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Metabolic engineering relies on modifying gene expression to regulate protein
concentrations and reaction activities. The gene expression is controlled by the
promoter sequence, and sequence libraries are used to scan expression activities and
to identify correlations between sequence and activity. We introduce a computational
workflow called Exp2lpynb to analyze promoter libraries maximizing information retrieval
and promoter design with desired activity. We applied Exp2ipynb to seven prokaryotic
expression libraries to identify optimal experimental design principles. The workflow is
open source, available as Jupyter Notebooks and covers the steps to 1) generate a
statistical overview to sequence and activity, 2) train machine-learning algorithms, such as
random forest, gradient boosting trees and support vector machines, for prediction and
extraction of feature importance, 3) evaluate the performance of the estimator, and 4) to
design new sequences with a desired activity using numerical optimization. The workflow
can perform regression or classification on multiple promoter libraries, across species or
reporter proteins. The most accurate predictions in the sample libraries were achieved
when the promoters in the library were recognized by a single sigma factor and a unique
reporter system. The prediction confidence mostly depends on sample size and sequence
diversity, and we present a relationship to estimate their respective effects. The workflow
can be adapted to process sequence libraries from other expression-related problems and
increase insight to the growing application of high-throughput experiments, providing
support for efficient strain engineering.

Keywords: machine learning, gene expression, strain engineering, biotechnology, synthetic biology, jupyter
notebook

1 INTRODUCTION

Metabolic engineering aims at optimizing metabolite production by adjusting the activity of native
and heterologous enzymes. A frequently manipulated factor of activity is the enzyme concentration,
which can be regulated on transcriptional, translational, and post-translational levels. In bacteria,
enzyme concentrations are mainly set at the transcriptional level (Balakrishnan et al., 2021). Among
the most important transcriptional element is the promoter sequence. The promoter sequence is the
primary target for metabolic engineering because the expression activity is largely controlled by the
sequence and can be easily altered. Both the composition and regulation of expression by promoters
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have been intensively studied (Kalisky et al., 2007; Zaslaver et al.,
2009; Kochanowski et al., 2017). For example, Rhodius and
coworkers investigated the expression strength of 60 o
promoters and analyzed the impact of promoter boxes and
upstream regulating elements on expression (Rhodius and
Mutalik, 2010; Rhodius et al., 2012). A modular promoter
system was developed by Mutalik et al. (2013), that reduces
interference from the sequence of the gene of interest,
resulting in reproducible promoter activities.

Promoter libraries are routinely constructed to generate
promoters with a wide range of activities (Jensen et al., 1993;
Alper et al, 2005, Hammer et al, 2006; Balzer et al., 2013;
Kobbing et al., 2020) and machine learning has been applied
for better understanding of transcription mechanisms and
activity prediction based on sequence. For example, Meng
et al. analyzed 98 ¢’° promoter sequences in E. coli and fine-
tuned heterologous expression with newly designed synthetic
promoters (Meng et al., 2013, 2017). The machine learning
analysis therein was based on artificial neural networks (ANN)
(Meng et al., 2013) and support vector machines (SVM) (Meng
et al., 2017), and both approaches performed comparably. The
same system with ¢’° driven expression in E. coli was tested by
Zhao et al. with over 3,500 promoter sequences (Zhao et al., 2020)
and analyzed using projection to latent spaces (PLS), tree
methods (gradient boosting trees, GBT), and recurrent neural
networks, wherein GBT performed best. In Bacillus subtilis Liu
et al. employed a synthetic promoter library with 214 sequences
to adjust pathway activity for metabolite overproduction (Liu
et al., 2018) and used PLS for regression analysis. A promoter
library with 80 sequences in Geobacillus thermoglucosidasius was
tested for both the expression of GFP and mOrange and trained
on models of PLS and ANN (Gilman et al., 2019). Overall, the
libraries were generated with a varying sample sizes from 60 to
over 3,500 and enabled model-based sequence analysis and
rational promoter development.

