolean modeling and simulation of biological systems
through discrete/continuous time Markov processes. It operates by
utilizing a Monte Carlo algorithm that simulates the system’s
evolution over time based on the initial conditions of the
biomolecules and the interactions between them.

pyMaBoSS performs asynchronous updates through a random
walk simulation technique, in which a single biomolecule is selected
and updated at each step, followed by repeating this process to
obtain a sample of the attractors. Asynchronous transitions are used
in pyMaBOSS to determine steady states and complex attractors
from the specified initial states.

In pyMaBoSS, a biological system is represented by a model of
interconnected Boolean variables, with each variable representing
the state of a biomolecule (e.g. present or absent, active or inactive).
The interactions between the variables are defined by Boolean rules,
which indicate the impact of one variable’s state on another. The
Monte Carlo algorithm randomly samples the possible states of the
system at each time step, based on the current state of the system, the
probabilities of each state, and the interactions between the
variables. By simulating the system over multiple time steps,
pyMaBoSS estimates the probability of each state at each time
point (Stoll et al., 2017).

3 Results

We investigated the dynamic behavior of molecular mechanisms
in Parkinson’s disease (PD) and their response to changes. To
achieve this goal, a variety of BM formats - including SBML-qual
- were created and analyzed using a range of tools. The validity of the
BMs was evaluated by examining their structural and dynamic
properties. The results of this assessment demonstrated that the

models displayed consistent structural and dynamic properties,
suggesting their use in study of the dynamics of PD.

3.1 Model construction

To construct the Boolean models of PD mechanisms, we first
selected a group of PD map diagrams for downstreammodeling and
verification. We carefully chose diagrams that were directly relevant
to PD-related phenotypes, as outlined in Table 1 (see also
Supplementary Figures S1–S6 i n the supplementary file). Once
we identified the relevant pathways from the PD map, we exported
them in CellDesigner SBML format, allowing for further analysis
and modeling. The CellDesigner SBML diagrams provided us with a
detailed representation of the biological pathways involved in PD,
which we used to construct our Boolean models.

To generate the SBML-qual models necessary for our modeling
work, we used CaSQ. This software allowed us to convert the
CellDesigner SBML diagrams into a SBML-qual model that
facilitated the interoperability between modeling tools. With
these Boolean models, we analysed the PD mechanisms to
explore the underlying biology of the disease and gain insights
into potential therapeutic targets.

3.2 Model verification

To verify the accuracy and reliability of BMs, both structural and
dynamic aspects of the model must be examined. First, we evaluated
the interactions and relationships between the model’s components,
to examine how they reflect the underlying biological system. For
dynamic verification, we analysed the model’s behavior over time
and compared it with the known biological behaviour represented in
the literature.

3.2.1 Sensitivity and structural analysis
We aimed to identify molecules that can serve as potential

targets and intervention points in pathways. To achieve this, we
conducted a structural and sensitivity analysis. We selected the

TABLE 1 This table presents a summary of the selected pathways with their
nodes, and edges in several important cellular signaling and metabolic
pathways. The pathways listed include dopamine transcription, Wnt-PI3K/AKT
signaling, FOXO3 activity, mTOR-MAPK signaling, PRKN mitophagy,
PPARGC1A, and the TCA cycle. The number of nodes and edges for each
pathway is also provided.

Pathways Nodes Edges Type

Dopamine transcription 167 196 Cellular signalling

Wnt-PI3K/AKT signalling 391 436 Cellular signalling

FOXO3 activity 65 86 Cellular signalling

mTOR-MAPK signalling 59 83 Cellular signalling

PRKN mitophagy 54 72 Cellular signalling

PPARGC1A 67 109 Cellular signalling

TCA cycle 137 160 Metabolic
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molecules with the highest betweenness centralities of each
respective model (top quantile). These molecules were proposed
to play a role in maintaining the stability of the system as they are
located at the intersection of multiple paths. The table below
(Table 2) shows the identified molecules and their corresponding
betweenness centralities.

The second step of our analysis aimed to evaluate the sensitivity
of the identified high central molecules to perturbations, specifically
gene knockouts. We investigated whether the levels of the molecules
are reliable measures to estimate the effect of perturbation and to
identify potential targets for intervention.

We found that most of the high central molecules showed less
sensitivity against knockouts, indicating their robustness in
maintaining the system’s stability. This observation suggests that
targeting these molecules may not have a significant impact on the
overall system stability. However, this does not necessarily mean

that they are not potential targets for intervention, as their
perturbation may have downstream effects that affect other
pathways or processes (see Figure 2).

To further investigate the reliability of the identified molecules as
potential targets for intervention, we identified the common molecules
that have significant centralities and/or sensitivities and also have
reported biological importance (see Tables 3, 4). These perturbations
were selected based on known biological scenarios to assess the model’s
ability to reproduce the known behavior.

In the Wnt Pi3kAKT pathway, we identified molecules such as
ROCK2, EIF4E, IGFR1, IGF1, and INS that can compensate for the
absence of PDPK1, RPS6KB1 phosphorylated (Figure 3). The
presence of such alternative molecules can maintain the overall
function of the pathway when such a scenario arises. These
compensatory paths may be exploited to develop targeted
interventions for pathological conditions.

