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Maximising FAIRness of biosimulation models requires a comprehensive
description of model entities such as reactions, variables, and components.
The COmputational Modeling in BIology NEtwork (COMBINE) community
encourages the use of Resource Description Framework with composite
annotations that semantically involve ontologies to ensure completeness and
accuracy. These annotations facilitate scientists to find models or detailed
information to inform further reuse, such as model composition, reproduction,
and curation. SPARQL has been recommended as a key standard to access
semantic annotation with RDF, which helps get entities precisely. However,
SPARQL is unsuitable for most repository users who explore biosimulation
models freely without adequate knowledge of ontologies, RDF structure, and
SPARQL syntax. We propose here a text-based information retrieval approach,
CASBERT, that is easy to use and can present candidates of relevant entities from
models across a repository’s contents. CASBERT adapts Bidirectional Encoder
Representations from Transformers (BERT), where each composite annotation
about an entity is converted into an entity embedding for subsequent storage in a
list of entity embeddings. For entity lookup, a query is transformed to a query
embedding and compared to the entity embeddings, and then the entities are
displayed in order based on their similarity. The list structure makes it possible to
implement CASBERT as an efficient search engine product, with inexpensive
addition, modification, and insertion of entity embedding. To demonstrate and
test CASBERT, we created a dataset for testing from the Physiome Model
Repository and a static export of the BioModels database consisting of query-
entities pairs. Measured using Mean Average Precision and Mean Reciprocal Rank,
we found that our approach can perform better than the traditional bag-of-words
method.
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1 Introduction

In developing a biosimulation model, it is essential to provide a comprehensive
description of the entities of the model related to processes, reactions, variables,
mathematical equations and parameters. Formally, the COmputational Modeling in
BIology NEtwork (COMBINE) community recommended the description in the form of
semantic annotations using the Resource Description Framework (RDF) technology (Neal
et al., 2019). With semantic annotations, complete and precise description is constructed in a
composite manner involving various knowledge source terms and their relationships in a
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structured form (Gennari et al., 2011). Further, composite
annotations are used as a community standard to encourage
platform interoperability and sharing and collaboration between
modellers (Gennari et al., 2021; Welsh et al., 2021). This work
supports this recommendation and goes beyond the composite
annotation structure to provide an entity retrieval method with a
simple data structure that is easy to deploy. Moreover, the method
should be general enough so it can be implemented for different
domains with composite annotations.

This complete and precise description is beneficial for understanding
themodel and subsequently becomes the key to rediscovery for verification
and possible reuse. Verification that includes model curation ensures
experimental results’ validity, reproducibility and consistency. Scientists
can then confidently compare models or evaluate their proposed
approaches. More comprehensive usability will enable model
composition, creating larger-scale models, which is an essential aspect
of modelling human physiology as a whole (Bassingthwaighte, 2000) and
understanding the human body (Hunter et al., 2002).

The standard technology to locate and manipulate data stored in
RDF format is SPARQL Protocol and RDF Query Language
(SPARQL). SPARQL is powerful for retrieving data specifically and
precisely (Pérez et al., 2009), although it requires a rigid syntax query.
This rigidity becomes a barrier for most users even if they already have
enough knowledge regarding the RDF triple and ontologies to explore
RDF. For expert users, their queries still may fail caused by
misspellings, capitalisation, and ontology term variation. Therefore,
text-based queries that can be composed freely, as in commercial
search engines, are preferred, although the results are less precise.

The current state-of-the-art approaches offer a workaround by
converting text-based queries to SPARQL by leveraging deep
learning. Most of the works are for question-and-answer tasks on
general knowledge, for example, about an object’s location and
public figures’ achievements; hence, they do not explicitly
support the search of entities annotated compositely. The
knowledge base used is generic RDF triple graphs such as
DBPedia1, Yet Another Great Ontology (YAGO)2, and Wikidata3.
These graphs maintain a massive amount of information about
entities and their facts, extracted from various sources such as
Wikipedia and GeoName. The community and users manually
validate information, so the level of accuracy is relatively high.
Soru et al. (2020) and Yin et al. (2021) have considered the
conversion as a language translation problem where SPARQL is
the foreign language. Soru et al. (2020) implemented Long Short-
Term Memory (LSTM) architecture to build sequence-to-sequence
models and train the model over a dataset extracted from DBPedia.
Then, Yin et al. (2021) extended the work by investigating the use of
eight Neural Machine Translation (NMT) methods built using
Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), and Transformer. CNN-based method (Gehring
et al., 2017) performed the best within these methods, followed by
Transformer-based (Vaswani et al., 2017). However, in the context
of natural language translation, the use of Transformer is

prospective to improve performance since it is not as mature as
RNN and CNN. With the popularity of Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2018),
Tran et al. (2021) created SPBERT, a Transformer-based model pre-
trained using a large DBPedia dataset for natural language to
SPARQL and query results verbalisation tasks, and proved that
the Transformer-based approach could surpass RNN and CNN.
Adapting the created model for a new model is efficient by
finetuning the existing model with less training data while
keeping the property of the original model. Nevertheless, the text
converted in these approaches must be in the natural language
templates as formatted in the dataset. They cannot accommodate
properly unstructured queries using keywords such as those used on
commercial search engines.

Working well with structured and unstructured text-based
queries, Natural Language Interface for Model Entity Discovery
(NLIMED) provides an interface to retrieve entities annotated
compositely (Munarko et al., 2022). It identifies phrases in the
query associated with the physiological domain and links them to
possible ontology classes and predicates. The link results are then
composed as SPARQL and executed at the SPARQL endpoint to
retrieve entities. A similar tool was developed by Sarwar et al.
(2019), Model Annotation and Discovery (MAD), with the same
domain but limited to entities in epithelial models. This
limitation relates to template-based methods whose templates
are customised for a particular topic, so adding topic coverage
requires new templates.