Promoter libraries are typically analyzed by individually developed
scripts, a time consuming process which impedes direct comparison of
performance measures. To unify the analysis and provide a platform
suitable for easy reconfiguration, we developed a general workflow for
promoter library analysis called Exp2Ipynb. The Exp2Ipynb workflow
consists of a collection of Python Jupyter Notebooks (RRID:
SCR_018413) for statistical investigations, ~machine-learning,
estimator performance evaluation, and sequence design by
optimization of the estimator. We tested the workflow on an
existing promoter library for 0”° in Pseudomonas putida KT2440,
expanded with new sequences. The results revealed limitations of one-
factor-at-a-time experimental designs for machine learning
Subsequently, we used six published libraries to compare their
composition and the resulting machine learning performance.

2 METHODS

2.1 Data Preparation and Statistical

Analysis
A configuration file stores variables with global use in each Notebook-
assisted analysis. The data input is a comma-separated-value file (csv)
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with at least three columns: 1) an identifier column, 2) a sequence
column, and 3) an expression value column, with header names.
Optional columns are expression values of the sequences in other
organisms or with a different reporter system and the standard
deviation with the replicate numbers. The sequence column only
accepts DNA abbreviations (A, C, G, T) with an identical length for
each sequence. The output file names and figure file types can be
defined. The column names for data import are defined in a separate
configuration file config.txt and the notebook 0-Workflow guides
through its construction.

The statistical analysis in the Notebook I1-Statistical-
Analysis.ipynb provides an overview of the metrics with
relevance for data exploration and model development. In
addition to a single expression value, the standard deviation
and replicate number can be provided. Optionally, outliers in
the original data set can be removed from further analysis.
Machine learning performance is improved if replicates are
available and the workflow enables the re-generation of
replicates based on mean and standard deviation. The
replicates are calculated from Python numpy (RRID:
SCR_008633) random normal function (Harris et al., 2020)
and are valid for normal-distributed data while adding a
reasonable prediction bias.

The sequence diversity represents how different the sequences are
from each other. It is calculated as the normalized sum of nucleotide
differences relative to a reference sequence or among all sequences and
ranges between 0 (identical) to 1 (each position differs). The reference
sequence can be provided with the configuration file, or it is generated
automatically by finding the most common nucleotide on each
position. For large libraries, ie., >1000 samples, the total pairwise
distance is costly to compute and the reference sequence distance is
performed by default. The position diversity informs about how many
nucleotides have been sampled for each position. It is visualized with
two bar plots: 1) the cumulative number of each nucleotide tested on
each position, and 2) the entropy (H,) for any sequence position (i):

Hi=-)

i=(ACGT)

pilog,pi 1)

where p; is the position-related nucleotide frequency. The expression
statistics for all nucleotides and positions Exp informs how each

nucleotide contributes to the expression and its calculation is shown
shematically in Figure 1. Each sequence is transformed into a one-hot
encoding with the four nucleotides as columns (A, C, G, T) and the
sequence as rows with the maximum sequence length R. This sample-
sequence one-hot matrix is multiplied by the associated expression
strength (Exp,,) and is used to calculate the mean (standard deviation)
of expression at each position-nucleotide pair over all samples (S). The
expression strength is visualized with a histogram and a scatter plot for
cross-library expression.

2.2 Machine Learning Training

The workflow supports classification and regression. In
regression, the expression values for sequences are
quantitatively predicted but require high data quality
(sufficient sample size and position entropy). Classification
provides qualitative predictions (e.g., low-medium-high), with

Frontiers in Bioinformatics | www.frontiersin.org

October 2021 | Volume 1 | Article 747428


https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

Liebal et al.