TABLE 2 The table displays the betweenness centrality values and knockout sensitivity for key pathways and relevant biomolecules. The bolded valued indicate
that biomolecules with high betweenness have low knockout sensitivity, and vice versa, while some with low betweenness have high knockout sensitivity.

Pathway ID Betweenness centrality Knockout sensitivity

PPARGC1 PPARGC1A phosphorylated 322 0.14

TF NRF1 complex 174 0.04

PPARGC1A acetylated phosphorylated 94 0.29

TF NRF2 complex 88 0.11

TF YY1 complex 75 0.58

Wnt/Pi3kAKT mTORC1 complex neuron 463 0.03

AKT1 phosphorylated 440 0.04

PDPK1 260 0.09

RPS6KB1 phosphorylated 189 0.07

IRS1 phosphorylated 173 0.43

Mtor AMPK complex neuron 2276 0.42

TSC1:TSC2 complex neuron 1465 0.60

STK11 1018 0.47

SESN2 788 0.60

nicotinamid 745 0.50

FOXO3 activity TF space FOXO3 complex nucleus 3673 0.49

TF space CHOP:FOXO complex 1762 0.47

FOXO3 nucleus 1600 0.46

SIRT3 1482 0.47

BBC3 rna 895 0.59

BCL2L11 rna 895 0.42

Dopamine transcription TF NR4A2 complex 329 0.17

PITX3 101 0.16

TF PITX3 complex 66 0.14

MIR133B rna 54 0.17

RXRA 26 0.50
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3.2.2 Attractor reachability
In this study, we aimed to identify stable states, known as

attractors, within the analyzed pathways using Boolean modeling.
To ensure the biological relevance of the identified attractors, a

thorough literature search was conducted. The search aimed to
identify experimental evidence for the molecular states and
interactions observed in the identified attractors. The findings of
this literature search were summarized in Tables 3, 4, which present

FIGURE 2
The figure displays a comparison between the betweenness centralities and sensitivity measures in selected pathways. While most pathways exhibit
high betweenness centralities, their sensitivity measures are low. This suggests that betweenness centrality may not be a reliable indicator of the
significance of biomolecules in these pathways.

TABLE 3 The table compares the simulated behavior of decomposed Boolean models to expected behavior based on published literature. The table includes
information on the pathways, the number of nodes and edges in each network, the target node, the state of the target node (ON or OFF), and the simulated and
expected behavior for each pathway.

Dimension

Pathway Nodes Edges Target node State Simulated behavior Expected behavior

PGC1 alpha 69 109 PPARGC1A ON Mitochondrial biogenesis Match (Da Cruz et al., 2012)

SIRT3 OFF Mitochondrial biosynthesis Mismatch(Li and Cai, 2022)

Dopamine transcription 167 196 NR4A2 OFF Dopamine release Mismatch (Zhang et al., 2012)

PITX3 ON Retionic acid synthesis Mismatch (Jacobs et al., 2011)

Wnt/PI3K 391 436 LRRK2 OFF Autophagy activation Mismatch (Albanese et al., 2019)

GSK3B ON Autophagy activation Mismatch (Hermida et al., 2017)

TFEB ON Autophagy activation Mismatch (Zhuang et al., 2020)

4EBP2 ON Autophagy activation Mismatch (Silva et al., 2017)

FOXO3 activity 65 86 FOXO3 OFF Autophagy activation Mismatch (Fasano et al., 2019)

FOXO3 acetylated ON Autophagy activation Mismatch (Fasano et al., 2019)
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TABLE 4 The table compares the simulated behavior of several Booleanmodels to expected behavior based on published literature. The table includes information
on the pathways, the number of nodes and edges in each network, the target node, the state of the target node (ON or OFF), and the simulated and expected
behavior for each pathway.

Dimension

Pathway Nodes Edges Target node State Simulated behavior Expected behavior

PGC1 alpha 69 109 PPARGC1A ON Mitochondrial biogenesis Match (Da Cruz et al., 2012)

SIRT1 ON Mitochondrial biosynthesis Match(Stoyas et al., 2020)

Dopamine transcription 167 196 NR4A2 OFF Dopamine release Match (Zhang et al., 2012)

Wnt/PI3K 391 436 LRRK2 ON Autophagy activation Match(Bravo-San Pedro et al., 2013)

Mismatch (Albanese et al., 2019)

Wnt ON Increase auto-phagy Match (Lorzadeh et al., 2021)

DDIT3 ON Increase BCL2L11/BBC3i Match (Zhu et al., 2019)

GSK3B OFF Autophagy activation Match (Hermida et al., 2017)

TFEB ON Autophagy activation Match (Zhuang et al., 2020)

PHLPP OFF Autophagy dysregulation Match (Li et al., 2015)

RPS6KB1 OFF Autophagy dysregulation Match (Li et al., 2015)

4EBP2 ON Autophagy activation Match (Silva et al., 2017)

FOXO3 activity 65 86 FOXO3 ON Autophagy activation Match (Fasano et al., 2019)