This paper presents CASBERT, a method to retrieve entities in
biosimulation models that are annotated compositely. We apply the
information retrieval paradigm and leave the complexity of
SPARQL providing a more expressive query composition while
maximising the advantages of BERT. By adopting Sentence-BERT
(Reimers and Gurevych, 2019), composite annotations describing
entities are pre-calculated into entity embeddings and stored into a
list of entity embeddings.With the entity embeddings, a query that is
also converted into a query embedding is compared using a
similarity formula; then, the ranked results are displayed.

With CASBERT, researchers can now explore information
about entities in biosimulation models stored in a repository.
They can find and access information quickly and adequately,
including parameter values, variable units, variable types, and
mathematical equations. CASBERT allows users to create
expressive queries as keywords or natural language, such as
‘concentration of triose phosphate in astrocytes’. This
convenience accelerates model validation, reproduction and
reuse, directly supporting the principles of FAIR (Findability,
Accessibility, Interoperability and Reusability) data.

Recently, the biosimulation model formats in the two largest
repositories, the Physiome Model Repository (PMR) (Yu et al.,
2011) and the BioModels Database (Chelliah et al., 2015), have
used RDF to describe their entities. Composite annotations are
largely used to describe models in CellML (Cuellar et al., 2003)
and SBML (Hucka et al., 2003) formats, detailing entities with
terms in ontologies such as anatomical location, chemical
compound, physics of biology, gene, and protein. We
generated test data from these repositories in query and entity
pairs. CASBERT performance was measured using Mean Average
Precision and Mean Reciprocal Rank, and compared to the

1 https://www.dbpedia.org/.

2 https://yago-knowledge.org.

3 https://www.wikidata.org/.
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traditional bag-of-words method, the score was significantly
higher. In addition, entity embeddings stored as a list are easy
to manage, allowing for efficient addition, subtraction, and
replacement processes, making them suitable for search engine
implementations. CASBERT can also be implemented for
composite annotation search in various domains such as
chemistry, pharmacy, and medicine. Our implementation,
dataset, and experiment setup are publicly available4.

2 Materials and methods

CASBERT provides an approach to converting composite
annotations defining entities and queries to embeddings. Entity
embeddings are pre-calculated and stored in a list of entity
embeddings, whereas query embeddings are created on the fly
when a request is made. Entities are then presented from the
most relevant by initially calculating the similarity values between
query embedding and entity embeddings.

The conversion to embedding methods are based on
Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) by implementing Sentence-BERT

TABLE 1 The example of compositely annotated entities written using the RDF standard in the PMR. These entities are variables of the brain energy metabolism
model, GAPg/GAPg and dAMP_dATPn.ATPn (Cloutier et al., 2009). They are described by ontology classes such as OPB_00340, CHEBI:17138, and FMA:54527; and
predicates such as ‘bqbiol:isVersionOf’ and ‘bqbiol:is’. There are also literal descriptions marked by the dcterms:description predicate, although not all entities
have one.

Variable Annotation using RDF

GAPg/GAPg <rdf:Description rdf:about = “./cloutier_2009.cellml#GAPg_GAPg”>

<bqbiol:isPropertyOf rdf:resource = “./cloutier_2009.cellml#entity_1”/>

<bqbiol:isVersionOf rdf:resource = “https://identifiers.org/opb/OPB_00340”/>

<dcterms:description>

Rate of change in the concentration of glyceraldehyde-3-phosphate in the astrocyte

</dcterms:description>

</rdf:Description>

<rdf:Description rdf:about = “./cloutier_2009.cellml#entity_1”>

<bqbiol:isPartOf rdf:resource = “./cloutier_2009.cellml#entity_2”/>

<bqbiol:is rdf:resource = “http://identifiers.org/chebi/CHEBI:17138”/>

</rdf:Description>

<rdf:Description rdf:about = “./cloutier_2009.cellml#entity_2”>

<bqbiol:is rdf:resource = “http://identifiers.org/fma/FMA:54537”/>

</rdf:Description>

dAMP_dATPn.ATPn <rdf:Description rdf:about = “./cloutier_2009.cellml#dAMP_dATPn.ATPn”>

<bqbiol:isPropertyOf rdf:resource = “./cloutier_2009.cellml#entity_15”/>

<bqbiol:isVersionOf rdf:resource = “https://identifiers.org/opb/OPB_00340”/>

<dcterms:description>

Rate of change in the concentration of adenosine triphosphate in the neuron of the brain

</dcterms:description>

</rdf:Description>

<rdf:Description rdf:about = “./cloutier_2009.cellml#entity_15”>

<bqbiol:isPartOf rdf:resource = “./cloutier_2009.cellml#entity_1”/>

<bqbiol:is rdf:resource = “http://identifiers.org/chebi/CHEBI:15422”/>

</rdf:Description>

<rdf:Description rdf:about = “./cloutier_2009.cellml#entity_1”>

<bqbiol:is rdf:resource = “http://identifiers.org/fma/FMA:54527”/>

</rdf:Description>

Text in bold are the main terms for the composite annotation, which are the ontology classes, variable description, and variable name whose relationship is described by the predicates.

4 https://github.com/napakalas/casbert/.
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(Reimers and Gurevych, 2019). For the experiment, we created a
dataset by collecting composite annotations from biosimulation
models from the PMR and the BioModels database. These
conversion methods are described in the following subsections,
starting with the dataset used.

