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Heterogeneous risk tolerance,
in-groups, and epidemic waves

Chénangnon Frédéric Tovissodé1* and Bert Baumgaertner2
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There is a growing interest in the joint modeling of the dynamics of disease

and health-related beliefs and attitudes, but coupling mechanisms are yet to be

understood.We introduce amodelwhere risk information, which can be delayed,

comes in two flavors, including historical risk derived from perceived incidence

data and predicted risk information. Our model also includes an interpretation

domain where the behavioral response to risk information is subject to in-group

pressure. We then simulate how the strength of behavioral reaction impacts

epidemic severity asmeasured by epidemic peak size, number of waves, and final

size. Simulated behavioral response is not e�ective when the level of protection

that prophylactic behavior provides is as small as 50% or lower. At a higher level

of 75% or more, we see the emergence of multiple epidemic waves. In addition,

simulations show that di�erent behavioral response profiles can lead to various

epidemic outcomes that are non-monotonic with the strength of reaction to

risk information. We also modeled heterogeneity in the response profile of a

population and find they can lead to less severe epidemic outcome in terms of

peak size.

KEYWORDS

standard of evidence, risk tolerance, in-grouppressure, heterogeneity, behavior-disease

dynamics

1 Introduction

There is a growing interest in informing public health by the joint modeling of the
dynamics of disease and health-related beliefs, attitudes, and prophylactic behaviors [1–9].
A variety of factors and perspectives are likely involved in feedback loops between disease
dynamics and prophylaxis. Many of these have been modeled, including, for instance,
fear of infection mediated by messages from social circles or mass media [10–13], social
influence [5, 14, 15], socioeconomic utility maximization [16–18], and evolutionary game
theory [19–23]. Modeling such factors helps in understanding the determinants of the
prophylactic responses of human populations to disease risk and is crucial for pre- or
post-assessment of the effectiveness of causal interventions, including non-pharmaceutical
interventions such as mask wearing, social distancing, and hand washing.

In this regard, it is well-known that risk tolerance varies in populations and
largely explains the observed heterogeneity in responses to prophylactic behaviors such
as mask-wearing [24–29]. To that end, Espinoza et al. [16] explored a system with
adaptive behavioral responses where individuals privately adjust their contact rates by
maximizing the utility of social interactions while minimizing infection risk. They found
that an heterogeneous population of a risk-tolerant group with a risk-evader group
can experience a more severe epidemic than an homogeneous population with no
disparity in risk perception [16]. Similarly, heterogeneity in susceptibility resulting from
heterogeneity in social activity can produce transient collective immunity as opposed
to herd immunity, leading to multiple epidemic waves or plateau-like dynamics in
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heterogeneous populations [30, 31]. Accounting for heterogeneity
in risk tolerance in behavior-disease models is thus important,
not just academically but also for improving the soundness of
contributions to public health policy design.

In that vein, it is important to recognize that the decision
to wear a mask, for instance, is not a mere combination of risk
tolerance and perceived prevalence of a disease. Mask-wearing is
also informed by the aggregate behaviors of others, norms that can
influence how people interpret the behavior of others in relation to
disease prevalence, for example, suppose you visit a foreign town
to attend a conference. When you arrive, you observe that there
tends to be more people wearing masks than in your hometown.
There are numerous inferences you can make from this evidence.
Perhaps disease prevalence is higher.Maybe the risk tolerance tends
to be lower. Maybe this town has implemented a policy but there
is uneven compliance. Or further still, there might be in-groups
that encourage mask-wearing. Suppose you notice a correlation
between mask-wearers and people with conference badges. As a
conference attendee yourself, you will likely feel some pressure
toward wearing a mask, and if so, this will be because of how you
have come to interpret the evidence of the mask-wearers.

Stated generally, it matters whether those behaving
prophylactically are part of a larger in-group, because that
impacts how people (both in and out of the group) interpret
what the behavior is evidence of. We refer to this aggregate of
in-group and behavior as the “interpretation domain.” There
are few, if any, models that explore the dynamics of a system in
which behavior contributes to and is a function of both perceived
disease prevalence and an interpretation domain. For instance,
evolutionary game theory-based models allow for individuals to
engage or disengage in prophylactic behavior based on the relative
importance of those already behaving prophylactically [20–22],
but the decision process does not account for an interpretation
domain. Interestingly, the social influence approach indirectly
includes an interpretation domain: it assumes that constructive
conversations between individuals with different risk tolerance
levels can lead to opinion and attitude changes, and also includes
an amplification mechanism by which individuals gain confidence
in their health-related opinion after interaction with like-minded
individuals [5]. However, social influence mechanisms cannot be
directly observed [32], hence this approach lacks the perspective
of directly fitting the models to observed epidemiological data and
thus needs complementary methods to pair model predictions with
observed data.

