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The recent advances in sensor technologies and data analysis could improve our

capacity to acquire long-term and individual dataset on animal behavior. In livestock

management, this is particularly interesting when behavioral data could be linked to

production performances, physiological or genetical information, with the objective

of improving animal health and welfare management. In this study, we proposed a

framework, based on computer vision and deep learning, to automatically estimate

animal location within pasture and discuss the relationship with the risk of gastrointestinal

nematode (GIN) infection. We illustrated our framework for the monitoring of goats

allowed to graze an experimental plot, where feces containing GIN infective larvae were

previously dropped in delimited areas. Four animals were monitored, during two grazing

weeks on the same pasture (week 1 from April 12 to 19, 2021 and week 2, from June

28 to July 5, 2021). Using the monitoring framework, different components of animal

behavior were analyzed, and the relationship with the risk of GIN infection was explored.

First, in average, 87.95% of the goats were detected, the detected individuals were

identified with an average sensitivity of 94.9%, and an average precision of 94.8%.

Second, the monitoring of the ability of the animal to avoid infected feces on pasture

showed an important temporal and individual variability. Interestingly, the avoidance

behavior of 3 animals increased during the second grazing week (Wilcoxon rank sum,

p-value < 0.05), and the level of increase was correlated with the level of infection during

week 1 (Pearson’s correlation coefficient = 0.9). The relationship between the time spent

on GIN-infested areas and the level of infection was also studied, but no clear relationship

was found. In conclusion, due to the low number of studied animals, biological results

should be interpreted with caution; nevertheless, the framework provided here is a new

relevant tool to explore the relationship between ruminant behavior and GIN parasitism

in experimental studies.

Keywords: image analysis, gastro-intestinal nematodes, animal behavior, fecal avoidance, Creole goats

INTRODUCTION

Goats are an important resource mainly for meat and milk production. In 2019, the number
of farmed animals was estimated at more than 870 million (http://www.fao.org/faostat), with
approximately 94% of the animals located in Asia and Africa. Infection with gastrointestinal
nematode (GIN) parasites is one of the main health constraints, responsible for reduced
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performances production and increased mortality, especially in
young animals and adult females, during the periparturient
period. One of the most pathogenic GIN is Haemonchus
contortus, known as the barber pole worm, for the red color of the
digestive tract due to its blood-feeding activity, against the white
reproductive tract of the female. The ecological niche of adult H.
contortus is the abomasum, where female worms can release up
to 10,000 eggs daily, which then arrive on the pasture through
the feces. In the past, GIN management successfully relied on
systematic anthelmintic (AH) treatment. Unfortunately, resistant
GIN populations to AH were gradually selected (Kaplan and
Vidyashankar, 2012). Thus, it is now widely admitted that relying
only on AH is not a sustainable strategy (Charlier et al., 2018).

Several alternatives to manage GIN infection in small
ruminant production have been investigated, most of them
relying on prevention, for example, genetic selection of resistant
animals or optimal pasture management. The objective of the
latter is to reduce the parasite burden on the pasture and
therefore the risk of infection during grazing, by taking into
account the life cycle of the parasites. Modeling is an important
tool to understand the interactions between the different
management alternatives and could be used to design sustainable
strategies, adapted to the farming system. This requires both
a good understanding of the GIN population dynamic and
the impact of the different management strategies on the GIN
population. Models of GIN population dynamic on pasture (Rose
et al., 2015) or within the host (Louie et al., 2005; Saccareau
et al., 2016) are available in the literature, but the dynamic of
GIN ingestion, that is, timing and quantity of ingested GIN, is
not well described. However, accounting for the dynamic of GIN
ingestion and for individual variability can have an important
impact on the entire GIN population dynamic (Cornell et al.,
2004; Fox et al., 2013; Bonneau et al., 2018). Modeling ingestion
is a complex task, mainly because of the difficulty to estimate
the spatial distribution of GIN on pasture and the number of
GIN ingested in each bite. The recent developments in precision
livestock farming tools offer new opportunities, especially to
characterize animal behavior, and to study the relationship with
GIN infection.