2.1 Biosimulation model - Composite
Annotation Query (BM-CAQ) dataset

We constructed the dataset for the experiment by extracting
compositely annotated entities in the PMR (Yu et al., 2011) and the
BioModels database (Chelliah et al., 2015). The PMR is a repository
storing biosimulation models initiated by the Physiome Project
(Hunter et al., 2002). Most models are written using the CellML
standard and annotated using the RDF standard. Themodels usually
are equipped with human-readable information that can be loaded
as web pages. We can further simulate and analyse physiological
processes by running models using tools such as OpenCOR (Garny
and Hunter, 2015). Like the PMR, the BioModels database manages
biosimulation models in more significant numbers. The models
deposited in this repository are mostly written using SBML standard
(Hucka et al., 2003).

Table 1 presents the example entities described compositely
using the RDF standard in the PMR. These entities are variables of
the brain energy metabolism model (Cloutier et al., 2009) whose
CellML model is available in the PMR5. An entity is described by at
least one or, ideally, more ontology classes to provide detailed and
precise descriptions. In the examples, GAPg/GAPg is annotated with
OPB:00340, CHEBI:17138, and FMA:54537, whereas dAMP_
dATPn.ATPn is annotated with OPB:00340, CHEBI: 15422, and
FMA:54527, where these ontology classes are concepts available in
Ontology of Physics for Biology (OPB) (Cook et al., 2008),
Foundational Model of Anatomy (FMA) (Rosse and Mejino,
2008), and Chemical Entities of Biological Interest (ChEBI)
(Degtyarenko et al., 2008), respectively. Additionally, the
relationship between an entity and ontology classes is specified
using predicates where in the example, there are ‘bqbiol:
isPropertyOf’, ‘bqbiol:isPartOf’, ‘bqbiol:isVersionOf’ and ‘bqbiol:
is’. As a complement, although not mandatory, an entity may be
provided with a literal description marked with the ‘dcterms:
description’ predicate, for example, ‘Rate of change in the
concentration of glyceraldehyde-3-phosphate in the astrocyte’ on
GAPg/GAPg entity.

There are 13,360 entities6 in the RDF and CellML files in the
PMR, and 4,652 have literal descriptions. These literal descriptions
usually accurately summarise the composite annotations of entities,
although some are not. We assume that an accurate literal
description can be used as a query representation for testing
CASBERT and can reflect future user queries. Therefore, our test
data includes all accurate literal descriptions as valid queries and the
related entities as relevant search objects. Altogether, there are
338 unique queries, each relating to one or many entities. Then,

we will refer to this set of query-entity pairs as noPredicate because
most queries do not explicitly have an RDF predicate term.

However, we anticipate that queries for specific entity searches
mimicking SPARQL will include predicate terms. Therefore, we
created the second set of query-entity pairs by inserting the terms in
the predicates to the queries in noPredicate. Terms were chosen
randomly based on a series of predicates determining the
relationship between ontology classes and entities. For example,
the GAPg in Table 1 and CHEBI:17138 (glyceraldehyde-3-
phosphate) are linked by ‘bqbiol:isPropertyOf’ and ‘bqbiol:is’ so
that the insert can use the ‘is property of’ and ‘is’. If ‘is property of’ is
selected, the new query becomes ‘Rate of change in the
concentration of is property of glyceraldehyde-3-phosphate in the
astrocyte’. We got 534 additional query-entity pairs and name this
set as withPredicate’.

We applied the same strategy to extract queries from the
BioModels database, which returned 834 noPredicate and
1,541 withPredicate queries. In its entirety, this dataset is named
Biosimulation Model - Composite Annotation Query (BM-CAQ)
and sample data are shown in Supplementary Tables S1–S4. The
source code for creating this dataset and testing CASBERT is
available online7.

2.2 Composite annotation search using
BERT (CASBERT)

We used Sentence-BERT (Reimers and Gurevych, 2019), a
BERT-based sentence encoder, to convert queries and composite
annotations to embeddings and to classify the query to be compared
to the appropriate entity embedding list. BERT provides pre-
training models built based on massive corpora that can be fine-
tuned with a smaller corpus to maximise performance for domain-
specific uses (Devlin et al., 2018). A sentence is converted into
embedding by splitting to tokens and then calculating each token’s
embedding unique to the context, such as the surrounding tokens
and position. Therefore, the same token in different sentences will
have a different embedding. This attention to context correlates with
high reliability in several natural language processing tasks, such as
named entity recognition, concept extraction, and sentiment
analysis, and is relatively better than non-context embedding
(Arora et al., 2020; Taillé et al., 2020). In addition, the form of
the token, which is part of the sentence, makes BERT more adaptive
to typographical errors and variations of word writing.

The most straightforward approach to create a sentence
embedding is by averaging the token embeddings; however, this
often leads to poor performance (Reimers and Gurevych, 2019).
Resolving this issue, Sentence-BERT offers a better concatenation
method optimised for Semantic Textual Similarity (STS) by applying
Siamese (Bromley et al., 1993) and Triplet loss (Weinberger and
Saul, 2009) networks.

In the following, we describe the CASBERT mechanism for
transforming composite annotations to entity embeddings and
queries to query embeddings.

5 https://models.physiomeproject.org/workspace/5af/.

6 as of July 2020. 7 https://github.com/napakalas/casbert-experiment/.
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2.2.1 Entity embedding
An entity embedding represents an entity as a dense vector whose

dimensions match the sentence transformer model used. CASBERT
generates this presentation by converting composite annotations to
embedding. The annotation comprises triples which are subject,
predicate and object expressions. These triples form a tree where
the root is the entity’s name, the leaves are the ontology classes
(objects), and the edges are the predicates. The predicates link the root
and the leaves to formpaths. The entity embedding is the average of all
path embeddings, where the ontology class embedding and the
predicate embeddings determine the path embedding.