BNIP3 activation Match (Fasano et al., 2019)

TCA cycle 137 160 AKDHC OFF acetyl coA-ATP-NADH Match (Kim et al. (2016)

Oxoglutarate OFF acetyl coA-ATP-NADH Match (Kim et al., 2016)

IDH OFF Acetyl coA-ATP-oxoglutarate Match (Kim et al., 2016)

SIRT3 OFF Acetyl coA-ATP-Iron Match (Kim et al., 2016)

FIGURE 3
The figure illustrates an example of alternative molecules in the Wnt/PI3K-AKT model (shown in green) that compensate for PDPK1 and
RPS6KB1 phosphorylated knockouts (shown in red) and reduce sensitivities. These compensatorymolecules enable the pathway to continue functioning
despite the loss of the phosphorylated proteins and reduce the overall sensitivity of the pathway to perturbations.

Frontiers in Bioinformatics frontiersin.org08

Hemedan et al. 10.3389/fbinf.2023.1189723

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1189723


the expected behavior of the molecules and their corresponding
stable states. The relevance of each stable state was evaluated based
on its correspondence to known biological states, its association with
PD, and its relevance to the analyzed pathways.

Our results indicated that the attractors produced by
decomposition-based approaches (in methods) were not
biologically relevant for all pathways (see Figure 4; Table 3). This
discrepancy was attributed to their aggressive decomposition which
resulted in overly fragmented models (available in the Gitlab
repository).

However, the attractors produced by Heuristic and SAT solver
algorithms were found to be viable for all pathways except for the
Wnt/PI3K pathway (see Table 4). Therefore, we deemed Heuristic
and SAT solver algorithms more suitable for further analysis.

3.3 Validation of Boolean models from
literature

We validated the model outputs by comparing them to the
literature. We first selected targets for the pathways and perturbed
them according to scenarios suggested by literature. We then
simulated the changes in the corresponding outputs. This was
achieved through: i) running a simulation with modeling tools,
including probablistic Boolean modelling tools and the
CellCollective platform Helikar (2012); Trinh and Kwon (2019);

Stoll et al. (2017). ii) Comparing the computed attractors by
modeling tools with the differential expressed molecules reported
in corresponding published dataset (Zhang et al., 2012) and
literature as shown in Table 4. The validation process has yielded
both matching and mismatched scenarios between the model
outputs and pertinent literature. Further exploration into the
causes of the observed mismatches will contribute to an
enhanced understanding of the limitations and strengths of the
model. Further, the comparison to literature, as described,
represents a crucial step in the ongoing refinement of our
comprehension of the pathways and perturbations. The
validation scenarios, results, and interpretation for the selected
pathways are discussed in subsequent sections.

3.3.1 Validation of TCA cycle model with literature
and experimental evidence

The TCA cycle, a metabolic pathway occurring in the
mitochondria of cells, is disrupted in Parkinson’s disease (PD),
potentially contributing to its development (Shen et al., 2020).
This pathway is an ideal candidate for validating the BM
approach due to the extensive literature and data available for
comparison, as well as its well-studied and understood nature
(Ahn et al., 2017). Furthermore, the TCA cycle involves the
transformation of multiple metabolites, which can be monitored
through techniques such as fluxomics, providing a means of
evaluating the BM’s accuracy by comparing predicted and

FIGURE 4
The figure illustrates the attractor pattern of decomposed WNT-Pi3k/AKT. The yellow and green colours represent the OFF and ON states of the
molecules in the attractor.
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experimentally observed metabolite levels. Given its central role in
various cellular processes, a BM of the TCA cycle could have broad
and far-reaching implications.

The validity and precision of the TCA cycle BM are established
through a comparison with literature and fluxomics data. To run the
simulation, the knockouts of isocitrate dehydrogenase, alpha-
ketoglutarate dehydrogenase, and the pyruvate dehydrogenase
complex are selected as the initial state parameters based on
prior research (Ahn et al., 2017). Using temporal-fluxomics data,
the levels of alpha-ketoglutarate dehydrogenase activity and the
nucleotide triphosphates GTP and GDP’s impact on ATP levels are
modeled using CellCollective. The simulation results are then
compared to experimental data as described below.

As shown in the fluxomics data, the validated results based on
literature indicate that the simulation of increased activation of acetyl
CoA, NADH, and PDKs leads to an increase in phosphorylation
reaction, subsequently reducing the activity of the pyruvate
dehydrogenase complex (PDC). This finding supports the hypothesis
that PDC deficiency, a potential target for therapeutic intervention in
age-related diseases, arises from the activation of the phosphorylation
reaction involving these substances (Stacpoole, 2012). The deficiency of
PDC, caused by KGDHC knockout, has a significant impact on the
production of succinic semialdehyde (Sergi and Parayil Sankaran,
2021). This deficiency results in decreased levels of succinic acid and
succinyl CoA, leading to a decline in ATP and GTP in mitochondria
(Gibson et al., 2003; Shi et al., 2011). The knockout of isocitrate
dehydrogenase leads to a decrease in ATP levels and a disruption in
the oxidative decarboxylation catalysis of isocitrate into alpha
ketoglutarate, resulting in mitochondrial dysfunction and
dopaminergic neurotoxicity (Kim et al., 2016). In PD, key regulators
such as oxoglutaric acid, glutamate hydrogenase 1 (GLUD), and ATP
levels are disturbed in response to SIRT3 knockout, which directly
impacts mitochondrial function (Shen et al., 2020). These findings are
summarized in Table 4.