Most of the studies that consider the relationship between
animal behavior and GIN infection focused on the capacity of
the animal to avoid feces. To our knowledge, all the studies relied
on visual observations, either directly or from video recording,
and most of them were performed in sheep. In particular, several
studies showed that sheep were able to avoid feces during grazing
(Hutchings et al., 2006), and avoidance was greater for the
infected animals (Hutchings et al., 1999; Cooper et al., 2000) and
decreased with the age of feces (Hutchings et al., 1998). For goats,
the only study conducted (Brambilla et al., 2013), underlined
the fecal avoidance capacity of wild Alpine Ibex. However, no
relationship between avoidance and infection level was found.
Moreover, social behavior can influence the animal diet, with the
dominant animals having the opportunity to be more selective
(Barroso et al., 2000), and thus potentially avoid more easily the
infested areas. One study investigated this relationship between
social behavior and GIN infection in goat (Ungerfeld and Correa,
2007). It has been shown that the degree of infection, measured

through the fecal egg count (FEC, number of GIN eggs per gram
of feces), of the most dominant goats was significantly lower.

Here, we proposed an experimental framework to study the
relationship between animal behavior and GIN infection. We
designed a pasture where the quantity and location of infected
feces were known. Our first objective was to study the ability
of the goats to avoid feces, and the second was to study the
relationship between the time spent on infected areas and
the level of infection. The experimental framework was based
on automatic monitoring of the animals using image analysis
(Li et al., 2021). Convolutional neural networks (CNNs) are
generally the most adapted image analysis tool and has been used
successfully, mostly for pigs (e.g., Yang et al., 2019; Zhang et al.,
2019; Marsot et al., 2020; Zheng et al., 2020; Gan et al., 2021), but
also for goats (e.g., Wang et al., 2018; Bonneau et al., 2020; Min
et al., 2020; Su et al., 2021). Several methods for cattle monitoring
also successfully identified animals using CNN and other deep-
learning technics (William et al., 2017; Qiao et al., 2019; Achour
et al., 2020). The main advantage of using CNN is that powerful
models, trained on millions of images and designed by research
teams with relevant engineering skills, are available free of charge.
Then, new users can almost directly use these CNNs, just by
retraining some parameters to be able to detect and classify their
objects of interest. In this article, we proposed to use YOLO
(Redmon and Farhadi, 2017) associated with resNet-50 (He et al.,
2016) to detect and identify the animals.

MATERIALS AND METHODS

All animal care handling techniques and procedures were
approved by the French Ethics Committee n◦069 (Comité
d’Ethique en Matière d’Expérimentation Animale des Antilles
et de la Guyane, CEMEAAG) authorized by the French
Ministry of Higher Education, Research and Innovation. The
experiment was performed at the INRA Experimental Facilities
PTEA (Plateforme Tropicale d’Expérimentation sur l’Animal)
according to the certificate number A 971-18-02 of authorization
to experiment on living animals issued by the French Ministry
of Agriculture.

Experimental Setup
The experiment was organized in three stages. The first stage
was a controlled environment stage, with low or no risk of
infection, the second stage was the grazing stage, where the
animals were exposed to GIN during grazing, and the third stage
was a controlled environment stage, again with low or no risk of
infection, where the GIN level of infection due to GIN ingestion
during the second stage was monitored.

The experiment was first conducted during week 1, from April
12 to 19, 2021, and repeated during week 2, from June 28 to July
5, 2021. The same pasture and animals were used for the 2 weeks.

Illustrations and schematic representation of the experiment
are available in Figure 1.

Animals
Four male Creole goats were selected to maximize color
differences between individuals. The first goat, referred as white,

Frontiers in Animal Science | www.frontiersin.org 2 March 2022 | Volume 3 | Article 835516

https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/animal-science#articles


Bonneau et al. Goats Fecal Avoidance

FIGURE 1 | (a) Pasture setup. The green and blue dashed zones are the infested areas A and B. The black dashed square is the resting area. During experiment, we

placed a sheet of metal inside the area to produce shade. The red area is the control area, to estimate the number of infected larvae on pasture. During week 2, the

control area was located on the opposite side of pasture (not displayed here). On week 1, we used the camera located on the bottom right corner of the pasture and

on the bottom left on week 2. (b) Picture example of the four Creole goats used during the experiment. (c) Schematic representation of the experiment.

had a black coat with white color patches on the belly, weighed
34.13 kg and was 16 months old at the beginning of the
experiment. The second goat, referred as brown, has a brown
coat with a black strip on the back, weighed 33.93 kg and was
12 months and 17 days old at the beginning of the experiment.
The third goat, referred as black, had a homogeneous black coat,
weighed 31.62 kg and was 12 months and 17 days old at the
beginning of the experiment. The last goat, referred as red, had
a reddish brown coat with a black strip on the back, weighed
39.92 kg and was 12 months and 11 days old at the beginning of
the experiment.