Here we describe the process of converting composite annotations
to entity embeddings. We use the GAPg/GAPg variable in Table 1 as a
running example where all other composite annotations are processed
similarly to become entity embeddings. Figure 1A shows the composite
annotation regarding the concentration (OPB:00340) of glyceraldehyde
3-phosphate (CHEBI:17138) in an Astrocyte (FMA:54537). There are
five triples with the subject and objects: root (GAPg/GAPg), ontology
classes (OPB:00340, CHEBI:17138, FMA:54537), and intermediate
subjects/objects (entity_1, entity_2). Figure 1B presents
interconnected triples creating paths that display a clear relationship
between root and ontology classes. The terms referred to as
intermediate subject/object are usually generic and are similar across
all composite annotations, so they cannot be used as a differentiator;
therefore, we ignore them (Figure 1C). Next, we remove predicates that
directly connect intermediate subjects, e.g. ‘is’, and ontology classes,

because these only describe the intermediate subjects/objects, not the
entity. We remove the prefix of the predicate term; for example, rather
than ‘bqbiol:isPropertyOf’, we use ‘isPropertyOf’ as a predicate term.

Figure 2 illustrates the translation to the entity embedding process.
Initially, CASBERT calculates the embedding of each path ept by
combining its ontology class embedding ec and the average of
predicate embeddings ep using Eq. 2; where ec and ep are calculated
using Eq. (1). ec is the average of ontology class feature embeddings; for
example, FMA:54537 has a preferred label feature of ‘Astrocyte’ and a
synonym feature of ‘Astrocytus’. There are other features, such as parent
labels and definitions, but using the selected two features only can give a
higher performance (Munarko et al., 2022). For ep calculation, predicate
terms in camelCase format are normalised to phrases in lowercase
before converting to embeddings. For example, ‘isVersionOf’ and
‘isPartOf’ are changed to ‘is version of’ and ‘is part of’. Then, we
limit the role of ep with wp between 0 and 1, which makes it lower than
the role of the ontology class embedding. Finally, all path embeddings
are averaged to get entity embedding ee as presented by Eq. (3).

ec � 1
m

∑m
i�1

ei and ep � 1
n
∑n
i�1

ei (1)

ept � ec + wp.ep
1 + wp

(2)

ee � 1
k
∑k
i�1

epti (3)

FIGURE 1
The example of an entity compositely annotated using RDF and its representation for further conversion to embedding. (A) The composite
annotation of GAPg/GAPg entity by three ontology classes. (B) Paths consist of predicates connecting the entity to ontology classes. (C) The
representation of the entity before converted to entity embedding.
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2.2.2 Query embedding
Users create queries using keywords or natural language

to search for entities. CASBERT represents these queries
into query embeddings, so they are comparable to entity
embeddings.

To explain the process of converting queries to query
embeddings, we use ‘triose phosphate concentration in astrocytes’
as a running query example (see Figure 3). This query is intended to

search for the GAPg/GAPg variable as in Table 1 where ‘triose
phosphate’ is a synonym for ‘glyceraldehyde 3-phosphate’. A
query can be assumed to be a composite annotation summary
containing phrases about physiological and biochemical terms.
CASBERT uses off-the-shelf natural language processing
(NLP) method, SciSpacy (Neumann et al., 2019) with the ‘en_
core_sci_scibert’ as Named Entity Recognition (NER) model, to
identify these phrases; where for the query example, there are

FIGURE 2
The conversion of entities to entity embeddings. For each entity, ontology classes and predicates are encoded into embeddings. Embeddings of
ontology classes and predicates in one path are combined to form path embedding. Finally, all path embeddings are combined using the average
function, creating an entity embedding.

FIGURE 3
The conversion of a query to a query embedding. Phrases related to physiology and biochemical terms are identified using NER method, and then
converted into embeddings using Sentence-BERT. These phrase embeddings are then averaged and combined with the entire query text embedding.

Frontiers in Bioinformatics frontiersin.org06

Munarko et al. 10.3389/fbinf.2023.1107467

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1107467


‘concentration’, ‘triose phosphate’, and ‘astrocyte’. These
phrases are converted to embeddings and combined by
averaging (Eq. 4). We assume that these phrases correlate with
ontology classes to some degree; therefore, the combined
embedding eph is normalised by wph, which is the average of the
maximum similarity of each phrase in p to ontology classes c. After
converting into embeddings, the similarity between pi and cj
follows Eq. 6.

eph � wph

n
∑n
i�1

ei where wph � 1
n
∑n
i�1

max Simm
j�1 pi, cj( )( ) (4)

eq � mee + eph (5)

Sim eq, ee( ) � eq.ee
eq
���� ���� ee‖ ‖ �

∑n
i�1eqi.eei������∑n

i�1e2qi
√ ������∑n

i�1e2ei
√ (6)

Furthermore, we take into account the relationship between
phrases. This relationship is encoded explicitly or implicitly as
conjunctions, prepositions, and the order of words. We capture
this relationship by accounting for the overall query as an
embedding e. The query embedding is then the addition of eph
and e, where e is multiplied with the empirically decided multiplier
me (see Eq. 5).

A few phrases may not have physiological or biochemical
meaning and only complement other phrases. Therefore, their
embeddings should be weighted lower and merged with the
complemented phrase embedding. We use the wp value for

experiment purposes, the same weight used in Eq. (2), to weight
these phrase embeddings.

2.2.3 Entity retrieval
With the availability of the entity embedding list and query

embedding, we can now calculate their similarities and present the
relevant entities sorted from the most similar, as illustrated in
Figure 4.

