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Increasing dietary Met, Lys, and His supply without increasing the dietary protein

content was reported to partially alleviate the productive and physiological

impact of heat stress. Nevertheless, the metabolic pathways involved are yet to

be identified. Thus, we aimed to explore the metabolic pathways associated with

these positive effects and develop new metabolomics-based hypotheses.

Twelve lactating Holstein cows (primiparous, n = 6; multiparous, n = 6; 42.2 ±

10.6 kg/d milk yield; 83 ± 28 days in milk) were enrolled in two 3×3 replicated

Latin squares consisting of 14-day treatment periods: heat stress [HS; max.

Temperature Humidity Index (THI) 84, 16.8% crude protein (CP), 1,741 g/d

metabolizable protein (MP), 108 Lys, 33 Met, and 37 His (g/d)], pair feeding in

thermo-neutrality (TN; max. THI 64, same diet as HS), and HS with increased Lys,

Met and His supply [HS+AA; max. THI 84; 17.0% CP, 1,730 g/d MP, 179 Lys, 58

Met, and 45 His (g/d)]. Blood plasma and milk were sampled on day 14 for

metabolomics profiling. Several amino acids (AA) and derivatives differed

between the treatments. Plasma and milk Met, Val, Trp and a-amino adipic

acid concentrations were highest in HS+AA (false discovery rate-P (FDR) < 0.05).

Moreover, only plasma Lys and milk His were highest in HS+AA (FDR < 0.05).

Some phosphatidylcholines (PC) and diglycerides had lower concentrations in

HS than TN (FDR < 0.05), while HS+AA had similar concentrations as TN. The

pathway enrichment analysis revealed that the AA-related pathways were more

significantly affected in multiparous than in primiparous cows. Our results

suggest that increased supply of Met stimulated PC synthesis in HS+AA to

similar concentrations as in TN. Increased Lys supply likely elevated the

oxidation rate of Lys and downregulated the catabolism of other essential AA

(EAA) such as Val and Trp, stimulating milk protein synthesis. No clear
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associations were found related to His availability. In conclusion, partial

amelioration of productive and physiological effects of heat stress associated

with increased dietary Met and Lys supply were likely explained by stimulated PC

synthesis and increased plasma and milk concentrations of other EEA.
KEYWORDS

targeted metabolomics, metabolic health, one-carbon metabolism, phosphatidylcholines,
essential amino acids
1 Introduction

The prevalence of heat-stressed conditions in dairy cows is

projected to become more frequent and severe due to global

warming (Thornton et al., 2021). Advancing our knowledge of the

underlying physiology is important for designing nutritional strategies

targeting the alleviation of the negative effects of heat stress (Wheelock

et al., 2010; Ruiz-González et al., 2023). Studies showed that the drop

in dry matter intake (DMI) can only explain up to 50% of the decrease

in milk yield, thus the negative metabolic effects caused by the heat

stress could be partially responsible for the remaining drop in

production performance (Rhoads et al., 2009; Wheelock et al., 2010).

Unlike the metabolic and endocrine regulation during the

transition period where the DMI deficiency and negative energy

balance are associated with decreased insulin sensitivity and

upregulated lipolysis, the DMI drop during heat stress is linked

with downregulated lipolysis and decreased glucose use in the

mammary gland (as reviewed by Baumgard and Rhoads, 2013).

These metabolic changes support the increased energy demand of

the activated immune system. The immune activation is mainly due

to the increased lipopolysaccharides (LPS) load as a consequence of

local hypoxia and impaired integrity of the intestinal epithelial

barrier (‘leaky gut’) (Lambert et al., 2002; Pearce et al., 2013). In

response, muscle protein catabolism is enhanced supporting the

increased hepatic and intestinal AA utilization, while AA

availability for the mammary gland decreases (Rhoads et al., 2009;

Kvidera et al., 2017a). These metabolic effects triggered by heat

stress are parity-dependent as multiparous cows usually show more

pronounced changes than primiparous cows (Bernabucci et al.,

2014; Chen et al., 2022).

One of the main metabolic responses to heat stress is the

enhanced labile protein catabolism, however, an increased supply

of metabolizable protein (MP) was found to be unsuccessful in

modulating muscle catabolism (Kaufman et al., 2018). Under

thermoneutral conditions, dietary supplementation of limiting AA

such as Met, Lys and His improved N use efficiency in low-protein

diets concomitant with unchanged milk and milk protein synthesis
02
(Lee et al., 2012; Räisänen et al., 2021). Under heat-stress

conditions, milk yield and oxidative status of dairy cows was

improved by increased Met supply, rather than MP (Mesgaran

et al., 2022). In vitro studies on hyperthermic mammary gland

epithelial cells indicated that increased Met supply can lead to a

higher synthesis of the antioxidants taurine and glutathione and

stimulate protein synthesis through the direct activation of the

mechanistic target of rapamycin (mTOR) pathway or indirectly by

increased branched-chain AA (BCAA) availability (Dong et al.,

2018; Lopreiato et al., 2020; Coleman et al., 2022). However, the

improved productive performance of heat-stressed cows after

dietary Met supplementation was not consistent across the few

reported studies (Pate et al., 2020; Mesgaran et al., 2022) and the

mechanisms and pathways remain to be understood (Lopreiato

et al., 2020; Mesgaran et al., 2022). Preliminary results of our team

showed that increasing Met, Lys and His supply during heat stress

alleviated the rise in body temperature and inflammation status,

and improved milk protein content of high-yielding dairy cows

(Ruiz-González et al., 2022a). Increased Met and Lys supply effects

have been widely studied in other physiological circumstances (e.g.

during the transition period). However, their potential to counteract

heat stress effects remains to be comprehensively evaluated in dairy

cows. Thus, the metabolomics analysis of blood plasma and milk

could uncover the possible metabolic pathways by which increased

Met, Lys and His supply contribute to heat stress alleviation.