Machine Learning With Promoter Libraries

Sequence Expression Position Avrg. Position
Value Expression Expression
ACGT ACGT
- 1 @] 1 O
o 20@ 200
s 3 ®x o9 = 3 ()
w0 s H
o : :
2510 @ 5100 1853 e
Se s® 2 ~
. 5 3 00
. = ()
1 1900 =) :
2 . 2 ® 510000
3 o 3 O se0e
X @
S-1 s-1000
S SO
FIGURE 1 | Calculation scheme for the average, position dependent expression Exp. The one-hot encoding of each promoter sequence is multiplied by the
sequence dependent expression strength to yield the position expression. The position expressions are summed and divided by the sample number to arrive at the
average expression for each nucleotide at each position.

more reliable predictions even for small data sets. The
implemented machine learning models are random forest
(RF), gradient boosting trees (GB), and support vector
machines (SVM). The input features are nucleotides on each
position in one-hot encoding plus the overall sequence GC-
content. The predicted target variable is the expression
strength. The feature size depends on the sequence length,
typically ranging between 40-100 nucleotides or 160-400
features. If a classification is chosen, the output is binned
according to a parameter provided by the user
(Response_Value in config.txt). If Response_Value = 1, the
original activity values are used; if the Response_Value = 0, the
data is centered with zero mean and unit variance and for larger
values, bins are generated as equal-sized buckets (python pandas
qcut, RRID:SCR_018214), and the bin label is used as the target
prediction. The data is split into training and test set, with a
default ratio of 9:1 and a grid search on the training set identifies
the optimal hyper-parameter with 100 fold cross-validation.

Additional feature selection procedures were implemented to
increase performance. During feature selection, the number of
nucleotides that serve as features can be reduced to optimize
training. Reasonable predictions rely on a sufficient variety of
nucleotides tested at each position (H;), and a cut-off can be
chosen in the configuration file to exclude positions below a
defined value of H;. However, note that unconserved nucleotides
in conserved promoter (box)-regions can result in severe
expression deficiencies. Thus, a low diversity can also reflect
critical nucleotides associated with difficulties to sample
experimentally.

2.3 Machine Learning Performance

The performance evaluation provides metrics for correlating the
experimental and predicted outcomes and informs about
important features for tree-based methods. The performance

sequences are unknown to the regressor. The performance
evaluation is based on the R2- (regression) and weighted F1-
score (classification) (and optionally Matthews correlation
coefficient) for the training set and the test set. The prediction
uncertainty metric is determined by the coefficient of variance of
the mean R2 and F1 prediction of the cross-validated training set.
The tree-based methods allow the extraction of feature
importance and represent the contributions of each
nucleotide-position and are visualized with Logo-plots (Tareen
and Kinney, 2020). Moreover, single decision trees can be
exported.

2.4 Promoter Design by Optimization

The ability to design new promoters with desired activities is
required for effective strain engineering. The predictors resulting
from the machine-learning training are used to search promoters
and expression with a genetic algorithm based on the Python
framework DEAP (Fortin et al.,, 2012). A genetic optimization
algorithm is used as it can be easily applied to a wide variety of
machine learning models. The initial population is composed of
random sequences and point mutations and crossing-over is used
to search the sequence space. Sequence identification for a
regressor is conducted with a search for the sequence with the
closest expression. The classification requires that the predicted
expression lies within the target expression class while the
sequence distance to the reference sequences is minimized.
The sequences already present in the library are excluded from
the search.

2.5 Experimental Library Construction

The following section describes the experiments conducted to
expand an existing promoter library (Kobbing et al., 2020) which
was used to test the machine learning and experiments to test
newly designed promoters from the associated estimator

evaluation is based on 25-fold cross-validation with 9:1 data  optimization. ~Construction of the single nucleotide
separation  that jointly —moves identical sequences  polymorphism (SNP) library was based on the plasmid
(i.e, replicates) to test- or training- sets. Thus, the test = pBGl4g as template with oligonucleotides containing single
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degenerate nucleotides inside the P14g promoter sequence (Zobel
et al., 2015; Kobbing et al., 2020). The fragments and vector pBG
were digested with Pacl and Ncol (New England Biolabs) at 37°C.
Digested backbone and promoter containing PCR fragments
were ligated with T4 ligase (New England Biolabs) at room
temperature for 30 min. Transformation into chemically
competent E.coli PIR2 cells was done by heat shock
(Hanahan, 1983). Plasmids containing different synthetic
promoter sequences were sequenced (Eurofins Genomics) and
genomically integrated into the attTn7 site of P. putida KT2440
by mating (Zobel et al., 2015). For promoter characterization in
P.putida KT2440, cells were grown in minimal medium
(Hartmans et al., 1989), with 20 mM glucose as carbon source.
The Biolector system (M2P Labs) measured optical density
(620nm) and msfGFP (excitation wavelength 488 nm,
emission wavelength 520 nm). Scattered light was correlated to
OD600 with a dilution series of a stationary phase culture.
Promoter activity reflects the slope of the function of
fluorescence over OD600 at the beginning of the exponential
phase. More detailed information is given in Kobbing et al.
(2020).