2.2.3.1 Query - Entity Similarity
We implemented Cosine Similarity (CS) (Salton and McGill,

1983) to calculate the similarity value between a query embedding eq
and an entity embedding ee. CS of two embeddings is the dot product
of both embeddings divided by the multiplication of the magnitude
of both embeddings (Eq. (6)). Thus, CS ignores the magnitude of
each embedding, making it suitable for the high dimensionality
nature of embedding. Additionally, ‘multi-qa-MiniLM-L6-cos-v1’
pre-trained sentence transformer model (Reimers and Gurevych,
2019) used to convert a sentence to an embedding in CASBERT is
optimised with CS. This calculated value is later used to display the
retrieval results from the highest to the lowest.

2.2.3.2 Query Classification
Considering that we can create multiple lists of entity

embeddings with different wp (see Eq. (2)), we found that some
queries can retrieve best when compared to a list with wp = 0, while
others to a list with wp > 0. As an experiment, we created two lists, L1

FIGURE 4
Entity search process using CASBERT. CASBERT provides entity embedding lists to choose from in the retrieval process according to the query type.
Lists are distinguished by differentwp values, for example, L1 with a value of 0 and L2 with a value of 0.22. At first, the query is converted to an embedding.
Then, the embedding becomes the input of the Query Classifier (QC) model to select the correct entity embedding list. The entity results are then taken
from the chosen entity embedding list and presented in a sorted order based on cosine similarity values.
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with wp = 0 and L2 with wp = 0.22. Then we created the Query
Classification (QC) model to classify queries to L1 or L2, where these
classes are associated with the embedding list used for entity
retrieval. The training data was extracted from partially
combined query-entity sets in BM-CAQ. We calculated the value
of mAP@10 (see Eq. (8)) of the selected query pairs to perform
searches to L1 and L2. The highest value determines pair labelling to
L1 or L2. The QCmodel was trained using Transformers (Wolf et al.,
2020) and the ‘bert-base-uncased’ pre-trained model where the
training data was initially augmented using nlpaug8 to increase
its size and diversity. The training process in more detail is
presented in Supplementary Figure S1.

3 Experiments and results

3.1 Experiment setup

We conducted experiments to measure CASBERT’s
performance in searching for entities in the biosimulation
models in the PMR and the BioModels database. Table 2
displays query-entity pair sets and retrieval methods used in
this experiment. The data used is the BM-CAQ dataset, including
noPredicate and withPredicate sets. Additionally, we combined
the two sets into combine and used 60% of it for training and
validation of the QC model and the remaining 40% for additional
test data.

wp is a variable that defines the role of the predicate embedding,
which is ideally lower than the role of the ontology class embedding.
In this experiment, we want to demonstrate the difference in
performance between retrieval methods using entity lists without
predicates and entity lists with predicates. Therefore, we first created
two entity embedding lists, L1 with wp = 0 and L2 with 0 < wp < 1.
Thewp value for L2 can be any arbitrary number as long as still in the
correct range. Here, we choose 0.22 because it is small compared to
the ontology class embedding weight, which is 1, and sufficient to
represent the existence of predicates.

We tested three retrieval scenarios that yielded seven methods
combined with entity embedding lists L1 and L2. We also measured
the performance of BM25 (Robertson and Walker, 1994), a bag-of-
words method, as the gold standard. The first scenario calculates the
query embedding based on the query text only without identifying the
phrases; when used to retrieve entities from L1 is named macro while
from L2 is called macroWP. The following scenario uses phrases
related to physiological and biochemical terms to generate query
embeddings; when retrieving from L1, the method is calledmicro. The
phrases are detected using the NER method, converted to embedding
and combined using the averaging function. The additional use of
non-physiological and biochemical phrases with this method, along
with the retrieval from L2, is calledmicroWP. Next, the third scenario
combines the two initial scenarios using Eqss (4), (5), where the
application for L1 and L2 aremixed andmixedWP consecutively. Here
we setme = 1.9, which again is determined empirically by the logic that
the query term as a whole is good enough to represent the query while
the phrases within it can enhance the quality of the query
representation as an embedding; therefore, me is more significant
than wph. Finally, we apply L1 and L2 selection using the QC model
with the third scenario as mixedCl.

TABLE 2 The strategies to measure CASBERT performance. There are three query sets and eight retrieval methods including BM25 as the gold standard.

Q-E type # Of query-entities Description

PMR-CA BioModels-CA

noPredicate 338 834 The original query-entity pairs extracted from the PMR and the
BioModels-CA.

withPredicate 534 1541 The expanded noPredicate set by randomly adding terms in
composite annotation predicate to the associated existing
query terms

combine 509 1777 Combination of noPredicate and withPredicate where the data used
for QC model training is removed

Retrieval method Terms used to generate query embedding List of entity embeddings used

macro whole query terms E1(wp = 0)

macroWP whole query terms E2(0 < wp < 1)

micro ontology class concept phrase E1(wp = 0)

microWP ontology class concept phrase E2(0 < wp < 1)

mixed whole query terms & ontology class concept phrases E1(wp = 0)

mixedWP whole query terms & ontology class concept phrases E2(0 < wp < 1)

mixedCl whole query terms & ontology class concept phrases select between L1 or L2

BM25 Retrieval uses a bag-of-words method, BM25

8 https://github.com/makcedward/nlpaug.
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3.2 Evaluation metric

Wemeasured CASBERT performance for each set of query-entity
pairsQ in the BM-CAQ dataset usingMean Average Precision for the
top k results (mAP@k), Eq. (8).mAP@k is based on Average Precision
at k (AP@k) as shown by Equation 7, where R is the number of
relevant entities in the results,P@i is the proportion of relevant entities
in the top i results, and r@i is a relevance function that returns 0 or
1 for the irrelevance or relevance of the entity at position i,
respectively. Suppose there is a query-entity pair (q, es) in Q,
where the number of es is at least one; then, with the query q, a
retrieval method should be able to retrieve entities in es only. The
number of search results that match this es is R. Furthermore, we set
the value of k to 10 because search results are usually arranged in pages
of 10 entities, and users are generally only interested in the first page.