The animals from different sire origins were raised at pasture
and exposed to natural GIN infection, until the first stage of the
experiment. No parasitological measure was performed during
the period at pasture. Before the experiment, all animals were
drenched. One drenches at 6 weeks old, 10 weeks old, and then
for weaning, at 12–14 weeks old. Animals were finally drenched
at 5 months old and then every 2 months.

Stages 1 and 3: Controlled Environment
The animals were drenched with moxidectine (Cydectine R©

0.1%, Fort Dodge Veterinaria S.A., Tours, France, 300 µg/kg
of liveweight) at the beginning of stage 1 of week 1, and with
levamisole (Biaminthic 5%, Laboratoire Biard, Arques, France,
7.5 mg/kg of liveweight) for week 2. The efficacy of the AH
treatments was controlled by measuring the fecal egg count
(FEC) 1 week before grazing. To assess the individual FEC,
approximately 5 g of feces was collected from the rectum and
directly transported to the laboratory using plastic tubes to avoid
contamination. The feces samples were analyzed individually
using a modified McMaster technic. The FEC was expressed as
the number of GIN eggs per gram of feces (EPG, Aumont et al.,
1997). For week 2, the animals were drenched a second time,
after the FEC analysis revealed the presence of eggs at a low level.
Thereafter, the individual FEC was reassessed on the first grazing
day, to confirm that no eggs can be found in the feces. In any case,
the AH treatments were performed considering their persistence
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to avoid any bias. Before and after grazing (stages 1 and 3), the
animals were maintained together in a stall and were fed with
dry hay to avoid parasite ingestion outside of the grazing week.
After grazing, FEC was assessed at least every week, starting 8
days after grazing.

Stage 2: Grazing
We designed a square pasture of 144 m2, with a semiclosed
adjacent area of 9 m2, equipped with fresh tap water. This
area was used by the animals to rest and to be protected
from the rain and sun. To define the infested areas, we
delimited two rectangles of 2m × 6 m=12 m2 each (infested
areas A and B). The areas were delimited with metallic
bars sinked into the ground, with only 20 cm of the bar
above the ground, to avoid disrupting animal behavior. The
pasture was flat, to limit GIN movement on pasture due to
water flow.

The pasture was worm-free (never grazed) before the
experiment and was mowed 1 month before the beginning
of grazing on week 1. Grass height was measured with an
herbometer on n spots. When grazing started, grass was in
average 7.32 cm (n = 22) in the non-infested areas, 8 cm
(n = 8) in the infested area A and 8.3 cm (n = 9) in the
infested area B. At the end of grazing on week 1, grass was
mowed at ground level to limit the persistence of parasites
on the infested areas. However, the mowed grass was not
removed from the pasture. Thereafter, 20 days before grazing
on week 2, grass and ground samples were collected in the
infested and non-infested areas to guarantee that parasites
were not present on pasture. We used a Baerman technic to
extract parasites from the samples, and no GIN infective larvae
were observed. When grazing started on week 2, the grass
was in average 10.7 cm (n = 23) in the non-infested area,
10.8 cm (n = 11) in infested area A, and 9.3 cm (n = 12) in
infested area B.

A total of 900 g of infected feces were dropped homogeneously
within each infested area. Feces were dropped manually 13
days before grazing on week 1 and 10 days before grazing
on week 2, to maximize the number of infective larvae on
pasture during grazing. On week 1, feces were obtained from
10 naturally infected animals. Although other GIN species
could be present, animals are generally mostly infected by
H. contortus. The feces were mixed homogeneously and FEC
was estimated from 10 different samples (mean FEC = 576
eggs/g, std = 265 eggs/g). On week 2, feces were obtained from
16 experimentally infected animals with H. contortus (Cériac
et al., 2019). FEC was assessed for each animal (mean FEC
= 4431 eggs/g, std = 43.8 eggs/g), and feces were mixed
together homogeneously.