3 RESULTS
3.1 Case Studies

The workflow was first applied on a newly extended P. putida
KT2440 synthetic promoter library, followed by a cross-analysis
of six published libraries. The study of our P. putida library will
show how the workflow can be used, and we will highlight
shortcomings of the experimental design for machine-
learning-driven research. In the cross-library comparison, we
investigated how the different library parameters of sample size,
diversity and feature number of the input sequences impact the
prediction quality of expression strength.

3.2 P. putida Single Library Analysis

We used the workflow to analyze a synthetic library in P. putida
KT2440 driven by ¢’°-dependent promoters and measured with
GFP published previously (Kobbing et al., 2020) containing 55
unique promoter sequences, here expanded by eight new
sequences with an overall sample size of the library of 63. The
goal was to identify sequence features responsible for expression
strength. Experimentally, the sequence diversity was generated by
single nucleotide exchanges in 28 nucleotides upstream of the
transcription start site. For the analysis, we used 40 nucleotides of
the promoter as input and binned the expression activity into
three approximately equal classes for the output. The sequences
had low information content on most positions (Figures 2A,B),
allowing only predictions of categorized expression values, a
regression predicted not better than random (not shown).

A classification estimator can predict the approximate
magnitude of expression. A reasonable estimation can only be
performed on features with sufficient information content and
positions with a higher entropy than 0.2 bits were included in the
training. Figure 2A shows the entropy of the complete data set,
and because the cut-off is applied to the training subset, the

Machine Learning With Promoter Libraries

following positions are additionally neglected
(-6,—15,-20,—22,-26). Decreasing the entropy threshold did
not affect the performance (not shown). The classification
details are given in Table 1, and the high Fl-score variation
indicates that the low nucleotide redundancy on each position
affected sample separation during cross-validation. The detailed
prediction results of the training and test set are shown in
Figure 3A. The GC-content is among the most important
features, probably because it has the highest entropy of all
features (1.2 bits). Along with the GC-content, critical features
were the positions —35 and -34, corresponding to the fact that the
-35-box is the site of transcription factor binding (Paget, 2015)
(Figure 3B). New sequences with defined expression activity were
identified. Sequences with close relation to the reference sequence
were chosen, because the data used for training itself has a low
sequence diversity (Figure 2). Three promoters were suggested by
the optimization procedure, two with low expression and one
with high expression and were experimentally tested (see
Table 2). While the newly designed promoters with low
activity could be validated, the designed promoter with a
predicted high activity showed a medium activity experimentally.

3.3 Cross-Library Analysis

In the following, six published bacterial promoter libraries were
analyzed separately to highlight the effect of the library design on
the estimation quality. The data is available online in the
Exp2Ipynb package at GitHub. The libraries were measured in
E. coli, Geobacillus thermoglucosidasius, and B. subtilis and were
targeted to specific or unknown sigma factors. All libraries differ
in terms of combinations of library sample size, tested sequence
length and sequence diversity (Table 3).

The analysis was based on a classification task with a random
forest and three classes: low (1), medium (2), and high expression
(3). The original data of the promoter libraries were used with
minor corrections regarding sequence length homogenization.
For quality assessment, we generated three synthetic data sets
based on partitioned sequence regions from Meng et al. (2013)
and Zhao et al. (2020). The original sequence from Meng et al.
(2013), is 224 nucleotides (nt) long, and we extracted the starting
40 nt (h) and last 40 nt (i), assuming that few positions in the new
sequences influence expression. Zhao et al. (2020), tested 113 nt
ranging from upstream regulating elements down to the coding
sequence. Again, the first 40 nt (k) were extracted, corresponding
to the upstream regulating element. Three values are essential for
the analysis of promoter libraries: 1) the fidelity of gene
expression prediction, computed by the Fl-score (see
methods), 2) the confidence of the prediction, computed by
the coefficient of variation, and 3) critical sequence features
for expression, computed by the feature importance of
random forest and gradient boosting strategies.