The cellular metabolites undergo fluctuations during the cell
cycle, adapting to changes within the cell. The impact of alpha
KGDH, GTP, and GDP on ATP levels are modeled in the
simulation. The simulated ATP activity levels match the
measured concentrations in synchronized HeLa cells every 3 h
following release from growth arrest

3.3.2 Dopamine transcription pathway
One of the pathways validated in this study was the dopamine

transcription pathway, known to be disrupted in Parkinson’s disease
(PD) (Barneda-Zahonero et al., 2012).

NR4A2 were selected as the key elements in this validation, as
they are proteins that play crucial roles in the development and
maintenance of neurotransmitters and various cellular processes
(Barneda-Zahonero et al., 2012; Li et al., 2020).

In the simulation, the effects of perturbations to NR4A2 and
SIRT1 on dopamine release and mitochondrial biosynthesis were
observed as activity levels using CellCollective. These results,
confirmed through a comprehensive attractor analysis (available
in the Gitlab repository), demonstrate the following behavior in line
with literature (Table 4):

• The production of brain-derived neurotrophic factor (BDNF),
crucial for the survival and growth of neurons, was impacted

by the NR4A2 knockout. This result aligns with previous
research showing that NR4A2 is involved in the stimulation
of BDNF production in response to the neurotransmitter
N-methyl-D-aspartate (NMDA) (Barneda-Zahonero et al.,
2012).

• The NR4A2 knockout was also observed to affect other
molecules such as GCH1, TH, DDC, SLC18A2, SLC6A3,
and DRD2, which play significant roles in the development
and maintenance of neurotransmitters through various
targets, as previously reported in Jankovic et al. (2005);
Kadkhodaei et al. (2013); Jacobs et al. (2009).

3.3.3 Wnt-PI3K/AKT
The Wnt-PI3K/AKT pathway was evaluated in this study as it

has been reported to be impacted by mutations in Parkinson’s
disease (PD) (Bravo-San Pedro et al., 2013; Rabanal-Ruiz et al.,
2017; Madureira et al., 2020). The key elements of the pathway
considered during the validation were LRRK2 G2019S mutation,
Wnt, DDIT3, GSK3B, TFEB, PHLPP, RPS6KB1, and 4EBP2, which
are involved in the development and progression of PD (Bravo-San
Pedro et al., 2013; Poret and Guziolowski, 2018; Zhu et al., 2019;
McCabe et al., 2020).

The simulation scenario involved perturbing these biomolecules
and observing the effects on autophagy and neuron survival as
activity levels using CellCollective. These results were confirmed
through an exhaustive attractor search analysis. The results showed
the following behaviors that are in line with the published literature
(Table 4, 5):

• The simulation results showed that overexpression of the
LRRK2 G2019S mutant increased autophagy (Bravo-San
Pedro et al., 2013).

• This increase was found to be mediated by the inhibition of
mTORC1/2, which are proteins that regulate autophagy (Poret
and Guziolowski, 2018; McCabe et al., 2020). These findings
suggest that the interconnectedness of amino acid sensing,
mTORC1 signaling, and autophagy may offer a promising
approach for treating PD (Rabanal-Ruiz et al., 2017).

• Activating both 4EBP2 and TFEB was found to increase
autophagy activity more than activating them separately
(Decressac et al., 2013; Moors et al., 2017; Franco-Juárez
et al., 2022). Specifically, activating both of these proteins
in combination resulted in a 10.7% and 13.6% increase in
autophagy compared to activating them individually.

• In addition, the combination of inhibiting the proteins
RPS6KB1 and PHLPP and activating TFEB significantly
decreased neuronal death and the active state of autophagy
(Li et al., 2015). This combination resulted in a 96.3% decrease
in neuronal death.

• Both activating the Wnt protein and inhibiting the protein
GSK3B were found to increase autophagy (Hermida et al.,
2017; Yang et al., 2018; Palomer et al., 2019). The combination
of these modulations could improve our understanding of
therapeutic protocols for neurological diseases by promoting
neurogenesis and autophagy (Siegle, 2018). These findings
suggest that targeting these proteins could be a promising
approach for developing treatments for neurological
disorders.

Frontiers in Bioinformatics frontiersin.org10

Hemedan et al. 10.3389/fbinf.2023.1189723

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1189723


3.3.4 FOXO3 activity
The FOXO3 activity pathway was also evaluated in this study

due to its dysregulation in Parkinson’s disease (PD) (Pino et al.,
2014). The key element considered in this validation was the
FOXO3 biomolecule, which plays important roles in autophagy,
cell cycle progression, apoptosis, and stress resistance in PD (Pino
et al., 2014; Fasano et al., 2019; Cheng, 2022).