To estimate the number of infective larvae on the infested
areas, 6 control feces samples of 80 g each were dropped in 30 cm
square quadrats, outside of the pasture. Two grass samples were
then collected from two quadrats, on the 1st, 3rd, and 6th grazing
days for week 1 and on the 1st, 3rd, and last grazing days for
week 2. The number of infective larvae was then measured after
isolation with the Baerman technique. The number of larvae
found from the two control samples was averaged to interpolate

the number of larvae in the infested areas, from the 900 g
of feces:

n
p
L3 =

nc1L3 + nc2L3
2

×
900

80
.

where n
p
L3 is the estimated number of infective larvae inside an

infested area, nc1L3 and n
c2
L3 are the number of infected larvae found

in the first and second control samples.

Recording With Time-Lapse Cameras
We used a construction time-lapse camera (Brinno TLC2000 pro
2018), equipped with waterproof plastic protection. The camera
records at 1.3 Mpx with a resolution of 1,208 × 720 using jpeg
compression. It was set up to take one picture every 20 s from
6:30 am to 6 pm. The analysis of the images acquired during
week 1 showed that the camera was facing the sun during sunrise,
which decreases the quality of the images. As a consequence, the
location of the camera was adapted accordingly for week 2 (see
Figure 1).

Animal Monitoring
An algorithm was developed to analyze each image of the time-
lapse camera independently. The algorithmwas decomposed into
two steps: (i) to detect the animals on the picture and (ii) to
identify the detected animals, that is, white, brown, black, or red.

Animal Detection
To detect animals, a common approach was used, based on the
CNN YOLO v2 (Redmon and Farhadi, 2017), known to run fast,
with high accuracy and high learning capacities.

YOLO divides the image into grid cells of various sizes
and predicts what objects are present into each cell. Then, a
combination of different techniques allowed to find the exact
bounding boxes around the detected objects, by reasoning on the
global image. For image feature extraction, YOLO can be used
with classical CNNs for image classification. For our purpose, we
trained one version of YOLO based on inception v3 (Szegedy
et al., 2016) and another version based on resNet-50 (He et al.,
2016). Each network was trained on the same set of 3,820
images, where the goats were manually labeled. We performed
an empirical evaluation of the two networks and found that the
architecture based on resNet-50 provided better results.

In very few cases, YOLO returned more than 4 detections,
mostly when multiple bounding boxes were associated with
the same animal. When more than four bounding boxes were
found, a non-max suppression method was used to remove the
overlapping bounding boxes, and the four bounding boxes with
the highest probability were selected.

To compute the different animal behavior variables, only
the detection inside the pasture was considered, whereas the
detections inside the resting area were not considered. In this
area, it was particularly difficult to differentiate the animals, due
to the shadow and occlusion.

Individual Identification
The results of the YOLO detection stage were a set of bounding
boxes, (xa, ya,wa, ha)a=1...n, around the detected animals, where
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xa and ya were the column and row numbers of the top left corner
of the bounding box number a. wa and ha were the width and
height of the bounding box, and n was the number of bounding
boxes or detected animals. We then moved to the next step:
identifying the animals inside each bounding box.

This second step is an image classification problem, with 4
different classes, white goat, brown goat, black goat, and red goat.
There are several CNNs that are available free of charge and
trained on more than one million images to perform image
classification. Even though these CNNs are generally trained to
recognize common objects such as dogs, stop signs, or humans,
their architecture and most of their layers can be directly used to
recognize new classes, which is known as transfer learning. Two
different CNNs were also tested, resNet-50, and inceptionV3. In
each case, only the parameters of the last 10 layers were retrained.
When labeling the training images for YOLO, the color of the
animals was also labeled. Thus, the 3,200 training images labeled
for YOLO were used, to extract 12,236 images with color labels.
In total, approximately 3,400 images were available for the white
goat and 2,900 images for the other goats. A total of 70% of the
dataset were used to retrain the CNNs and 30% to evaluate their
performance. resNet-50 provided higher sensitivity and precision
values and was used for the analysis.