The prediction qualities, evaluated by the F1-score, ranged
between 0.3 and 0.6. The promoter library with more than 3,500
samples achieved best predictive quality (Fl-score) and
confidence (coefficient of variation of Fl-score) (Figure 4A,
library d). Higher sample size was associated with lower
sequence diversity and consequently better prediction
confidence, with coefficient of variations below 0.2 (d, g).
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FIGURE 2 | (A) Promoter sampling diversity of the complete data set for nucleotide variations on each sequence position, transcription starts at 0 and (B) mutual
sequence distances. The promoter library is based on our previously published library (Kébbing et al., 2020), with additional sequences totaling 63 different promoters
with mutations directly upstream of the transcription start site. Two positions (-13,-18) were not mutated resulting in 28 tested positions.

TABLE 1 | Classification quality report for random forest (RF), gradient boosting
trees (GBT) and support vector machine (SVM). Run time reflects the
computational time to train the respective machine-learning algorithm. CV:F1-
score is the result of cross-validation performed 25 times with split 9:1 on the
training data. Train/Test:F1-score, GC-content, and Top 3 Fl are results of the
best respective estimator for training and test set F1-score, the importance of
the GC-content feature and the thre most important sequence positions along
with the importance values. The training was performed with the same
Train(56)-Test(7) division with cross-validation on the training set (100 times 9:

1 split). Nucleotides included as features were filtered to contain at least an
entropy of 0.2 bits, which resulted in 15 positions, in addition to GC-content
(input vector: 15 x 4 + 1). Only tree-based methods (RF, GBT) extract the
feature importance (Fl).

RF GBT SVM

Run time (s) 144 927 111
CV:F1-score 0.42 £ 0.19 0.5 +£0.22 0.47 £ 0.21

Train:F1-score 0.58 0.89 0.88

Test:F1-score 0.62 0.46 0.14

GC-content 2nd st N.A.

Top 3 FI -35: T: 0.24 -34: T: 0.08 N.A.

-34:T:0.10 -35: A: 0.05 N.A.

-35: A: 0.10 -14: G: 0.05 N.A.

Notably, the F1-score was independent of the number of tested
input features (Figure 4A). The effect of the training sample size
on the coefficient of variation is hyperbolic decreasing
(Figure 4C): below 200 samples represented by library g, the
coefficient of variation rises, thus decreasing prediction
confidence. Two scenarios are visible in Figure 4C, a and ¢
display already a very low sequence diversity and for improving
performance the sequence diversity should be increased. In
contrast, libraries b, e, and f are diverse, and estimation
performance would benefit by increasing the sample size even
with related sequences. An interesting piece of information is the
feature importance, for features that correlate with expression
activity. Figure 4B indicates how the number of features affects
the sum of the three top important features derived from the RF.
The top-three feature importance sum decreases linearly with

increasing numbers of features. However, for library c, the top
three nucleotide positions are much more predictive than
expected, assuming that more features lead to a larger
distribution of feature importances and thus less proportional
share for the top three features available.

Using sequence subsets to test the effect of the number of
features confirmed lower importance of feature numbers
compared to sequence diversity and sample size. To test
sequence subsets, we chose the libraries from Meng et al.
(2013) and Zhao et al. (2020) because they report a high
feature number with low sequence diversity. Sub-sequences
from Meng et al. (2013) were extracted with 40 nt sequences
at the start (h) and end (i) because these contain features with low
importance. The rationale to use the starting 40 nt from Zhao
et al. (2020) (k) is that they included the upstream regulating
element and are essential expression features. The sequence
extraction reduces the sample size because more redundant
sequences are generated, increasing the nucleotide diversity.
Figure 3 shows that the partitioned data set k (Zhao et al,
2020) maintained the prediction confidence from the original
data set: the F1-CoV and top three feature contribution increased
proportionally to the original data (Figures 4B-D). This
proportional movement was not displayed by the extracted
sequences (h, i) from Meng et al. (2013). Thus, sequence
positions impacting expression were identified in the upstream
regulating elements of Zhao et al. (2020), but not in the first and
last 40 nt of the sequences of Meng et al. (2013). The synthetic
data set k is in line with the sample size correlation to the
coefficient of variance of the libraries d and g. These results
indicate that sample size in the range of 200 to 3,500 is not critical
for the coefficient of variance.