We hypothesized that these alleviating effects of increased

dietary Met, Lys and His availability are associated with increased

antioxidant synthesis (e.g. taurine) and decreased AA catabolism,

contributing to increased availability of other EAA during heat

stress. This could be reflected in the plasma and milk metabolome

profiles, with more prominent changes in multiparous cows. Hence,

the aims of this study were: 1) to elucidate the potential alleviating

effects of increased dietary Met, Lys and His supply on the

metabolomic changes triggered by heat stress with particular

focus to AA-related metabolism, and 2) to explore the possible

interactions between the dietary strategy and parity on the

metabolomic response to heat stress.
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2 Material and methods

2.1 Experimental design

This experiment was carried out between October and

December 2020 at the Dairy Research Farm of the Centre de

Recherche en Science Animales de Deschambault (CRSAD;

Deschambault, QC, Canada). All animals were owned by CRSAD.

The enrolment of the animals in this study as well as the animal care

procedures and management practices were approved by the

CRSAD animal care committee (approval number 2019-BL-386)

in accordance with the Canadian Council on Animal Care

guidelines for the use of Farms Animals (CCAC, 1993).

Twelve lactating Holstein cows were allocated to two plots

based on their parity: 1) primiparous (n = 6; 29.5 ± 1.2 kg milk/d;

95.2 ± 16.2 days in milk; mean ± SD), and 2) multiparous (n = 6;

40.3 ± 5.5 kg milk/d; 86.8 ± 10.2 days in milk; 3.5 ± 1.6 parity).

Treatment subplots were arranged in a replicated 3 × 3 Latin square

design balanced for residual effects with a 14-d period of treatment

and 7-d period of washout between treatments according to our

previous study (Ruiz-González et al., 2023). The number of

replicates were comparable with previously reported studies

(Rhoads et al., 2009; Kassube et al., 2017). Within each square,

cows were submitted to three different treatments: 1) heat stress

(HS; 16.8% CP; maximal temperature humidity index (THI): 84)

with a diet balanced to supply 33 Met, 108 Lys, 37 His, and 1,741

MP g/d at expected DMI nadir (d7–14; 15.5 kg/d) according to

NRC (NRC, 2001), 2) pair feeding in thermoneutrality (TN; same

diet as the HS treatment; maximal THI = 64), and 3) heat stress with

a diet of a similar CP (17%) and MP (1,730 g/d) content but

balanced to supply higher levels of Met (58 g/d, +77%), Lys

(179 g/d, +65%) and His (45 g/d, +22%) based on expected DMI

reductions (HS+AA; maximal THI = 84) as previously reported

(Ruiz-González et al., 2023). Heat stress was induced using a cyclic

pattern (THI 72–84) and resulted in decreased DMI (34%) and milk

yield (40%) from day 0 to day 14. The diet supplied during HS and

TN treatments was formulated to meet the predicted energy and

nutrient requirements (NRC, 2001) in a thermoneutral

environment and fed at previously observed DMI and consisted

of corn silage, alfalfa haylage, ground corn, soybean meal, corn

gluten meal and a mineral and vitamin premix. In the HS+AA

treatment, the soybean meal and corn gluten meal were substituted

by canola meal and blood meal, to increase His supply; in addition,

cows received a supplement of rumen-protected Met

(Smartamine®-L; Adisseo, Alpharetta, GA) and Lys (Ajipro®-L;

Ajinomoto, Chicago, IL) adjusted daily to supply 8.5 g + 4.2 g/kg

reduced DMI and 27.85 g/kg reduced DMI, respectively. The 2 diets

were prepared as TMR and the cows were individually fed the TMR

twice daily (0900 and 1400 h). The rumen-protected AA

supplements were mixed with 500 g (fresh basis) of ground corn

to ensure complete intake immediately before the morning feeding

(0900 h). The same amount of ground corn was provided to the

other treatment in order to control for this effect. Drinking water

was available at all times. Removal from heat chambers and

exclusion of animals from the trial was considered if DMI
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reductions were greater than 50% for a period of 48 h. No animal

was removed from the experiment based on these criteria.

Blood samples were taken at the end of each experimental

period (day 14) before the morning feeding by coccygeal

venipuncture using heparinized tubes, immediately placed on ice,

and centrifuged within 20 min at 1,500 × g for 20 min. The plasma

was harvested and stored at -80°C until the metabolomics analysis.

Whole milk samples were taken at the morning milking on day 14

in empty tubes with no chemical preservative and immediately

stored at -80°C until the metabolomics analysis.
2.2 Metabolomics analysis

The targeted mass spectrometry-based metabolomics profiling of

the plasma and milk samples were carried out at The Metabolomics

Innovation Centre, Alberta, Canada. Eleven classes of metabolites,

including AA, biogenic amines, monosaccharides, acylcarnitines (AC),

diglycerides (DG), triglycerides (TG), lysophosphatidylcholines

(LysoPC), phosphatidylcholines (PC), sphingomyelins (SM),

ceramides (Cer), and cholesteryl esters (CE), were quantified using

the Absolute IDQ p400 Kit (Biocrates Life Sciences AG, Innsbruck,

Austria). The chemometric protocol descriptions were previously

reported (Foroutan et al., 2019). In brief, plasma and milk samples

were thawed, vortexed, and centrifuged at 13,000 × g. Ten µL of

samples were loaded onto the filter on the upper 96-well plate and

dried under nitrogen flow. Amino acids were derivatized with 5%

phenyl-isothiocyanate. Metabolites were extracted with methanol

containing 5 mM ammonium acetate, and the extracts were

centrifuged into the lower 96-deep well plate. The extracts were split

for liquid chromatography-high resolution mass spectrometry to

detect the amino acids and biogenic amines, and direct flow

injection-mass spectrometry analyses for detecting the remainder of

the targeted metabolite classes. The metabolomics assay was

performed on a Thermo Scientific QExactive HF OrbiTrap mass

spectrometer (Thermo Scientific, Mississauga, Canada). The detection

of each metabolite relied on measuring the exact mass of molecular

ions or adducts without further fragmentation. Isotope-labeled

internal standards and other internal standards were integrated into

the kit’s 96-well plate filter for metabolite quantification. The entire

workflow was monitored and controlled with the Biocrates

MetIDQ software.
2.3 Statistical analysis

Prior to statistical analysis, the variables (metabolites) were filtered

within each metabolomic dataset (plasma and milk separately)