In this study, we propose a new behavior-disease
compartmental model in which behavior contributes to and
is also an explicit function of both perceived disease risk
and an interpretation domain. As an example of context
involving feedback loops that complicate the identification of the
determinants of health-related behaviors at a population level,
we consider the decision to wear a mask. For simplicity, the
existing population level behavior-disease models largely consider
Susceptible–Infected–Susceptible (SIS) or Susceptible–Infected–
Removed (SIR) models for disease dynamic [14, 23, 33–35].
However, in a disease context with a significant proportion of
asymptomatic infectives, the perceived risk of a person depends
on incomplete information including the observed incidence

(rather than the true incidence), and estimates of the disease
prevalence publicized in media favored in the interpretation
domain. Behavioral changes thus depend on the composition of the
infective class, the probability to detect infectives, and testing effort,
and this advises against the use of the SIR model. Furthermore, in
some epidemic contexts, disease-related information, including
both historical incidence and predicted trends, is discussed on a
daily basis on mass media, possibly leading to risk information
overload [36]. In such situations, for instance, during the COVID-
19 pandemic, the decision to wear a mask may be affected by
predicted trends in addition to historical risk.

Considering an hypothetical disease with COVID-19-like
epidemiology, we use an extended Susceptible–Exposed–
Infected–Removed (SEIR) model with differentiated infective
states (asymptomatic, symptomatic, and detected infectious).
Risk information from this disease dynamic comes in two flavors,
namely the current disease prevalence and trends in number of new
detected infectives. It flows into the behavior dynamic model with
a time delay. Susceptible individuals consider this risk information
along with how many individuals in their social group are already
engaging to decide to (not) adopt a prophylactic behavior, which
provides a certain level of protection against infection. Changes in
prophylactic behaviors then flows back into the disease dynamic
model through variations of the effective contact rate between
infectives and the susceptible groups. The resulting model is a
system of neutral delay differential equations [37], where changes
in the disease state variables depend not only on the current states
but also on the history of the system.

The behavior dynamic part of our model mimics a generalized
logistic growth process [38] with explicit formulae (given
observable disease risk information). This is an advantage over
competing approaches such as the evolutionary game theory-based
model [21] since, by carrying surveys before or during the early
phase of an epidemic outbreak, one can obtain estimates of model
parameters and derive predictions of disease-behavior co-evolution
under various scenarios of interest to public health, and further
iterate feedbacks between model and observable data. We do not,
however, explore such an advantage here. Instead, we consider
a variety of “response-profiles” inspired by work in behavioral
economics and related fields [39–41]. For example, one kind of
profile focuses on the current disease incidence rate. Another kind
considers trends in an effort to “predict” incidence rates, thereby
opening the possibility of adopting prophylactic behavior earlier
when the trend moves upwards, but also giving up such behavior
when the rate of change decreases. Such profiles can be further
manipulated with increased (or decreased) levels of risk-aversion,
as well as increased (or decreased) levels of in-group pressures
(i.e., how much attention is given to pro-prophylactic behavior vs.
non-prophylactic behavior in the interpretation domain).

Our purpose is to explore how differences in such response
profiles affect disease dynamic. In particular, we consider epidemic
severity in terms of epidemic peak time and size, time to curb
the epidemic (effective reproductive number below one), final
epidemic size, and the possibility of multiple epidemic waves.
Under a social influence-based model, Tyson et al. [14] found that
populations more responsive to risk information can experience
more severe epidemics in terms of final size and undergo multiple
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epidemic waves, although the epidemic peak sizes will be smaller.
Here, we aim to test these results: (i) when the prophylactic
response to risk information involves in-group pressure (which
is similar to the social influence mechanism, but can account for
an interpretation domain) under various response-profiles (i.e.,
populations responding to qualitatively different risk information);
and (ii) when the population is heterogeneous in terms of response-
profile.

The remainder of the study is organized as follows.
Section 2 describes the components of the new behavior-
disease compartmental model in terms of equations, motivations,
and interpretations, and derives summary measures considered
to assess and compare epidemic severity and overall disease
dynamic. Section 3 explores various aspects of epidemics that
can be generated by the proposed differential system, considering
populations homogeneous or heterogeneous with respect to
in-group behavior and response to historical or predicted risk
information. Section 4 then discusses our findings and the
limitations of the proposed model, and provides some concluding
remarks.

2 Methods

This section introduces our general theoretical framework
based on an SEIR model. It then describes risk information
components, as well as how the proportion of prophylactic
individuals in a sub-population and the effective contact rate
depend on this information and in-group pressure. Finally, the
section presents the behavior-disease dynamics model and related
summary measures to quantify and compare epidemic severity.