Compared to other image classification problem, an extra
information was available: two detections cannot be in the same
class. Instead of using the prediction of the CNN directly,
we used it to compute the probability of each bounding box
being from an animal of the four different colors. For each
bounding box number a (xa, ya,wa, ha), the CNN associated a
set of probabilities (pa

white
, pa

brown
, pa

red
, pa

red
). A score was then

calculated for each possible color configuration of the bounding
boxes. If ca is the color of the bounding box number a, the score of
a configuration

(

c1, . . . , cn
)

is simply the sum of the probabilities
of the bounding boxes to be in that colors:

V
(

c1, . . . , cn
)

=

n
∑

a=1

paca .

Finally, the color configurationwith the highest score was chosen.

Evaluation
To evaluate the capacity of the method to detect and identify
animals, a MATLAB application was designed to select randomly
an image on the data bank and displayed the detected animals
with their estimated color. For each color (i.e., white, brown,
black, and red), the user first selected if the animal was detected,
non-detected, or absent (i.e., inside the resting area). When the
animal was detected, the user also had to select the estimated
color. A second script was designed to manually record the
location of the missed detection.

We ran the application to control more than 600 images
for each week. To assess the capacity of the method to
detect the animals, we computed the percentage of detected
animals. For each color, the percentage of detection is equal to

100 ∗
(

nbD
nbD+nbND

)

. Where nbD is the number of images where

the animal is detected and nbND is the number of images where
the animal was not detected.

To assess the capacity of the method to identify the animals,
we compared the estimated and true color of each detection.
Then, we evaluated the sensitivity and precision for each
color class.

Animal’s Behavior
Avoidance Capacity
To characterize the capacity of the animals to avoid infested
areas, the number of times each animal was detected on the
infested and non-infested areas was computed. To compare the
two quantities, the number of detections was normalized by the
surface area of each zone, which provided a number of detections
per m2. Finally, the avoidance index was defined as the ratio of
the number of detections per m2 inside the non-infested and the
infested areas:

Avoidance Index =
dnia/120

dia/24
.

Where dnia is the number of detection inside the non-infested
area and dia is the number of detection inside the two infested
areas A and B. We recall that the non-infested area is 120 m2 and
the infested areas is 2m× 12m = 24 m2.

An avoidance index > 1 means that the number of detections
per m2 was strictly higher for the non-infested area. The greater
was the avoidance index, the greater was fecal avoidance.

Note that with our framework, grazing and non-grazing
animals could not be distinguished, which biases the
computation of the avoidance index. In future works, the
avoidance index should be computed only with the detection
corresponding to grazing animals.

Larval Exposure and FEC
The relationship between the time spent on infested areas A and
B, the number of larvae on pasture, and the animal’s FEC after
grazing was explored.

To quantify the individual grazing time inside the infested
areas, we first calculated the proportion of time each animal
spent in these areas, which was easily obtained from the animal
monitoring framework. It is defined as the ratio between the
number of time the animal was detected inside the infested areas
and the number of pictures available per day. Then, the amount
of time, in minutes, on the entire day, from sunrise to sunset was
simply interpolated.

To quantify the daily quantity of larvae inside the pasture,
we first computed a linear interpolation of the number of larvae
inside the two infested areas during the 7 grazing days. The linear
interpolation consisted in connecting two observations with a
straight line.

To summarize these two data, we defined the exposure index,
as the sum of the daily products between the grazing time inside
the infested areas and the number of larvae. For an animal, the
exposure index is thus as follows:

Exposure Index =

7
∑

t=1

(

ptia ∗ tDaylight
)

× nlt .
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where ptia is the proportion of time spent inside infested areas A
and B during day t. tDaylight is the daylight duration, in minutes.

ptia ∗ tDaylight is the interpolated amount of time spent inside
infested areas during day t. In addition, nlt is the number of
estimated larvae, inside the two infested areas, on day t.

The exposure index quantify is used to quantify the animal
exposure to larvae, and it is monotonically increasing with the
quantity of larvae available on pasture and the time spent on
infested areas.

Finally, the logarithm of the area under the FEC curve (LAF)
of each animal was used to estimate the level of infection. The
LAF allowed the characterization of the infection dynamic over
the entire measurement period. The logarithm was used for a
better clarity of the graphical representation.

Statistical Analyses
All the statistical analyses were performed
using MATLAB R2021a.