AP@k � 1
R
∑k
i�1

P@i × r@i (7)

mAP@k � 1
Q| | ∑

Q| |

i�1
AP@ki (8)

Moreover, we also use Mean Reciprocal Rank (mRR) with Eq.
(9) measuring the mean of the multiplicative inverse of the first
entity in the retrieval results found to be relevant (ranksi). For
example, given the query q, a retrieval method returns entities of k =
5 displayed in order of rank and relevance, 0 or 1, as {1: 0,2: 1,3: 0,4:
0,5: 1}. Then the Reciprocal Rank calculation (RR) only considers the
ranking of the first relevant entity, {2: 1}, so the value of RR for q is
0.5. Then the value ofmRR is calculated and averaged for all queries
in Q.

mRR � 1
Q| | ∑

Q| |

i�1

1
ranksi

(9)

3.3 Results

From Table 3, we can see that all of the methods used in
CASBERT have higher mAP@10 and mRR than the gold
standard BM25. The macro and macroWP perform reasonably
well for all query-entity pair sets in the BM-CAQ. These
methods are the most efficient because there is only one
conversion to embedding for each query, so the retrieval process
is faster. Meanwhile, the micro and microWP, which incorporate
embeddings of phrases in the query, have the lowest measurement
results among all the proposed methods. Using phrases alone
overrides the relational information between phrases, resulting in
lower performance. Strategies that combine embeddings of the
whole query terms and phrases related to the concept of
ontology classes (mixed, mixedWP, mixedCl) perform best
(indicated by bold values in Table 3). These results show that the
query text as a whole is sufficient to be converted into an embedding
representing the query while embedding phrases helps increase the
quality of query embedding. Moreover, in the mixedWP, using the
QC model can slightly improve the retrieval quality and make it the
best method. The QC model classifies queries for further retrieval
from the appropriate entity embedding list, although the
performance gains are modest.

Based on the type of data for testing, the retrieval results from
the PMR are better than those from the BioModels database. This
difference is due to the more significant number of biosimulation
models in the BioModels database, about twice the PMR, but their
entities need to be annotated with more precision. By limiting the
search to entities that are considered fully annotated, the
performance is almost the same, as shown in the Supplementary
Table S5.

Illustrating the effect of different mAP@10 and mRR values,
Figure 5 shows the top 10 retrievals of entities for three query
examples retrieved using mixedCl and BM25. Search results are
organised in order from the left-hand side to the right-hand side
based on the similarity values between queries and entity results,
starting from the highest one. Three query-entity pairs are used
in the noPredicate set. For the first and the third queries,
mixedCl and BM25 retrieve the same number of relevant
entities, indicated by blue boxes; however, the mixedCl
presents the relevant entities earlier than BM25. Measured
using AP@10 and RR, mixedCl raises higher values with a
large margin. For the second example, mixedCl can retrieve
more relevant entities and rank better. Overall, themAP@10 and
mRR of mixedCl is higher than BM25. A higher mAP@10 and
mRR provide a better search experience with relevant entities
served earlier or more.

4 Discussion

We have demonstrated that the adaptation of BERT-based
embedding to encode entities’ composite annotations and queries
in CASBERT can surpass the performance of the standard bag-of-
words methods. This better performance is closely related to how
BERT tokenises an input sentence and converts the token into
embedding. BERT implements WordPiece tokeniser (Wu et al.,
2016), a subword-based tokenisation algorithm. This algorithm can
adequately accommodate wording variations, spelling errors, and
missing white space issues. Therefore, unique words in specific
domains, such as biology, can be segmented into appropriate
tokens. These tokens are then converted into embeddings. For
the token embedding to be unique to the position and sentence
sequence, the representation of a token as an embedding is
combined with the positional embedding and sentence sequence
embedding. Hence, this combination can appropriately represent a
sentence. Moreover, this way of embedding contributes to the
generation of similar embeddings for sentences with synonymy
meanings.

In the following subsections, we discuss CASBERT
improvements, analysed based on different embedding generation
methods. Then the discussion is followed by the possibility of
implementing CASBERT in various domains and complementing
SPARQL. Finally, we present our recommendations and future
works.

4.1 Performance increase

As presented in Table 3, our proposed methods are quite
effective in converting the entities’ composite annotations and
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queries to embeddings and retrieving relevant entities based on the
provided query. The analysis of those methods and performance
based on the similarity value between query and composite
annotation is described below.

4.1.1 Entity’s composite annotation to embedding
methods

We have experimented with creating entity embedding by
considering predicates (0 < wp < 1) and not (wp = 0). Entity
embeddings considering predicates are primarily suitable for
queries containing the predicate terms or their synonyms;
conversely, the ones without predicates usually are suitable for
queries without predicate terms. This pattern is shown by the
consecutive good measurement results of the mixedWP method
on withPredicate set and the mixed method on noPredicate set.
Intuitively, for high-performance retrieval, the entity embedding list
selected should match the presence of predicate terms in the query.
However, this approach will not outperform the mixedCl method
since the average results of the stated evidence are lower than the
average results of the mixedCl method on the same sets. This lower
performance may be because the terms identified as predicates are
unrelated to either the predicate or the ontology class. On the other
hand, predicates that are not phrases, but are conjunctions and
prepositions, cannot be detected, eliminating the possibility of
selecting the proper entity embedding list. The mixedCl method

uses the QC model to determine the query embedding list based on
the overall query terms. The application of a BERT-based classifier
for classification is proven to have better accuracy. Overall, mixedCl
is best on ninemeasurements ofmAP@10 andmRR and only slightly
lower than the best of the other three (Table 3, bold values).