according to the limit of detection (LOD). Only those metabolites

detected above LOD in at least 80% of the samples were retained in the

final dataset. No missing values were observed. The metabolomics data

was adjusted for the effect of the Latin-square design and sequence

prior to any statistical analysis according to suggested workflow (Zhao

et al., 2019). This was done by a linear model using the lm package in R

software v3.6.3 (R Core Team, 2020).
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All statistical analyses were performed on the MetaboAnalyst v5

platform (https://www.metaboanalyst.ca/). Data were log transformed

and scaled using the Pareto’s algorithm (Chong et al., 2019) before

performing the statistical analysis, which included multivariate,

univariate and metabolic pathway analyses. Multivariate analysis

based on partial-least squares discriminant analysis (PLS-DA) was

performed comparing the treatments and the parity class separately.

The cross validation of the model was performed on the basis of the

quality assessment statistic (Q2), while the goodness of fit was assessed

by the R-square (R2Y) value. The model refinement was done by re-

running the model on the base of those metabolites with variable in

projection (VIP) value > 1.0 until Q2 did not improve more than

0.0975 between two consecutive versions of the model.

The effects of the treatment (TN, HS, HS+AA), parity (P, M)

and their interaction were assessed by ANOVA. ANOVA’s raw P-

values were adjusted by the Benjamini-Hochberg false discovery

rate (FDR) method according to Vinaixa et al. (2012), and

significant effects were declared at FDR ≤ 0.05 and tendencies at

0.05 < FDR ≤ 0.10. If a significant interaction effect was found by the

ANOVA, post hoc multiple comparisons were performed by

Tukey’s honestly significance difference test, and the level of

significance was declared at P ≤ 0.05.

Finally, metabolic pathways were evaluated by quantitative

enrichment analysis based on the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and the Globaltest algorithm, which calculates the

association between the metabolite sets and the phenotype (Chong

et al., 2019). As this analysis is based on pairwise comparisons, it was

performed considering HS vs TN, and HS vs HS+AA, both

performed independently for multiparous and primiparous cows.

Significant enrichment of a given metabolic pathway was considered
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at FDR ≤ 0.05, and only metabolic pathways with at least two

metabolites measured in the dataset were considered for discussion.

3 Results

The metabolomic profiling led to the effective quantification of

212 and 164 out of 404 possible metabolites in plasma and milk,

respectively. A list of the measured compounds and their

abbreviations is available in Supplementary Table S1.

3.1 Plasma metabolomics

Multivariate analysis revealed valid (Q2 > 0) PLS-DAmodels for

the treatment class (TN, HS, HS+AA) with the best model retaining

the 3 first components and showing moderate predictive ability

(Q2 = 0.50) and high fitness (R2 = 0.86). The top 15 metabolites with

the highest VIP scores included a-aminoadipic acid, Met, Gly, and

Lys, among others (Figure 1). The parity class also yielded a valid

PLS-DAmodel (Q2 > 0) for the plasma metabolomics data. The best

model retained 3 components and had low predictive ability

(Q2 = 0.29) but high fitness (R2 = 0.89).

According to the ANOVA, 15 plasma metabolites differed

(FDR ≤ 0.048 in all cases) between treatments. Most of them (10

out of 15) were AA or AA-related compounds (Table 1). Among

these, Met, Lys, Val, Phe, Trp, a-aminoadipic acid and sarcosine had

the greatest concentrations in the HS+AA cows, while the TN andHS

treatments had lower metabolite concentrations (Table 1). Gly, Cit,

and trans-4-hydroxyproline had greater concentrations in TN,

compared with HS and HS+AA. The remaining 5 metabolites

comprised lipids and complex lipids which all had the greatest
FIGURE 1

Partial least squares - discriminant analysis (PLS-DA) scores plot for the treatment class (thermoneutral, TN, blue; heat-stressed, HS, green; heat-
stressed with high Met, Lys and His supply, HS+AA, red) based on the plasma metabolomics profiles. The panel on the right lists the 15 most
important discriminating metabolites based on variable in projection (VIP) scores.
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concentrations in the TN. PC 40:9, DG 39:0 had intermediate

concentrations in HS+AA and were lowest in HS, compared with

TN, while PC 40:8, PC 44:3, and CE 20:5 had similar concentrations

in HS+AA and HS and still lower than TN. Regarding the parity

effect, multiparous cows had lower plasma concentrations of a-
aminoadipic acid (FDR < 0.001) and citrulline (FDR = 0.048) than

primiparous (Table 1). None of the plasma metabolites were affected

by the interaction between treatment and parity. Despite the lack of

an FDR-significant effect, it is still worth noting that plasma His

concentrations had a raw-P = 0.038 for the treatment effect, as these

was higher in HS+AA (60.0 ± 2.13 mM, mean ± SEM) than in TN

(50.6 ± 3.47 mM) and HS (52.8 ± 1.3 mM). The complete set of

results of plasma metabolites are listed in Supplementary Table S2.

The metabolic pathway enrichment analysis revealed

differences in the heat stress response according to the parity.
Frontiers in Animal Science 05
When comparing HS vs TN, several pathways differed (FDR <

0.05) or tended to differ (FDR < 0.10) in multiparous but not in

primiparous cows (Table 2). Among these pathways, glutathione

metabolism and primary bile acid biosynthesis were associated with

lower plasma concentrations of several compounds (e.g. Gly, Glu,

ornithine, taurine) for HS than TN (Figure 2). In addition, the His

metabolism and b-alanine metabolism were found to be altered due

to lower plasma concentrations of Glu and carnosine and greater

concentrations of His and Asp in HS, compared with TN (Figure 2).