4 DISCUSSION

Synthetic promoter libraries are increasingly constructed to
facilitate promoter selection with defined activities. The
Exp2Ipynb workflow supports the analysis of promoter
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TABLE 2 | Performance of newly designed promoters. The reference promoter
Ref:mod4_1 was measured in the original data set and differs from the
designed promoters only by single nucleotide changes. In the original data set, the
reference promoter displayed a GFP expression activity of 9 + 2 Units.

ID

Ref:mod4_1
pred:0-1
pred:0-2
pred:2—1

Seq.Diff

GGTATAAT
GGTACAAT
GGTATTAT
CGTATAAT

Prediction

0.25 -16.5

0.25 - 16.5

0.256 - 16.5
25 - 35

Experiment

6.5+ 0.3
7.1+09
9.7 +25
18317

libraries to identify the sequence information that determines
expression strength. The identification is based on statistical
analysis of the average nucleotide-position associated
expression, and the training of different machine-learning
models. Moreover, more complex libraries with multiple
readouts, like two reporter proteins, transcript, protein level,
or cross-host expression can be analyzed. The workflow
facilitates data exploration, regressor training and performance
evaluation, and testing of novel sequences within the DNA
sequence exploration space. The implementation in a Jupyter

TABLE 3| Details of the six published libraries used to compare estimation quality in response to the experimental design. The columns n represent total sample size, Feat.
the size of the input vector, Avg.Seq.Distance the average distance of all sequences to a reference sequence, composed of the most common nucleotide at each

position. A comprehensive table with numerical values of Figure 4 in the Supplementary Data. Multiple transcription factors are responsible for gene expression in the data
set of Gilman et al. (2019), hence is not applicable (N.A.).

Reference

a:This Work
b:Rhodius et al.
c:Meng et al.
d:Zhao et al.
e:Gilman et al.
f:Gilman et al.
g:Liu et al.
h:Meng et al.
i:Meng et al.
k:Zhao et al.

Organism

P. putida

E. coli
E. coli
E. coli

G. therm.
G. therm.
B. subtilis

E. coli
E. coli
E. coli

Transcr.Factor

Reporter n Feat Avg.Seq.Distance
GFP 63 61 0.06
various 59 121 0.61
GFP 98 709 0.61
GFP 3543 285 0.09
GFP 81 397 0.69
mOrange 81 397 0.69
GFP 206 105 0.35
GFP 84 133 0.61
GFP 84 129 0.61
GFP 896 161 0.09
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FIGURE 4 | Comparison of library properties on classification quality parameters for an estimation using RF. The estimations were performed on the training set of
each library with 9:1 cross-validation. The seven full length promoter libraries are listed in Table 3. Moreover, sub-sequences of 40 nt were extracted from the promoter
start (h) and end () of Meng et al. (2013)(c) and start (k) of Zhao et al. (2020)(d). F1-score (A) and the sum of the top three feature importance values (B) in response to
feature amount. The coefficient of variation of the F1-scores in response to sequence diversity (C) and amount of training samples (D). Full table with numerical
values in the Supplementary Data.

notebook facilitates rapid implementation and the low-level
scripting allows for direct adaptation of the workflow to
specific needs. In the following, we summarize the
applicability of Exp2Ipynb to a P.putida promoter library with
sub-optimal data quality, followed by a discussion of data
properties for optimal sequence analysis.