The simulation scenario involved perturbing FOXO3 and
observing the effects on autophagy and RNA-mediated
biomolecules as activity levels using CellCollective. These results
were confirmed through an exhaustive attractor search analysis. The
results showed the following behaviors that are in line with
published literature (Table 4):

• The simulation results showed that FOXO3 activation
increased autophagy in mitochondria (Fasano et al., 2019).

• FOXO3 activation also activated different biomolecules
involved in RNA-mediated mechanisms, including BECN1,
GABARAPL1, MAP1LC3A, BNIP3, ATG12, and MUL1,
which are known to be important regulators of autophagy
(Hou et al., 2020).

In order to validate the relevance of biomolecules for studying
PD mechanisms, four pathways were analyzed, including one
metabolic and three signaling pathways. The simulated behavior
of these pathways was compared to the expected behavior based on
published literature (Table 4). While the behavior of the pathways
was largely consistent with published literature, some discrepancies
were observed in the Wnt/PI3K pathway, specifically in the
simulated behavior of LRRK2. The results suggested that they are
trustworthy indicators of biological processes, as they align with
available data. Nonetheless, there was a mismatch in the Wnt-PI3K/
AKT signaling pathway wre the model did not match published
literature, leading to its revision.

Several factors could contribute to these discrepancies, such as
differences in experimental conditions or protocols, the use of
different LRRK2 models or cellular systems, the complexity of
the autophagy pathway, and limited understanding of the exact
mechanisms by which LRRK2 regulates the autophagy pathway. To

address these discrepancies, corrective measures were taken,
including modifying the Boolean function to better represent the
interactions between LRRK2, ARFGAP1, and autophagy (Stafa et al.,
2012). These results suggest that the simulated behavior of the
pathways is largely consistent with published literature.

4 Discussion

In this study, Boolean modeling was used to examine the
complexity of PD by simulating the dynamic interactions
between various biomolecules. These models were used to test
hypotheses about the role of certain biomolecules in PD
progression, by simulating the effects of these biomolecules and
comparing the results to experimental or observational data.
Additionally, the models were used to investigate the impact of
multiple perturbations on the disease and to identify patterns that
may not be evident from experimental or observational data alone.

4.1 Constructing Boolean models from
knowledge repositories

The Boolean models were automatically constructed using the
CaSQ tool (Aghamiri et al., 2020). One of the key benefits of using
the CaSQ tool is its ability to apply specific rewriting rules to simplify
the model and make it more manageable. Another advantage is its
ability to translate diagrams into the SBML-qual format, which is a
widely adopted standard in the systems biology community for
representing qualitative dynamic systems. This format allows for the
description of the model structure (biomolecules and interactions)
and the mathematical equations describing their behavior over time,
making it easy to share and compare models with other researchers.

The transformation of the diagrams into Simple Interaction
Format (SIF) using the CaSQ tool was also beneficial, as it allowed
for the use of various tools to analyze the diagrams. By using
different tools to analyze the diagrams, researchers can gain a
more comprehensive view of the disease, leading to an improved
understanding of its underlying mechanisms.

TABLE 5 The table shows the relationship between molecular target interventions and the probabilities of autophagy and neuron death. The data includes the
levels of seven different inputs, which are known to play a role in these processes. The table presents the resulting probability of autophagy and neuron death for
each combination of input levels.

Inputs Outputs

4EBP2 TFEB gsk3b Wnt PHLPP RPS6KB1 LRKK2 Autophagy Neuron death

1 – – – – – – 0.3983 0.9557

– 1 – – – – – 0.3691 0.9934

– – 0 – – – – 0.6918 0.9592

1 1 – – – – – 0.5055 0.8083

– – 0 1 – – – 0.9928 0

– 1 – 0 0 – 0 0.0364

1 1 0 – 0 0 1 0.9926 0.0364
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The reduction of Process Description notation into Activity
Flow notation and inference of logical functions from interactions,
in combination with the use of SBML-qual format, resulted in the
creation of models that are both accurate and computationally
efficient. This makes the generated models suitable for studying
large and complex systems, and allows for a deeper understanding of
the system and more accurate predictions about its behavior.
Therefore, the constructed Boolean models have the potential to
be expanded to study larger and more complex systems.

It’s worth mentioning that using specific knowledge resources,
such as PD map, has the advantage of providing a high quality of
disease-specific knowledge. This is because the diagrams are focused
on a specific disease and are created and reviewed by experts in the
field. This expertise and specificity make the generated models more
reliable.

4.2 Validation of the constructed models

The construction of models in compliance with systems biology
standards enhances their compatibility with various tools and
programs, leading to improved reproducibility and easier pipeline
development. By adhering to these standards, researchers can ensure
that their models are easily comprehended and integrated with other
models and data sources in a consistent and dependable manner.
Inadequate modeling details can lead to erroneous predictions.
Thus, it is crucial to prioritize model quality during construction
to minimize false positives during simulation. Verification is a
critical aspect of the modeling process, as it confirms the
reliability of the model and its ability to make accurate
predictions and inform decision-making.