Finally, tryptophan metabolism was affected by numerically higher

concentration of Trp and significantly lower concentrations of

serotonin and kynurenine in HS, compared with TN. Further,

phenylalanine metabolism and phenylalanine, tyrosine, and

tryptophan biosynthesis were affected due to greater

concentrations of Phe and Tyr in HS than in TN (Figure 2).
TABLE 1 Metabolites differing (FDR < 0.05) between treatment (thermoneutral, TN; heat-stressed, HS; increased dietary Met, Lys and His supply,
HS+AA), parity (primiparous, P; multiparous, M) and their interactions in plasma upon the end (day 14) of the experimental treatments.

Metabolite

Mean concentrations (µM) FDR

TN HS HS+AA SEM P M SEM Treatment
Parity

Treatment
× Parity

Cit 94a 80b 77b 3.9 77 91 3.3 0.05 0.05 0.99

AC(2:0) 1.95 1.56 1.56 0.129 1.92 1.46 0.200 0.23 0.07 0.99

Lys 67.5b 70.1b 108.9a 6.0 73 91 6.3 < 0.01 0.23 0.99

Trp 41b 43b 48a 1.4 42 46 1.2 0.05 0.30 0.99

PC(40:7) 20.0 15.5 21.0 1.29 17.6 20.1 1.17 0.10 0.59 0.99

PC(44:3) 3.23a 2.39b 2.49b 0.152 2.56 2.85 0.151 0.02 0.61 0.99

CE(20:5) 223a 144b 172b 13.8 191 168 13.4 0.02 0.63 0.99

PC(40:9) 1.28a 0.68c 1.00b 0.117 1.05 0.92 0.111 0.05 0.73 0.99

Gly 388a 245b 230b 19 273 302 23.5 < 0.01 0.77 0.99

DG(39:0) 4.10a 2.42b 3.25ab 0.299 3.45 3.06 0.297 0.03 0.77 0.99

Met 23.2b 22.6b 40.0a 2.23 27.5 29.7 2.89 < 0.01 0.80 0.99

Phe 53.9b 66.8a 66.0a 2.3 61 63 2.3 0.02 0.80 0.99

PC(36:5) 107 86 77 6.7 86 94 6.03 0.10 0.81 0.99

PC(33:4) 0.83 0.76 0.67 0.033 0.74 0.77 0.031 0.08 0.84 0.99

SM(33:2) 127 90 89 8.5 98 106 7.9 0.08 0.85 0.99

Val 186b 203b 252a 10.7 210 218 10.9 0.02 0.85 0.99

PC(40:8) 10.8a 7.0b 8.3b 0.60 8.79 8.55 0.617 0.02 0.94 0.99

PC-O(34:1) 6.32 4.49 5.82 0.37 5.48 5.60 0.351 0.05 0.94 0.99

DG(42:2) 12.8 7.9 10.8 1.11 10.4 10.6 1.03 0.09 0.97 0.99

Sarcosine 1.93b 2.17a 2.25a 0.06 2.11 2.12 0.057 0.02 0.98 0.99

PC(46:1) 0.30 0.32 0.57 0.05 0.41 0.38 0.051 0.06 0.98 0.99

PC-O(40:6) 0.78 0.55 0.64 0.052 0.66 0.66 0.047 0.10 0.99 0.99

a-aminoadipic acid 2.14b 2.37b 4.73a 0.251 2.39 3.77 0.322 < 0.01 < 0.01 0.99

t4-OH-Pro 15.1a 10.7b 10.9b 0.75 14.0 10.4 0.67 <0.01 < 0.01 0.99
Different superscripts indicate significant differences between means (P < 0.05).
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When comparing HS vs HS+AA, the pathway analysis also

yielded parity-dependent differences. Glutathione metabolism,

histidine metabolism, b-alanine metabolism and arginine

biosynthesis differed in primiparous cows, while lysine

degradation, cysteine and methionine metabolism, tryptophan

metabolism, phenylalanine metabolism, and phenylalanine,

tyrosine and tryptophan metabolism biosynthesis differed in the

multiparous cows (Table 2). In the primiparous cows, most of the

affected compounds had a lower concentration in HS than HS+AA

(Figure 2). In the multiparous cows, the compounds involved in the
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lysine degradation, cysteine and methionine metabolism, and

tryptophan metabolism (e.g. Trp, serotonin, kynurenine, Met, Lys

and a-aminoadipic acid) had lower concentrations in HS than

HS+AA. However, the metabolites involved in phenylalanine

metabolism, and phenylalanine, tyrosine and tryptophan

biosynthesis (e.g. Phe, Tyr) had higher concentrations in HS than

HS+AA (Figure 2).
3.2 Milk metabolomics

Multivariate analysis of the milk metabolome yielded a valid

PLS-DA model based on the first 2 components for the treatment

discrimination, showing low predictive ability (Q2 = 0.27) but high

fitness (R2 = 0.84). No valid model was obtained for the parity

discrimination (Q2 < 0) (Supplementary Figure S1).

According to the ANOVA, 21 metabolites differed (FDR ≤

0.048 in all cases) between treatments (Table 3). These metabolites

included acetyl-carnitine (C2:0) which had a lower concentration in

HS than in TN and HS+AA, and butyryl-carnitine (C4:0) which had

a higher concentration in HS than in TN, with intermediate

concentration in HS+AA. Additionally, 8 metabolites belonging

to the AA metabolism differed between treatments. Among these,

Met, His, Trp, Val and a-aminoadipic acid had the highest

concentrations in HS+AA with lower concentrations in TN and

HS. Gly, Pro and taurine had higher concentrations in TN than HS

and HS+AA. Most of the complex lipids differing between

treatments included PC (e.g. PC 32:1, 44:3, 44:5, 32:0, 36:2, 36:1)

which were lower in HS than in TN and HS+AA. Additionally, 7

milk metabolites differed (FDR < 0.05) according to parity. Among

these, carnitine and 2 acyl-carnitines (C2:0, C5:0-OH), SM 39:1 and

PC 46:2 had greater concentrations in multiparous than

primiparous, while Lys was lower in multiparous than

primiparous (Table 3). The complete set of milk metabolites are

listed in Supplementary Table S3.