While only two wp values, 0 and 0.22, are used in this
experiment, we predict that wp should be adaptive to the query,
so in the future, we recommend specifying wp automatically.
However, this adaptive wp approach will sacrifice the simplicity
of the current entity’s composite annotation list because ontology
class and predicate embeddings should be separately managed, and
there should be a mechanism to create entity embedding with given
wp value effectively.

4.1.2 Query to embedding methods
The empirical results show that the mixed scenario performs

best, followed by macro and micro scenarios consecutively. The
micro scenario is intended to detect phrases related to
physiology and biochemical terms in a query and generate a
query embedding by combining all phrase embeddings.
However, the detection accuracy depends on the NER
method’s performance in identifying the phrases and the
query created by the user.

The macro scenario is better than the micro scenario. This
higher performance could be related to encoding whole query terms

TABLE 3 CASBERT performance over three query-entity pair sets and seven searching methods compared to the bag-of-words method (BM25) measured using
mAP@10 and mRR. The numbers of entities in the PMR and the BioModels are 4,652 and 54,456 respectively.

Method noPredicate withPredicate Combine

mAP@10 mRR mAP@10 mRR mAP@10 mRR

PMR-CA

macro 0.645216 0.643424 0.572291 0.597649 0.601406 0.602604

macroWP 0.626565 0.624992 0.585014 0.606947 0.604012 0.608011

micro 0.619483 0.617890 0.534427 0.549304 0.592228 0.595516

microWP 0.606255 0.608560 0.504055 0.515426 0.574869 0.579472

mixed 0.656636 0.656326 0.572109 0.583003 0.623287 0.624638

mixedWP 0.641843 0.641940 0.585494 0.612151 0.615885 0.621419

mixedCl 0.660346 0.659399 0.589960 0.615694 0.626420 0.631739

BM25 0.459375 0.443034 0.464496 0.487373 0.456505 0.457420

BioModels-CA

macro 0.345486 0.340106 0.310285 0.302129 0.356034 0.347905

macroWP 0.330100 0.326029 0.326831 0.325134 0.365903 0.362892

micro 0.294353 0.291914 0.283026 0.283291 0.312949 0.309471

microWP 0.301564 0.296179 0.274491 0.271451 0.314506 0.309211

mixed 0.347681 0.345045 0.326664 0.323393 0.370148 0.365433

mixedWP 0.335051 0.331222 0.344296 0.344932 0.379058 0.377573

mixedCl 0.348054 0.344794 0.343567 0.344058 0.379351 0.377557

BM25 0.240671 0.231515 0.294758 0.294779 0.280370 0.277879

The values in bold are maximum performance measured on three sets of query-entity pairs using mAP@10 and mRR values.
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containing all phrases related to physiology and biochemical terms,
including their relationship in a single embedding unit. However,
individual phrases are not considered, allowing slight entity
detection inaccuracies. Overall, this scenario is the most efficient
because it only performs a one-step conversion from query to
embedding, in contrast with the other scenarios that identify
multiple phrases and convert to embeddings and then
combine them.

The mixed scenario can slightly increasemAP@10 andmRR. As
expected, this merge takes good account of the macro scenarios’s
advantages and emphasises the critical phrases provided in the
query. To avoid the decisive role of the phrases related to
physiology and biochemical terms, delimiting with wph (Eq. 4)
can give adequate proportion. Although this scenario is not the
most efficient, its computational cost is linearly increased depending
on the identified phrases. Due to its highest effectiveness, we
recommend the mixed scenario to be implemented for composite
annotation search.

4.1.3 Performance analysis based on the similarity
of query and Entity’s composite annotation

Figure 6 shows CASBERT’s ability in retrieving entities for
various queries differentiated by their similarity to relevant
entities for PMR-CA. We calculated the similarity directly
using the query embedding generated with the macro method
against the entity embedding. CASBERT performance is higher
than BM25 when the similarity value is more than 0.3 and
achieves the highest margin for similarity from 0.5 to 0.9,
covering about 96% of the total test data. This pattern

indicates CASBERT benefits because most user queries fall
within this range. For very low query-entity similarity, 0.1 to
0.2, BM25 is better because a limited number of the same terms,
one or two, can direct the query to relevant entities. In contrast,
embedding in CASBERT may lead the query to entities with
different terms but having the same context. Unfortunately, the
combination of a low similarity value and the absence of a
common term results in lower performance. Furthermore, we
found a similar pattern for BioModels-CA, although we do not
measure performance for low query-entity similarity values (see
Supplementary Figure S2 and Supplementary Table S5).

4.2 Recommendations and future works

4.2.1 Other domain implementation
We have shown CASBERT can well represent compositely

annotated entities as embeddings. Although the data we use come
from a repository of biosimulation models, implementation in
other domains such as chemistry, pharmacy or medicine is
possible as long as they are annotated using RDF and have
ontology dictionaries. The entity retrieval process is started by
modifying the input query to embedding using themixedmethod
or macro method for more straightforward implementation and
then measuring query-entity similarity using cosine similarity.
Moreover, most of the BERT models we used are pre-trained
models without further fine tuning, except query classification
modes; therefore, the implementation in other domains with no
training data is still accessible.

4.2.2 Search engine implementation
The embeddings representing entities now can be managed in a

list of embeddings. The list is more straightforward than the
standard indexing technique in search retrieval systems such as
the inverted index. New embeddings can be easily attached to the
list; even deletion, insertion, and replacement require only a
minimum effort; therefore, overall maintenance will be cheaper.
More importantly, we can avoid traditional search engine
complexities, including preprocessing (stemming, case folding,
stop word removal, spelling corrections, and lemmatisation),
synonyms and abbreviations handlings.