This study evaluated the BMs by demonstrating their ability to
replicate experimentally validated studies from literature. The
results, as shown in Table 4, indicate that the simulated behavior
of the models aligns with expected behavior under both original and
perturbed conditions. The simulation of known perturbations
confirms the models’ ability to recreate known pathological
conditions, enhances understanding of these conditions, and
enables the identification of a reliable set of biomolecules and
translation rules. The selection of PD map diagrams for
downstream modeling and verification is crucial in
comprehending the biological mechanisms underlying PD and
identifying potential targets for therapy development. These
diagrams were chosen based on their relevance to PD phenotypes
such as mitochondrial dysfunction, dopamine dysregulation, alpha-
synuclein aggregation, neuroinflammation, and oxidative stress
(Antony et al., 2013; MacMahon Copas et al., 2021).

4.3 Structural and functional validation of
the Boolean modelling approach

4.3.1 Evaluation of the TCA cycle model
The TCA cycle model from the PD map was used to validate the

Boolean modeling approach. The TCA cycle is a widely studied
pathway with ample experimental data on enzyme activity and
metabolite levels, making it possible to compare BM predictions
with experimental data and assess the accuracy and reliability of the

model. Additionally, dysregulation of the TCA cycle is linked to
oxidative stress, inflammation, and cell death, which are all
hallmarks of Parkinson’s disease (Stacpoole, 2012; Kim et al.,
2016; Sergi and Parayil Sankaran, 2021).

The structural and functional roles of key molecules in the TCA
cycle BM were analyzed. This involved examining the involved
enzymes and cofactors, as well as the reactions they catalyze and the
intermediates they produce. The regulatory mechanisms controlling
the activity of these molecules were also considered to predict their
impact on the TCA cycle (Kafkia et al., 2022). The effects of
overexpression and knockout of the regulatory mechanisms
controlling the activity of the TCA cycle enzymes were modeled
in the TCA cycle BM. The results from the structural analysis were
used to calculate the sensitivity of the TCA cycle to knockouts and
overexpressions by simulating the impact of knockouts and
overexpressions of specific biomolecules on the overall activity of
the TCA cycle. Literature was reviewed to find experimental studies
that perturbed TCA cycle molecules in model organisms, such as
yeast or mice, to verify the results (Lee et al., 2011; Wongkittichote
et al., 2019). Selected perturbations in the Boolean model resulted in
the following findings supported by the literature (Table 4):

• Activation of acetyl CoA, NADH, and PDKs in silico increased
the phosphorylation reaction, reducing the activity of the
pyruvate dehydrogenase complex (PDC), which led to
decreased levels of succinic semialdehyde and succinic acid
(Stacpoole, 2012; Sergi and Parayil Sankaran, 2021).

• Simulated KGDHC knockout predicted a deficiency in
succinic acid and succinyl CoA and a downstream decrease
in ATP and GTP levels (Gibson et al., 2003; Shi et al., 2011).

• Simulated isocitrate dehydrogenase knockout resulted in
decreased ATP production and inhibited the oxidative
decarboxylation of isocitrate, with decreased levels of
oxoglutarate observed in response to L-glutamate (Huergo
and Dixon, 2015; Kim et al., 2016).

• Knockout of SIRT3 downregulated oxoglutaric acid,
glutamate hydrogenase 1 (GLUD), and ATP levels, directly
impacting mitochondrial function (Shen et al., 2020).

• The simulation of the effect of alpha KGDH and GTP, GDP on
ATP levels was validated using a probabilistic BM based on
temporal-fluxomics data, which describes the oscillations of
metabolites in the TCA. The simulated activity levels matched
the measured concentrations in synchronized HeLa cells at
various time points post-release from growth arrest (Table 6).

The TCA cycle BM used in this study was capable of
reproducing molecular activity that affects ATP levels and
mitochondrial function. These results indicate that the TCA BM
is a trustworthy tool for depicting the general picture of energy
metabolism and can shed light on the mechanisms behind the
oscillations of cellular metabolites. Nevertheless, this evaluation
has some limitations, such as the possibility of missing relevant
data in the literature search or not accurately reflecting all complex
interactions within cells. Additionally, the context of evaluating the
TCA cycle may differ based on the organism or tissue being studied.
Despite these limitations, the primary goal of validating the TCA
cycle BM is to ensure its accuracy in reflecting the underlying
biological processes.
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4.4 Modeling of the signaling pathways

4.4.1 Dopamine transcription: the role of the
NR4A2 gene

The NR4A2 gene plays a critical role in the regulation of
dopamine and the growth and preservation of neurons. This
gene is expressed in various tissues, including the brain, and has
been implicated in several vital biological processes, such as neuron
survival, mitochondrial biogenesis, and apoptosis (Chen et al.,
2020). When modeled using in silico methods, the knockout of
the NR4A2 gene correctly predicts the decrease in BDNF production
(Barneda-Zahonero et al., 2012) and the alteration of expression of
other genes involved in neurotransmitter metabolism and transport,
including dopamine (Jankovic et al., 2005; Jacobs et al., 2009;
Kadkhodaei et al., 2013). Activation of the SIRT1 gene, which is
also involved in neurotransmitter metabolism, leads to improved
mitochondrial biogenesis, a process required for the formation of
new mitochondria.