The milk metabolomics pathway analysis identified few

pathways to be significantly different between treatments. The

primary bile biosynthesis was identified as the only pathway

differing (P < 0.01) between HS and TN for both parities,

reflecting the lower milk concentrations of taurine and Gly in the

HS cows. When comparing HS vs HS+AA, no pathways differed in

the primiparous cows. In the multiparous cows, cysteine and

methionine metabolism and lysine degradation differed (P ≤ 0.02)

due to the lower milk concentrations of a-aminoadipic acid,

carnitine, and Lys in HS compared with HS+AA.
4 Discussion

Our plasma and milk metabolomics data suggested that the heat

stress-related depletion of the circulating PC pool was reverted by

the elevated dietary Met supply. This can be explained by enhanced

one-carbon metabolism in response to increased Met availability. In

addition, the improved milk protein content in the HS+AA

treatment was likely modulated by the increased Val and Trp
TABLE 2 Metabolic pathways differing between heat-stressed (HS) vs.
thermoneutral (TN), and HS vs. HS with increased dietary Met, Lys and
His supply (HS+AA) treatment when compared within each parity class
based on plasma metabolomics.

Metabolite Set Total1 Hits2 FDR

1. TN vs. HS

Primiparous

– – – –

Multiparous

Tryptophan metabolism 41 3 0.01

Phenylalanine
metabolism 10 2 0.05

Phenylalanine, tyrosine
and tryptophan
biosynthesis 4 2 0.05

Glutathione metabolism 28 3 0.08

Primary bile
acid biosynthesis 46 2 0.08

b-Alanine metabolism 21 3 0.09

Histidine metabolism 16 4 0.09

2. HS vs. HS+AA

Primiparous

Glutathione metabolism 28 3 0.09

Histidine metabolism 16 4 0.09

b-Alanine metabolism 21 3 0.09

Arginine biosynthesis 14 6 0.09

Multiparous

Lysine degradation 25 2 < 0.01

Cysteine and
methionine metabolism 33 2 0.03

Phenylalanine
metabolism 10 2 0.08

Phenylalanine, tyrosine
and tryptophan
biosynthesis 4 2 0.08

Tryptophan metabolism 41 4 0.08
1: Total compounds involved in the given pathway according to the Bos taurus
KEGG database.
2: Number of hits effectively quantified in the current experiment.
-, no pathway identified to significantly differ among the compared groups.
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availability as a consequence of the additional Lys supply. The main

findings were linked to increased dietary Met or Lys supply, rather

than His, as the increase in His availability was minor relative to the

increase in the availability of Met and Lys. Interpretive schemes

integrating the main results related to Met and Lys availability are

presented in Figures 3, 4, respectively.

In line with their EAA character, i.e. dietary-dependent

availability (Schwab and Broderick, 2017), increased dietary

supply of Met, Lys and His in HS+AA was reflected by increased

plasma and milk concentrations of these AA. Indeed, while Met and

Lys supply increased by 77% and 65%, respectively, His was only

increased by 22% which was reflected by a less pronounced increase

of plasma His in HS+AA, compared with TN or HS treatments.

Despite the lack of a significant FDR, plasma His had a significant

raw-P value for the treatment effect, since it was higher in HS+AA

than in the other two treatments.

The general trend of decreased plasma concentrations of PC,

and to a lesser extent some of the LysoPC in HS were likely

associated with systemic inflammation as previously proposed

(Hung et al., 2012; Liu et al., 2017). While the concentrations of

some LysoPC were numerically lower in HS than TN, due to the

lack of significant FRD values, the following interpretations aim to

propose hypotheses in an exploratory approach for further testing.

Phosphatidylcholines are precursors for the synthesis of LysoPC,

which play signaling roles at the cellular level and participate in

inflammatory response in mammals, including bovines (del Bas

et al., 2016; Humer et al., 2018; Rico et al., 2021). Thus, its decreased

concentrations in heat-stressed cows were likely related to the

systemic inflammation (Kvidera et al., 2017b). In fact, decreased

plasma LysoPC concentrations were found after LPS challenge in

bovines under thermoneutral conditions (Humer et al., 2018; Javaid

et al., 2022). According to the milk lipidomics-based findings of Liu

et al. (2017), the decrease in LysoPC should be a structural

metabolic shift in response to heat stress as heat stress-sensitive

cows have been observed to suffer greater changes in LysoPC than
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tolerant cows. In the current experiment, PC rather than LysoPC

showed more evident changes during heat stress, thus PC were

likely further utilized to sustain LysoPC synthesis. In addition, the

PC: phosphatidylethanolamine balance plays an important role in

membrane response and thermal sensing, which are highly

conserved functions across species (as reviewed by Balogh et al.,

2013). In summary, the decreased plasma and milk PC

concentrations likely indicated increased cell membrane fluidity

during HS.