The correlation between the individual LAF obtained on week
1, denoted LAFi for animal i = 1, . . . , 4, and the increase in the
weekly avoidance on week 2, denoted AVi, was studied using the
Pearson’s correlation coefficient. It is equal to:

1

3

4
∑

i=1

(

LAFi − µLAF

σLAF

) (

AVi − µAV

σAV

)

,

where µLAF and σLAF are the mean and standard deviation of the
individual LAF obtained on week 1. In addition, µAV and σAV
are the mean and standard deviation of the increase in the weekly
avoidance on week 2.

We also compared the avoidance index of each animal
between weeks 1 and 2, to detect changes in the avoidance
capacity using a Wilcoxon rank test, with 5% significance level.
More precisely, if avwi =

(

avwi1, . . . , av
w
i7

)

, is the vector of the daily
avoidance index for animal i during week w, we performed a
Wilcoxon rank test between samples av1i andav

2
i , to test the null

hypothesis that the two samples had equal mean.

RESULTS

Sward Height
The sward height at the start and at the end of the grazing week
is available in Table 1. For both week, grass intake was relatively
similar inside infested area A and the non-infested area. Grass
intake was lower inside infested area B, which is explained by
a small patch of non-grazed sedges, belonging to the family of
the cyperaceae.

Number of Haemonchus contortus

-Infective Larvae in the Infested Areas
The estimated number of H. contortus -infective larvae per
infested area is available in Figure 2. When grazing started, there
were more than 14,000 larvae available on the grass of each
infested area. Surprisingly, in week 2, where the feces were much
more infected than in week 1, the number of available larvae
was approximately the same at the beginning. However, the

TABLE 1 | Sward height when grazing started and ended, for the first and second

experimental week.

Week 1 Week 2

ZI A ZI B ZNI ZI A ZI B ZNI

Start 8cm 8.3 cm 7.32 cm 10.8 cm 9.3 cm 10.7 cm

End 5.05cm 6cm 4.8 cm 6.4 cm 7.3 cm 5.5 cm

1 −36.9% −27.1% −34.4% −40.7% −21% −47.7%

The last row gives the height different, in percentage, between start and end. Columns

ZI A and ZI B are the height for infested areas A and B. Column ZNI is the height for the

non-infested areas.

FIGURE 2 | Estimated number of larvae inside each infected areas for week 1

(left) and week 2 (right). We used square mark when the number of larvae

was estimated from the control samples, and star marks when it was

interpolated from the observations.

population was relatively constant on day 3 in week 2. On the
contrary, the population was 44.8% lower on day 3 in week 1.

Post Grazing Worm Burden
The individual FEC for the first and second weeks is available in
Figure 3. The FEC remained relatively low (< 4, 000 EPG) after
week 1. The brown goat had the highest FEC value (mean FEC=

2653 eggs/g). On the last FEC measurement, the black and white
goats had relatively similar FEC values, close to 2,000, although
the white goat had lower FEC at the beginning (mean FEC= 934
eggs/g for the white and 1,467 eggs/g for the black). The FEC of
the red goat did not exceed 700 eggs/g, which could be considered
as a low level of infection.

After week 2, the level of infection of the black goat was high
with FEC value close to 17,000 eggs/g (mean FEC = 11,415
eggs/g). The FEC of white and brown goats was similar, with a
maximal value close to 3,000 eggs/g (mean FEC = 1,679 eggs/g
for white and 1,342 eggs/g for brown). A peak of FEC (4,290
eggs/g) for the red goat was observed 21 days after the grazing
period. Thereafter, the FEC decreased to reach levels similar to
the white and brown goats (mean FEC= 1,473 eggs/g).

Animal Detection and Identification
The percentage of animal detected is available in Table 2. The
average detection rate was estimated at 86% during week 1 and
89.9% during week 2. The white goat had the highest detection
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FIGURE 3 | Individual fecal egg count (FEC), in eggs/g of feces, for week 1 (left) and week 2 (right), as a function of the number (Nb) of days after grazing stopped.

TABLE 2 | Percentage of detection of the animal detection method.