4.2.3 Cross repositories search
We estimate that it is possible to find similar information from

different repositories with the same domain. Table 4 shows the
example of two queries with their results from the PMR and the
BioModels database. The query ‘concentration of triose phosphate
in astrocyte’, ‘triose phosphate’ is correctly mapped to CHEBI:
17138 in entities from both repositories, whereas ‘concentration’
and ‘astrocyte’ are mapped to different entities but with interrelated
properties. Furthermore, the query ‘ammonium in cytoplasm’ also
gives similar results with the mapping of ‘ammonium’ in entities
from both queries was CHEBI:28938, while ‘cytoplasm’ as FMA:
66836 (Portion of cytosol) in the PMR and GO:0005737 (cytoplasm)
at the BioModels database. These results suggest that multiple
repositories can be combined in a single search system to
complement each other and be used for possible confirmation
and reuse of models across repositories.

FIGURE 5
The presentation of search results differentiated bymAP@10 and
mRR towards values. Blue boxes are relevant entities, while white
boxes are irrelevant entities. mAP@10 and mRR are calculated from
the results of themixedCl and BM25methods on the noPredicate
query-entity pair set. Results are sorted in which entities with the
higher similarity to the query are placed on the left-hand side. The
results of the first and third queries are similar for both methods, but
the use ofmixedCl, with highermAP@10 andmRR, can show relevant
entities earlier than BM25.
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4.2.4 CASBERT for SPARQL
SPARQL and CASBERT have a similar intent to get

information from RDF documents. SPARQL is rigid and can

extract precise details as long as the information about the
ontology and structure of the RDF document is known. In
comparison, CASBERT is relaxed in exploring information

FIGURE 6
The relationship between the similarity of terms in the query with those in the entity tomAP@10 for PMR-CA. The number of entities is 4,652 and the
number of test data is 509. Generally CASBERT is better than BM25 when the similarity value is 0.3 and above.

TABLE 4 The example of entities retrieved from different repositories, the PMR and the BioModels database. Those entities have similarities in the ontology classes
related to the queries.

Query Result

PMR BioModels database

concentration of triose phosphate in astrocyte cloutier_2009.cellml#GAPg_GAPg BIOMD0000000565.rdf#metaid_40

FMA:54537 Astrocyte OPB:00592 Chemical molar flow rate

OPB:00340 Concentration of chemical CHEBI:32816 pyruvic acid

CHEBI:17138 glyceraldehyde 3-phosphate CHEBI:17138 glyceraldehyde 3-phosphate

GO:0005829 cytosol

ammonium in cytoplasm weinstein_1995.cellml#Concentrations.C_int_NH4 BIOMD0000000470.rdf#metaid_1155

OPB:00340 Concentration of chemical OPB:00592 Chemical molar flow rate

CHEBI:28938 ammonium CHEBI:28938 ammonium

FMA:66836 Portion of cytosol GO:0005576 extracellular region

GO:0005737 cytoplasm

The text in bold are the variable names obtained from the PMR and the BioModel database using the two queries given.
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freely where ontology knowledge is not mandatory. Therefore,
both methods are not interchangeable, but CASBERT can
supplement SPARQL to understand the structure of the RDF
document and the ontology classes involved.

4.2.5 Future works
We account for composite annotation structure and combine

ontology class and predicate embeddings to calculate entity
embedding. This combination involves two variables, me and wp,
whose values adjust the search object and possibly the query type for
maximum performance. We have currently prototyped a search
engine9 that, once deployed, can collect query logs containing user
activities in searching. Using these logs, we can analyse user
behaviour and the relationship between the query and the
relevant entity. We thought that by leveraging this relation and
applying a grid search, CASBERT could automatically determine the
value combinations of me and wp.

We are leveraging a Transformers-based method, Sentence-
BERT, to convert text into embeddings. As an alternative, there
is InferSent (Conneau et al., 2017), based on Bi-LSTM, and
universal Sentence Encoder (USE) (Cer et al., 2018), based on
Deep Averaging Network (DAN) and Transformers. Sentence-
BERT is superior for sentiment analysis tasks but inferior to
USE for TREC data for query classification tasks (Reimers and
Gurevych, 2019). For our purposes, we believe Sentence-BERT
is better than other methods because of its better understanding
of context. The tokens used are WordPieces (Schuster and
Nakajima, 2012) rather than words, so they can more
precisely represent unique words in the biosimulation
modelling domain and are more resistant to typos. In
comparison, the method using Bi-LSTM combines the two-
way conversion results, from left to right and vice versa, which
are calculated separately. However, we will implement some
text-to-embedding conversion methods as an option, as LSTM-
based methods may be better for performance in other small
data and systems with CPU only. Moreover, we will compare
their performance for various purposes using CASBERT.

Further study in cross-repositories retrieval also needs to be
considered; hence, it can promote reusability between
repositories.

5 Conclusion

The increasing availability of composite annotation to
describe entities in biosimulation models requires a simple
tool to access information inside by ordinary users. We
propose CASBERT, a BERT based method providing
keyword-based searching that effectively manages composite
annotations and retrieves entities using a text query. This
effectiveness is achieved by converting the entities’ composite
annotations to embeddings and organising them in a list;
therefore, adding, deleting, inserting, and modifying
embedding is cheaper. Getting relevant entities using a

previously converted query to an embedding is
straightforward with this structure. Using query-entities pairs
test data extracted from the PMR and the BioModels database,
empirically, CASBERT can retrieve better than bag-of-words
methods such as BM25. It can potentially give a better user
experience than the traditional approach. In the future, we are
interested in developing a cross-repositories search engine to
encourage biosimulation model reuse between different
repositories.
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