4.4.2 Wnt-PI3K/AKT signalling: implications for
dopaminergic neurogenesis and autophagy

The Pi3K/AKT pathway and Wnt signaling are known to be
critical for dopaminergic neurogenesis, as well as for crucial
developmental processes and the aging process, which is a
major risk factor PD (Marchetti et al., 2020; Long et al.,
2021). Both pathways share common downstream targets,
suggesting the possibility of crosstalk and potential synergistic
therapeutic approaches. For instance, both pathways can regulate
the activity of GSK3B, a signaling protein, and are involved in
autophagy, protein translation, and neuronal survival (Castelo-
Branco et al., 2004; Hermida et al., 2017). Numerous studies have

validated the content and structure of these pathways. Of note,
Pi3K/AKT pathway and Wnt signaling have been shown to play a
significant role in PD pathogenesis. The Pi3K/AKT pathway has
been implicated in modulating neuronal survival, while Wnt
signaling has been implicated in both neuroprotection and
neurodegeneration. Additionally, the interaction of the two
pathways with alpha-synuclein, a protein that aggregates and
forms Lewy bodies, a hallmark feature of PD, suggests a complex
interplay between these pathways in PD pathogenesis. Therefore,
a deeper understanding of the interaction between the Pi3K/AKT
pathway and Wnt signaling in PD pathogenesis could provide
novel insights into disease mechanisms and novel therapeutic
strategies (Marchetti et al., 2020; Long et al., 2021).

The following points outline key findings frommodeling studies
on the role of various molecular pathways in Parkinson’s
disease (PD):

• The LRRK2 gene, particularly its G2019S mutant form, has
been associated with an increased risk of developing PD
(Madureira et al., 2020). Overexpression of the
LRRK2 G2019S mutant has been shown to enhance
autophagy, a process involving the degradation and
recycling of cellular biomolecules, through the inhibition of
mTORC1/2 (Bravo-San Pedro et al., 2013; Poret and
Guziolowski, 2018; Zhu et al., 2019; McCabe et al., 2020).
Simulations of LRRK2 overexpression predicted the
reactivation of mTORC1, which is consistent with proposed
interactions between amino acid sensing, mTORC1 signaling,
and autophagy (Rabanal-Ruiz et al., 2017).

• TFEB, a transcription factor that regulates autophagy, has
been shown to have complex effects on this process, activating

TABLE 6 This table presents data on the ATP activity in the TCA (tricarboxylic acid) cycle with fluxomics integration. The data includes the time in hours, the
condition (labeled as “Cond”), and the levels of various inputs (alpha-ketoglutaric acid, GTP, GDP, and phosphate). The table also includes both simulated and real
measurements of ATP levels.

Inputs Output ATP level

Time (h) Cond. α-KG acid GTP GDP Phosphate Simulated Real

9 C1 0.84 0.48 0.50 0.45 1 0.87

12 C2 0.79 0.77 0.66 0.67 0.86 0.77

15 C3 0.77 0.98 0.79 0.93 1 1

18 C4 0.84 0.83 0.83 0.71 1 0.95

21 C5 1 0.56 0.65 0.73 1 0.90

24 C6 0.88 0.50 0.64 0.72 0.96 0.84

27 C7 0.93 0.66 0.84 0.80 0.96 0.87

30 C8 0.83 0.93 1 0.78 1 0.89

33 C9 0.83 1 0.71 1 1 0.89

36 C10 0.80 0.79 0.61 0.93 0.9 0.81

39 C11 0.81 0.77 0.60 0.83 1 0.97

42 C12 0.80 0.73 0.58 0.73 0.95 0.85

45 C13 0.815 0.49 0.46 0.65 0.88 0.76
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autophagy while also activating protein synthesis inducers
such as EIF4E and RPS6KB1 (Decressac et al., 2013).
Simulations of TFEB overexpression predicted a
neuroprotective effect through increased autophagy activity,
while joint activation of TFEB and protein synthesis inhibitor
4EBP2 led to a further increase in autophagy activity
(Decressac et al., 2013; Zhuang et al., 2020; Franco-Juárez
et al., 2022). The inhibition of RPS6KB1 and PHLPP and
activation of TFEB significantly decreased neuronal death
(Decressac et al., 2013).

• The Wnt signaling pathway and GSK3B have also been
implicated in PD. Simulated overexpression of Wnt protein
and inactivation of GSK3B were shown to increase
autophagy (Momčilović et al., 2014; Moya et al., 2014;
Awad et al., 2017). Simulations of GSK3B inhibition and
overexpression indicated its role in regulating
neurogenesis, consistent with reported findings (Castelo-
Branco et al., 2004; Toledo et al., 2017). Modulating Wnt
signaling and GSK3B together may hold potential as a
neuroprotective treatment in early stages of PD
progression (Castelo-Branco et al., 2004; Momčilović
et al., 2014; Moya et al., 2014; Awad et al., 2017; Toledo
et al., 2017).