We analyzed a promoter expression library in P.putida
KT2440 previously published (Kobbing et al, 2020) and
amended it with additional data points and wused the
classification model to design new promoters with defined
activity. The different samples in the library were generated
based on a one-factor-at-a-time approach to identify
nucleotide-sequence effects on expression (Czitrom, 1999).
Our results of the strong impact of the positions —35 and -34
and the lower impact of the last half of the —10 box (TATAAT,
-10, -9, —-8) confirmed results of the original article (Kobbing
et al., 2020, Figure 4 therein). However, we failed to observe the
strong effect of the first part of the —10 box (TATAAT, -11)
because the position was insufficiently sampled below the entropy
cut-off and was neglected in the analysis. We used the classifier to
apply a genetic algorithm and find sequences within a defined
expression range and we confirmed their expression strength
experimentally. Thus, even data sets with low sample size and
sequence diversity allow for predicting expression ranges for
biotechnological use.

Sample size and sequence diversity were the main factors to
affect prediction confidence (coefficient of variation) while the
number of feature was less critical. A high sequence diversity
resulted in lower prediction confidence, and increasing the sample
size can help to reduce diversity and increase prediction
confidence. Two libraries in the collection were limited by
sample size (a+c), whereas five libraries were limited by
sequence diversity (b, d, e, f). We found that 100 samples still
resulted in a high uncertainty for sequences with an average of 20%
nucleotide difference (a, ¢), whereas 800 samples were sufficient
(k). With higher nucleotide differences of 35%, 200 samples
provided reasonable prediction qualities (g). Libraries including
multiple sigma factors (e, f)(Gilman et al., 2019) resulted in lower
prediction qualities, which parallels studies on heterogenous data
in E. coli (Cambray et al., 2018) and yeast (Liya et al., 2021). More
libraries are necessary to narrow the required sample size over the
whole sequence diversity spectrum.

Our prediction quality (F1-score) performs poorly over the
different libraries. Some studies have identified much stronger
regression correlation coefficients (Rhodius and Mutalik, 20105
Mengetal., 2013, 2017). These were based on optimized train-test
set partitions and do not report cross-validation statistics. Gilman
et al. calculate a stronger correlation for their model, but when the
authors tested new data, the prediction qualities were similar to
those we observed. Also, the convolutional neural net trained
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with 500,000 sequences by Cuperus et al. (2017), achieves
correlation coefficients of 0.62. Additional feature engineering
can be used to increase predictability: GC-moving window,
secondary structure for UTR (Cuperus et al, 2017). Multiple
factors control gene expression of which a number is apparently
not stored in the sequence alone.

The Exp2Ipynb workflow includes training of RF, GBT and
SVM, whereas neural-networks are not explicitly
implemented. In the original articles of the libraries tested
here, SVM and GBT performed comparably or outperformed
neural network based approaches (Meng et al., 2017; Zhao
et al., 2020). Most promoter libraries have samples sizes on
which neural networks are not expected to outperform
classical methods. The performance of each machine
learning model depends on the underlying data structure,
and the most suitable method has to be identified individually
(Wolpert and Macready, 1997). It is possible to include
additional methods via the python interface easily.

So far, the analysis of promoter libraries was conducted with
scripts tailored to the data, obfuscating reproducibility and
interpretability. The Exp2Ipynb workflow contributes to
harmonize analytical workflows and enables an easy start for
investigating newly generated promoter libraries. Other general
machine-learning toolboxes exist, e.g., tpot, GAMA, or H20
(Truong et al., 2019), in addition to tools more oriented towards
biological data analysis, e.g., JADBIO (Tsamardinos et al., 2020).
The advantage of the Exp2Ipynb is to be general enough to be used
across different data sets in expression studies but remaining
domain-specific to facilitate simple data integration. We present
a workflow called Exp2Ipynb for machine-learning supported
analysis of gene-expression libraries. We applied Exp2Ipynb in a
proof-of-concept on a P. putida KT2440 promoter library for use in
metabolic engineering. In this context, the workflow allowed
identifying critical sequence features for expression and predicted
new sequences with defined activity, tested retrospectively.
Moreover, six published prokaryotic gene expression libraries
were tested and we observed a correlation between sample size
and sequence diversity for successful analysis. The workflow
supports deep analysis of promoter libraries and allows users to
adapt it to personal needs. Thus data quality assessments are
improved and research is accelerated.
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