Pct detection - week 1 Pct detection - week 2

White 95% 95%

Brown 78% 80.8%

Black 84.3% 91.5%

Red 86.8% 92.1%

Average 86% 89.9%

The average is computed over all animals.

rate (95%). The white coat patches on the belly of this goat
was highly discriminant and certainly helped the detection and
identification by the algorithms. The red and black goats had
similar detection rates (89.45 and 87.9% respectively), whereas
the brown goat was the one with the lowest detection rate
(79.4%). As shown in Figure 4, most of the missed detections
were located on the part of the pasture farthest from the camera.
It has also been noted that missed detection could occurred when
the goats were close from each other. In this case, only one goat
was detected.

The sensitivity and precision of the animal identification
method are available in Table 3. The average sensitivity was close
to 95% for each week.We observed confusion between the brown
and red goats, which had similar shade. There was also some
confusion between black and white goats, which had most of the
coat of black color. When the white coat patches on the belly was
not visible, the identification method recognized the white goat
as the black one. As for the detection method, a better sensitivity
and precision during week 2 were observed. During week 2, the
camera was never facing the sun, which increased the image
quality and as a consequence, the quality of the detection and
identification methods. The number of missed detections was
highest between 6 am to 8 am for week 1.

Avoidance Capacity
The daily avoidance index for weeks 1 and 2 are available in
Figure 5. During week 1, the white and black goats preferentially
grazed the non-infested area during the first 3 grazing days. From
grazing day 4, these goats started to graze the infested areas more
than non-infested one. The daily avoidance index of the red goat
was lower than one only on days 4 and 7. The brown goat grazed
preferentially the infested areas during the entire grazing week.

For week 2, the black and red goats had a daily avoidance index
> 1 during the entire grazing week. Unlike during week 1, the
brown goat had an avoidance index≥ 1 during the first 6 grazing
days and only preferentially grazed the infested areas during the
last grazing day. During the first 4 days, the daily avoidance index
of the brown goat was in average equal to 2. Thereafter, the daily
avoidance index started to decrease and was in average equal
to 0.96 during the last 3 days. The white goat generally had the
lowest avoidance index (daily index < 1 during days 3, 4, and 5).

When comparing the avoidance index over the 2 weeks using
the Wilcoxon rank sum test, all animals, but the white goat,
significantly increased their avoidance (p-value < 0.05). The
average daily avoidance index increased by 36, 237, 99, and
44% for the white, brown, black, and red goats, respectively.
Interestingly, the greater LAF value was observed during week
1 and the greater weekly avoidance index was observed during
week 2. The Pearson’s correlation coefficient between the LAF on
week 1 and the increase in the average avoidance index on week
2 was 0.9.

Larval Exposure and Level of Infection
No simple relationship between the LAF and the exposure
coefficient was found. The LAF is between 10.5 and 11.2 for most
of the exposure coefficient. It is important to note that similar
exposure coefficient can have different LAFs. For example,
no significant difference was observed between the exposure
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FIGURE 4 | Spatial frequency of missed detections. The pasture is delimited by the black lines. The green and red lines define infected areas A and B. The white disks

provide the locations of the marks used to fit the geometric transformation from pixels to spatial coordinates. For each week, the location of the camera is defined by

the purple disk.

TABLE 3 | Sensitivity and precision of the animal identification method.

Week 1 Sensitivity Precision Week 2 Sensitivity Precision

White 98.9% 95.7% 99% 97.6%

Brown 95.9% 85.9% 94.4% 94.1%

Black 89.4% 95.7% 94.2% 96.7%

Red 92% 97.6% 95.7% 95.1%

Average 94% 93.7% 95.8% 95.9%

The average is computed over all animals.

coefficients of the red goat during week 1 and the black goat
during week 2 (8,417 and 8,417, respectively). However, the LAFs
of these two animals were respectively the minimal and maximal
observed values.

DISCUSSION

In this study, we provided a conceptual framework to study goats’
behavior at pasture and tested it to study the interaction between
grazing behavior and parasitism. This framework is based on
automatic animal monitoring using image analysis, to detect
and identify the animals on the images, which allows to record
the spatial coordinates of the animals over time. We were able
to derive several interesting indicators, such as the avoidance
index or the exposure coefficient. The relationships between these
indicators and the level of infection of the animals were studied.