In conclusion, the validation study of the Wnt/PI3K pathway
has confirmed existing literature findings and has also generated
novel hypotheses regarding the combined modulation of its
components. However, it is important to note that the
relationship between the discussed biomolecules and
neurogenesis and autophagy is complex and may depend on
specific cell types, activity of other signaling pathways, or the
stage of disease progression. Further studies are needed to fully
elucidate the mechanisms underlying the interactions between these
signaling pathways and their downstream targets, and to determine
their potential as therapeutic targets in PD. Nonetheless, the findings
presented in this study provide a promising avenue for further
exploration and potential development of novel treatments for PD.

4.4.3 FOXO3 activity: impact on mitochondrial
autophagy

The FOXO3 activity pathway has been identified as a critical
mediator of mitochondrial homeostasis (Fasano et al., 2019). The
BM of FOXO3 activation have revealed that this pathway
specifically promotes autophagy in mitochondria, through the
activation of various biomolecules, including BECN1,
GABARAPL1, MAP1LC3A, BNIP3, ATG12, and MUL1 (Hou
et al., 2020). These biomolecules have been established as key
regulators of autophagy. Thus, the activation of these
biomolecules in response to FOXO3 activation highlights a
close interconnection between RNA-mediated pathways and
FOXO3 activity in the regulation of autophagy. These findings
have the potential to improve our understanding of the complex
mechanisms involved in the regulation of autophagy and its role
in maintaining cellular health. Further investigations are
required to clarify the extent and specifics of this relationship,
which could enhance the development of targeted therapeutic
strategies for disorders related to mitochondrial dysfunction and
autophagy.

4.5 Applications and limitations of results in
translational research

Translational medicine aims to bridge the gap between basic
research and clinical practice by applying scientific findings to
medical practice. One way to achieve this goal is through the use
of modeling and simulation techniques. These techniques use
existing knowledge from bench experiments and disease-relevant
omics datasets to develop new hypotheses about the disease and
propose improved therapies and diagnostics. The Boolean modeling
approach, which is based on systems biology and systems medicine,
is particularly useful because it allows for iterative improvements in
understanding through a continuous cycle of data-driven modeling
and model-driven experimentation. The Boolean modeling
approach has the potential to generate therapy-related hypotheses
by designing perturbation experiments to compare model attractors
to the disease signature. This allows the identification of the basins of
attraction that could alleviate the pathological signature of the
disease and suggest the best combinations of targets to achieve a
healthy state.

This study offers valuable insights into the potential use of a
standardized SBML-qual format for Parkinson’s disease pathway
models. Through the use of the CaSQ translation tool, the authors
were able to generate models that can inform future research efforts.
Moreover, the study highlights the importance of accurate and
relevant data input, appropriate assumptions and algorithms, and
further integration with omics data for improving the accuracy and
relevance of modeling and simulation approaches in understanding
disease mechanisms and proposing targeted therapies. We also
emphasize the need for disease-specific datasets to accurately
parametrize models and better understand individual
dysregulations in different disease subtypes. This personalized
approach has the potential to lead to the development of more
effective treatments tailored to the unique characteristics of each
disease subtype.

While the study acknowledges certain limitations, such as the
high-level representation of observable disease effects and variations
in disease mechanism dynamics between patients, it highlights the
potential for continued improvement in modeling and simulation
techniques to advance translational medicine and improve disease
diagnosis and therapy. By addressing these limitations and
incorporating more precise and individualized data, modeling
and simulation approaches can provide a powerful tool for
advancing our understanding of disease progression and the
development of targeted therapeutic approaches.

5 Conclusion

Boolean modeling presents a promising opportunity to
understand the complexity of the disease and propose potential
therapeutic strategies. By modeling the dynamic interactions
between various biomolecules, researchers can gain insight into
the underlying mechanisms of the disease, test hypotheses about
the role of particular biomolecules, explore the impact of multiple
perturbations, and identify patterns that may not be apparent from
experimental or observational data alone. However, to leverage the
full potential of Boolean models, researchers must address several

Frontiers in Bioinformatics frontiersin.org14

Hemedan et al. 10.3389/fbinf.2023.1189723

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1189723


challenges, such as improving the accuracy and predictive power of
these models. To address these challenges, researchers can apply
model refinement, data integration, and parameter optimization
techniques. Additionally, model stratification is a promising future
direction for the field, which has the potential to increase the
accuracy of the models and allow for more precise treatments.

To enhance the accuracy of Booleanmodels, it is crucial to improve
their interoperability, annotations, and reproducibility. Standardized
annotations provide more information about the model, making it
easier to understand and use. Improved interoperability can help
integrate different models and datasets, leading to more accurate
predictions. Reproducibility can validate the results of the model and
increase confidence in its predictive power.

By addressing these challenges and enhancing these parameters,
we can improve the accuracy and reliability of Boolean models,
ultimately leading to better predictions and insights into the
underlying mechanisms of complex diseases such as Parkinson’s
disease. As such, Boolean modeling is a promising tool for future
research in this field, and its continued development will enable the
discovery of novel therapeutic strategies and advance our
understanding of complex diseases.
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