However, increased Met availability in HS+AA appeared to

have improved plasma and milk PC concentrations. Six out of 9

plasma PCs, and 4 out of 8 milk PCs that decreased or tended to

decrease in HS vs. TN (FDR ≤ 0.10 for the treatment effect) were

improved in HS+AA either to similar concentrations as in TN or

intermediate concentrations between HS and TN. Moreover, when

considering the raw-P values ≤ 0.10, most of the plasma (33 out of

40) and milk (13 out of 17) PCs showed negative fold change in HS

compared either to TN or HS+AA (Supplementary Figure S2;

Supplementary Tables S2, S3). Thus, our results point to at least a

partial recovery of PC synthesis in HS+AA. Interestingly, despite

Met being a precursor of taurine, a potent antioxidant that

commonly decreases during heat stress (Belal et al., 2018), plasma

and milk taurine concentrations did not improve after the increased

dietary Met supply in HS+AA. Instead, the increased Met supply

likely stimulated the one-carbon metabolism, leading to increased

plasma and milk concentration of PC. Met supply can upregulate

the phosphatidylethanolamine methyltransferase (PEMT) pathway

in bovine liver cells (Zhou et al., 2018) in interaction with folic acid

and re-methylation cycles, leading to enhanced synthesis of PC

(Myers et al., 2019; McFadden et al., 2020) (Figure 3). In fact,

methyl-donor supplementation, through the stimulation of one-

carbon metabolism improved the cytoprotective characteristics of

heat-stressed polymorphonuclear leukocytes of lactating dairy cows

(Lopreiato et al., 2020). In the current experiment, the increased AA

supply was associated with a decrease in serum lipopolysaccharide
FIGURE 2

Metabolic pathways differing (FDR ≤ 0.10) between treatments (thermoneutral, TN; heat stress, HS; heat-stressed with high Met, Lys and His supply,
HS+AA) within each parity class (primiparous, P; multiparous, M) according to the plasma metabolomic data. The measured metabolites in the
current study belonging to each pathway are depicted by colored cells, with higher and lower concentrations for HS vs. TN or HS vs. HS+AA
indicated by red and blue tones, respectively. Significant differences (P < 0.05) among the compared pairs are depicted by darker color and *.
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TABLE 3 Metabolites differing (FDR P < 0.05) between treatment (thermoneutral, TN; heat-stressed, HS; increased dietary Met, Lys and His supply,
HS+AA), parity (primiparous, P; multiparous, M) and their interactions in milk upon the end (day 14) of the experimental treatments.

Metabolite

Mean concentrations (µM) FDR

TN HS AA SEM P M SEM Treatment Parity
Treatment
× Parity

AC(0:0) 90 96 95 9.0 116 71 4.9 0.73 < 0.01 0.98

AC(2:0) 58.8a 45.3b 56.1a 3.65 62.1 44.6 2.66 0.02 < 0.01 0.98

SM(39:1) 9.91 7.69 8.20 0.665 9.92 7.28 0.489 0.10 0.01 0.98

Lys 11.5 12.9 15.8 2.25 8.1 18.7 1.31 0.53 0.01 0.98

AC(5:0-OH) 0.26 0.26 0.25 0.021 0.30 0.21 0.014 0.73 0.01 0.99

PC(46:2) 9.52 6.51 10.87 1.17 11.01 6.92 1.021 0.10 0.04 0.98

a-
aminoadipic acid 1.75b 4.87b 16.11a 0.919 6.65 8.51 1.709 < 0.01 0.04

0.98

Ser 15.5 14.0 11.9 1.28 15.9 11.7 1.00 0.41 0.07 0.99

ADMA 0.089 0.084 0.081 0.0076 0.098 0.071 0.0052 0.74 0.07 0.99

PC(33:1) 3.27 2.74 3.44 0.192 3.47 2.84 0.156 0.12 0.08 0.98

PC(30:0) 13.4 11.9 14.0 0.85 11.7 14.4 0.64 0.42 0.09 0.99

SM(40:1) 16.9 15.5 18.2 0.78 18.1 15.6 0.65 0.31 0.09 0.98

DG-O(34:1) 322 286 360 25 360 285 20 0.41 0.09 0.98

PC(36:1) 4.37b 3.65b 6.08a 0.268 5.13 4.27 0.323 < 0.01 0.09 0.98

PC(36:2) 10.4a 8.2b 11.0a 0.59 10.7 9.0 0.51 0.02 0.14 0.98

PC(34:1) 31.5a 24.8b 32.2a 1.31 31.2 27.8 1.24 < 0.01 0.20 0.98

Taurine 30.3a 11.0b 13.8b 1.69 16.6 20.1 2.50 < 0.01 0.22 0.98

PC(32:1) 6.8a 5.27b 6.9a 0.311 5.99 6.68 0.303 0.02 0.39 0.98

PC(44:3) 23.4a 14.8b 12.3b 1.58 18.5 15.2 1.70 0.01 0.42 0.98

SM(37:1) 5.78a 4.66ab 3.55b 0.372 4.33 5.00 0.361 0.05 0.49 0.98

Gly 117a 65b 63b 9.2 89 75 9.8 0.01 0.52 0.98

LysoPC(15:0) 0.049b 0.085a 0.089a 0.0075 0.082 0.067 0.0073 0.04 0.54 0.99

PC(44:5) 2.71a 1.82b 1.82b 0.180 2.27 1.96 0.173 0.02 0.58 0.99

PC(32:0) 19.2b 20.9ab 23.5a 0.77 20.6 21.8 0.75 0.03 0.58 0.98

PC(36:0) 3.87 1.94 2.94 0.420 3.03 2.81 0.383 0.05 0.60 0.98

Thr 11.2b 13.4ab 15.9a 0.82 14.1 13.0 0.84 0.02 0.64 0.99

Val 12.4b 14.4b 19.5a 1.17 16.3 14.5 1.29 0.03 0.64 0.99

AC(4:0) 3.02b 6.68a 5.41ab 0.767 5.45 4.62 0.708 0.02 0.72 0.98

Pro 32.3a 24.7b 19.9b 2.16 25.3 26.0 2.13 0.02 0.72 0.98

His 3.83b 4.24b 5.75a 0.356 4.76 4.45 0.351 0.02 0.74 0.98

SM(42:2) 2.00a 1.58b 2.12a 0.117 1.92 1.88 0.112 0.04 0.88 0.98

Creatinine 82 94 107 4.9 95 93 4.7 0.10 0.88 0.99

SM(42:1) 13.1a 10.4b 13.0a 0.57 12.2 12.1 0.55 0.03 0.93 0.98

DG(32:1) 33.9 27.2 39.5 2.69 33.9 33.2 2.55 0.09 0.97 0.99

Met 2.23b 2.39b 4.58a 0.205 3.09 3.04 0.329 < 0.01 0.97 0.99
F
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Different superscripts indicate significant differences between means (P < 0.05).
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binding protein (LBP) concentration, milk SCC, rectal temperature,

and respiration rate during heat stress, suggesting a partial

alleviation of the inflammation and oxidative stress (Ruiz-

González et al., 2022a). Phosphatidylcholines play a central role

in cellular integrity and thus the increased PC availability may help

maintain intestinal barrier integrity and prevent the inflammatory

consequences of a ‘leaky gut’. In summary, since heat stress appears

to enhance PC and LysoPC turnover and utilization by immune

activation (Humer et al., 2018), nutritional strategies favoring PC

synthesis (including increased dietary Met supply) appear as a

potential avenue to alleviate heat stress effects in high-yielding

dairy cows.