We showed that animals had heterogeneous avoidance
capacity, which changed over time. We observed that avoidance

capacity increases during week 2, for all animals but one.
Interestingly, we observed that the more the animals were
infected after week 1, and the more their avoidance capacity
increased during week 2. Inline with this result, for sheep, it
has been shown that the avoidance capacity increased with the
level of infection (Hutchings et al., 1999; Cooper et al., 2000).
Some animals had an avoidance capacity > 1 during the first
grazing days and then became < 1 for the rest of the week.
Several hypotheses can be proposed, such as the age of feces,

which can decrease the avoidance capacity (Hutchings et al.,
1998). Moreover, animals naturally dropped feces inside the

pasture, increasing gradually the quantity of feces within the
non-infested area. To overcome this limitation, future studies
should use feces bag to avoid the contamination of the non-
infested area, as suggested by Hutchings et al. (2001). Finally,
the history of parasite infections should be measured to estimate
the relationship with the avoidance capacity. A clear relationship
was not observed either between the larval exposure and the
level of infection, or between the avoidance index and the
level of infection. This suggest that larval intake is a random
process and is not directly proportional to time spent on infested
areas. The non-linear relationship between FEC and adult
parasite established within the abomasum, and consequently,
larval ingestion could also explain our results (Cériac et al.,
2019). Whatever, the biological interpretation resulting from
our analysis should be interpreted with caution, due to the low
number of monitored animals.

However, our work provided insights to develop experimental
studies that characterize the behavior of ruminant at pasture
and can be improved in different ways. First, our work could

Frontiers in Animal Science | www.frontiersin.org 8 March 2022 | Volume 3 | Article 835516

https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/animal-science#articles


Bonneau et al. Goats Fecal Avoidance

FIGURE 5 | Individual daily avoidance for week 1 (top) and week 2 (bottom).

benefit from a daily estimation of the number of larvae inside
the infested areas, to improve the estimation of the exposure
coefficient. For week 2, the larval population was possibly
increased after the third grazing day. However, we were not able
to observe this dynamic, as we only had an observation on the
last grazing day. Second, the performance of the animal detection
and identification could also be improved. We used time-lapse
construction camera with a resolution of 1,208 × 720 and 1.3
Mpx, which was convenient because it ran on batteries and stored
the images on a SD card for the entire grazing week. This is
particularly adapted to outdoor conditions, where the pasture
can be located far from any facilities. However, using a camera
with higher definition can improve the details in the image,
especially when the objects are located far from the camera, and
thus potentially increase detection rate. Animal identification can
be improved using video recording instead of images generated
from time-lapse camera. With videos, animal identification can
benefit from object-tracking techniques (Li et al., 2021; Van der
Zande et al., 2021). It would also be possible to estimate the speed
and acceleration of the animals and to classify their activities.
This would be particularly useful, as far as in this study, we
were not able to distinguish between grazing and non-grazing
animals, which bias the computation of the avoidance index.
Social distance during grazing could also be used to determine
dominance status of the animals. Color marks on the animals
can be an interesting solution to increase both the detection
and identification methods. These color marks should be visible
from the camera, no matter the animal posture and its angle
from the camera. Finally, as it is shown in this article, it is
important to consider the sun trajectory when deciding the
camera location.

Overall, image analysis could be a useful tool to monitor
animal behavior on pasture. The main advantages are being
the low cost of the cameras and no handling of the animals.
With more developments, it could be expected that a variety
of variables, such as locations, activities, or animal interactions,
could be computed from only one sensor, the camera. However,
using image analysis remains technical, as it needs to train
specific deep neural network, which could be complicated
for non-specialist. In this work, we showed that animal
identification was possible, thanks to the various colors of the
individuals. This might not be possible for generic studies
and automatic identification remains a major constraint for
grazing goats. By now, GPS combined with accelerometers
probably remains the easiest solution to get continuous
individual data. With this study, we illustrated the use of image
analysis and how it could be used to study the relationships
between animal behavior and health. It demonstrated
that image analysis is a potential alternative, and future
improvements could open new perspectives for monitoring
animal behavior.

Most studies on small ruminants’ behavior rely on human
observation. This is particularly time-consuming, and in general,
observations are limited in time and frequency. Automatic
monitoring will allow to acquire long-term individual data,
necessary to study the relationships between behavior and
several aspects of animal health and welfare. However, visual
observation enables to compute useful information, such
that the number of bites (Hutchings et al., 1998), and to
identify when animal grazed. Future development could focus
on tracking the animal head and possibly detect when the
animal grazed.
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