Plasma hydroxyproline is synthetized from Pro, which also

contributes to membrane integrity through the formation of

collagen, a key component for cellular thermal stability (Kubow

et al., 2015). We detected decreased hydroxyproline concentrations

during heat stress in the plasma and decreased Pro concentrations in

the milk but not in the plasma. Heat stress enhances protein catabolism

including collagen breakdown which is largely composed of Gly and

Pro (Rıús, 2019); thus, unchanged Pro and lower hydroxyproline

plasma concentrations should be indicative of preferential use of Pro

for other processes rather than hydroxyproline synthesis (Figure 3). Pro

can act as an antioxidant source (Krishnan et al., 2008) and its lower
Frontiers in Animal Science 09
concentrations in the milk could suggest local utilization to counteract

ROS at the mammary gland level. Alternatively, Pro could be

channeled to other organs, e.g. the intestines which are particularly

challenged by oxidative stress and inflammation during heat stress

(Kvidera et al., 2017b). Based on heat-stressed porcine adipocytes, Qu

and Ajuwon (2018) suggested that increased Pro catabolism should be

linked to antioxidant action during thermal stress.

Lower plasma and milk Gly concentrations in HS and HS+AA

are also in agreement with previous studies as this might be the

consequence of its increased utilization for antioxidant synthesis

and gluconeogenesis in response to heat stress (Rıús, 2019). Fan

et al. (2019) reported lower concentrations of both Gly and Pro in

the mammary gland of heat-stressed multiparous cows. Gly is

involved in the synthesis of folic acid which interacts with the

Met cycle and the transsulfuration pathway, hence serving as a

precursor for glutathione together with Cys and Glu. In turn, the

reduced form of glutathione is a potent antioxidant that typically

decreases under heat-stressed conditions (Sordillo and Aitken,

2009; Kawano et al., 2022). In addition, Gly has been suggested to

have a direct antioxidant activity in intestinal epithelial cells during

heat stress (Wang et al., 2014), supporting the intestinal barrier

integrity by regulating the gene expression of tight junction

elements (Li et al., 2016). Gly supplementation was shown to
FIGURE 3

Interpretive metabolic map integrating the main results related to methionine metabolism, with particular regard to the multiparous cows and their
response to increased dietary Met supply during heat stress. Metabolite changes depicted here correspond to pairwise comparisons of the pathway
enrichment analysis. Metabolites effectively measured in our study are indicated in black, while the compounds in grey were not quantified herein.
tOHPro, trans-hydroxyproline; PEth, phosphatidylethanolamine; PEMT, phosphatidylethanolamine N-methyltransferase; PC, phosphatidylcholine;
LysoPC, lysophosphatidylcholine.
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alleviate whole-body protein degradation and inflammation in

growing piglets challenged by LPS (Wu, 2015). Both of these

phenomena (inflammation and labile protein catabolism) also

occur in dairy cows in response to heat stress (Rıús, 2019). Thus,

the decreased milk concentrations of Gly during HS could be the

consequence of its primary use in support of the antioxidant system

and counteracting inflammation.

Increased plasma and milk concentrations of Val and Trp in

HS+AA likely reflected a combined effect of increased dietary supply

and a lower oxidation of these AA due to higher Lys availability. In fact,

the HS+AA treatment showed 20% and 27% higher plasma and milk

Val concentrations, respectively, and 25% higher milk Trp

concentration, compared with HS. However, the dietary supply of

Val and Trp was estimated to be 11% higher compared to the other

treatments due to the inclusion of blood meal, according to the

NASEM system (NASEM, 2021; data not shown). Therefore, we

hypothesize that preferential oxidation of Lys due to its increased

availability led to downregulated oxidation of Val and Trp and

therefore to an increased availability of these EAA. In fact, in the

current study, isotopically labeled Leu experiments performed on the

last experimental day (day 14) demonstrated that its increased

fractional oxidation during heat stress was reversed in HS+AA,

possibly due to a higher oxidation of Lys (Ruiz-González et al.,

2022b). Our metabolomics data seem to confirm this hypothesis as

Lys catabolic products (a-aminoadipic acid, acetyl-carnitine) decreased

during heat stress but increased in HS+AA in both plasma and milk

(Figure 4). Moreover, Trp which has a common catabolic pathway with

Lys, was also increased after the AA increased supply. In particular, a-
aminoadipic acid produced from Lys can be metabolized into 2-
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oxoadipic acid by kynurenine-a-aminoadipic acid transferase, an

enzyme previously reported in cows (Deshmukh and Mungre, 1989;

Leandro and Houten, 2020). Thus, this enzymatic connection between

Trp and Lys could regulate preferential degradation of Lys instead of

Trp. Downstream Lys degradation also overlaps with fatty acid

degradation, with acetyl-CoA being the catabolic end product.

Accordingly, decreased milk acetyl-carnitine in HS was reverted in

HS+AA and butyryl-carnitine increased during heat stress and

decreased after the increased AA supply, suggesting an enhanced

flow of the Lys degradation pathway and improved mitochondrial

fatty acid metabolism. In a similar experiment comparing

thermoneutral and heat-stressed conditions in multiparous cows, we

observed increased milk carnitine and butyryl-carnitine concentrations

during heat stress (Jorge-Smeding et al., 2023), suggesting incomplete

b-oxidation due to impaired mitochondrial metabolism (Kenéz et al.,

2015; Huber et al., 2016; Kinoshita et al., 2018).

Our results disagreed with the findings of Kassube et al. (2017),

where Met, Lys and BCAA jugular infusions did not affect milk protein

synthesis during heat stress. On the contrary, our previously published

results demonstrated that the decreased milk protein content in heat

stress was reversed in the HS+AA treatment (Ruiz-González et al.,

2022a). Not only didmilk protein improve but alsomilk urea decreased

in HS+AA treatment, indicating improved AA utilization efficiency.

The increased Met and Lys availability likely also contributed to

improved milk protein content as these are usually the most limiting

AA (Bequette et al., 1998). Besides, the increased concentrations of

other EAA, in particular BCAA, likely stimulated protein synthesis

through the mTOR pathway (Doelman et al., 2015). Decreased

availability of individual AA and downregulated activity of mTOR, a
FIGURE 4

Interpretive metabolic map of Lys metabolism with regard to the multiparous cows’ response to increased Lys supply during heat stress. Altered
metabolite concentrations correspond to pairwise comparisons of the pathway enrichment analysis. Metabolites effectively measured in our study
are indicated in black, while the compounds in grey were not quantified herein. aAA. a-aminoadipic acid; aKIC. a-ketoisocaproic acid; aKIV, a-
ketoisovaleric acid; OA, 2-oxoadipic acid; mTOR, mechanistic target of rapamycin pathway.
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master regulator of protein synthesis stimulated by BCAA and Lys

(Doelman et al., 2015; Lin et al., 2018), were suggested to explain the

decreased protein synthesis in the mammary gland during heat stress

(Rıús, 2019). Heat stress downregulated the expression of genes

involved in AA utilization, AA transport, and mTOR kinase activity

in bovine mammary epithelial cells (Kaufman et al., 2018; Dado-Senn

et al., 2021). Through a different pathway, insulin also activates

downstream mTOR pathways but it is dependent on BCAA

availability (Shimobayashi and Hall, 2016; Kenéz et al., 2019).

Protein synthesis stimulation in the mammary gland through the

mTOR pathway is associated with increased mammary gland

insulin/IGF1 sensitivity during lactation (Bionaz and Loor, 2011). In

the current experiment, we found increased plasma insulin

concentrations during heat stress which was reverted in HS+AA by

the end of the experimental period along with the recovery of milk

protein content and decrease of milk urea (Ruiz-González et al., 2022a).

Lastly, Met was also suggested to activate the mTOR pathway in the

mammary gland, however, the exact mechanisms are not yet known

(Coleman et al., 2022). Our results indicated that improved milk

protein content in HS+AA was associated with the increased

availability of EAA, however, the exact interactions between Lys,

BCAA, Met and the mTOR pathway are yet to be fully elucidated.

Changes in the concentrations of Phe and Tyr were part of the

metabolic response to heat stress, which was independent of Met

and Lys availability. Previous heat stress studies reported a parity-

dependent increase of Phe and Tyr concentrations, highlighting

significant differences only in primiparous cows (Chen et al., 2022).

In contrast, our metabolic pathway analysis found the Phe and Tyr

metabolism differed only in the multiparous cows. Dado-Senn et al.

(2021) observed increased plasma concentrations of Phe after heat

stress pointing to links with immune and heat shock response. Phe

metabolism interacts with T-cell immune response suppression

(Yang et al., 2012) and its supplementation increased HSP70

expression (Plakidou-Dymock and McGivan, 1994). Additionally,

Phe is directly catabolized to Tyr by phenylalanine hydroxylase

(Crompton et al., 2018). In turn, Tyr can be either oxidized or used

to synthesize thyroid hormones (T3, T4) which play a central role in

thermal homeostasis and regulation of the basal metabolic rate

(Aleena et al., 2016). It has been suggested that decreased blood flow

to the thyroid gland due to vasoconstriction during heat stress could

lead to downregulated secretion of thyroid hormones in rabbits

(Mustafa et al., 2008). Thus, increased concentrations of the Phe

and Tyr could reflect downregulated secretion of thyroid hormones

leading to the accumulation of its precursors as observed previously

(Magdub et al., 1982; Weitzel et al., 2017; Pontiggia et al., 2023).
5 Conclusions

Heat stress caused a shift in the plasma and milk metabolic

profiles and some of these changes were restored due to the increased

dietary Met, Lys and His availability. Our metabolomics findings

herein suggested that this was associated with an increase of the

circulating phosphatidylcholine pool. Further, the increased Lys

availability associated with the greater availability of the overall

BCAA pool can likely explain the increase in milk protein synthesis.
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Our results suggest that increasing dietary supply of Met, Lys and His

can be useful to counteract the negative metabolic effects of heat stress;

however, our results pointed to stronger links with Met and Lys, likely

due to their higher supplementation rate relative to His. Further

studies are warranted to validate these results on a larger independent

cohort of cows and to establish specific nutritional recommendations

considering parity, genetic merit, and degree of heat stress tolerance.
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SUPPLEMENTARY FIGURE 1

Partial least squares - discriminant analysis (PLS-DA) scores plot for the

treatment class (thermoneutral, TN, blue; heat-stressed, HS, green; heat-

stressed with high Met, Lys and His supply, HS+AA, red) based on the milk
metabolomics profiles. The panel on the right lists the 15 metabolites with the

highest variable in projection (VIP) scores.

SUPPLEMENTARY FIGURE 2

Log2 fold change of measured phosphatidylcholines (PC) in plasma (A) and
milk (B) in HS compared either to TN (blue bars) or HS+AA (orange bars).
Negative and positive values indicate lower or higher values in HS,

respectively. Treatment effect significance levels indicated in the figure

correspond to ANOVA’s raw-P.
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