2.1 Theoretical framework

It is well-known that prophylactic behavior affects disease
transmissions by reducing rates of effective contacts between
infectious and susceptible individuals in the target population
(direct physical or indirect through shared media in which
pathogens can survive) [23, 42]. In our modeling framework,
change in disease dynamic affects back prophylactic behavior
through observable disease prevalence (which depend, for instance,
on the existence and effectiveness of a disease surveillance
mechanism and testing capacity to detect infectious individuals),
but disease related information is processed by a system of health
beliefs and related attitudes. In other words, the feedback from
disease dynamic to prophylactic behavior is mediated by health
beliefs and normative attitudes in the individual’s interpretation
domain which determines risk tolerance. However, engagement in
prophylactic behavior is also determined by how many individuals
are already behaving prophylactically, and a social group can pay
more attention to andmimick those behaving prophylactically than
those behaving non-prophylactically, or vice-versa.

To describe disease dynamics, we consider an extended SEIR
compartmental model framework [43–45] with differentiated
infective states. The population size N is given at time t by

N(t) = S(t)+ E(t)+ Ia(t)+ Is(t)+ Id(t)+ R(t) (1a)

where S, E, Ia, Is, Id, and R are susceptible, exposed, asymptomatic
infectious, symptomatic infectious, detected (tested positive and
reported), and removed individuals, respectively. The disease-
dependent compartments E, Ia, Is, Id, and R are considered
homogeneous whereas the class of susceptible individuals (S) is
further differentiated into two groups based on risk tolerance:

S(t) = S−1(t)+ S1(t) (1b)

where Si denotes susceptibles with standard of risk i ∈ A, A =

{−1, 1}. For instance, in a population which only responds to
current risk, S−1 may represent individuals with low standard
of evidence (the most responsive to disease prevalence), while
S1 corresponds to individuals with high standard of evidence
(least responsive to disease prevalence). However, difference in
standard of risk may be qualitative rather than quantitative: S−1

may represent individuals responsive to only historical risk while
S1 corresponds to individuals sensible to both historical and
predicted risk.

2.2 Disease risk information aggregate

The primary source of disease-related information in an
epidemic context is the timely number of new positive cases,
denoted C. The number of individuals in the class Id of detected
infectious individuals (see Equation 1a) is related to C by

İd(t) = C(t)− ρdId(t) (2)

where the dot notation indicates the first derivative with respect to
time (i.e., İd(t) = dId(t)/dt), ρd is the removal rate of individuals
from Id, with non-negative initial condition Id(0) = Id0. Solving the
differential Equation (2) for Id gives

Id(t) = exp (−ρdt)

[

Id0 +

∫ t

0
C(u) exp (ρdu) du

]

. (3)

We consider the perceived disease prevalence, denoted P, and
the relative rate of change of new positive cases, denoted Q, as the
basic pieces of information on which susceptible individuals will
decide to be prophylactic. From Equation (3), the perceived disease
prevalence is given at time t by

P(t) =











Id(t−τ )
N(t−τ ) if t ≥ τ ,

0 otherwise

(4a)

where the constant τ > 0 represents a time delay in the acquisition
of information on detected and reported infectious. The relative
rate of change Q is the quotient of the rate of change (increase or
decrease) of the number of new detected cases C to the number of
new detected cases, delayed by τ time units:

Q(t) =











Ċ(t−τ )
C(t−τ ) if C(t − τ ) > 0,

0 otherwise

. (4b)

Note that Q(t) = 1 means that the timely number of new
positive cases is doubling per unit time, whereas Q(t) = −1/2
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means that the timely number of new positive cases is halving per
unit time.

We assume that based on the information pieces P and Q, each
group of susceptible Si makes up an information aggregate, denoted
ηi, and which satisfies ηi = 0 before disease outbreak (t < τ ,
P = Q = 0). This information aggregate is defined as a quadratic
function of P and Q:

ηi = aiP + biP
2 + ciPQ+ diQ

2 + eiQ (4c)

where ai, bi, ci, di, and ei are non-negative real coefficients
expressing the weights of linear, quadratic, and interaction
components of the prevalence P and the rate of change Q.
It is worthwhile noticing that Equation (4c) is intended as an
approximate summary of the available information that drives the
decision to wear a mask. The quadratic form is indeed used as an
approximation to the actual, likely non-linear mechanism by which
the susceptible group Si processes disease-related information. The
non-negative signs imposed on the coefficients in ηi (ai, bi, ci, di and
ei) ensure that when the timely number of new positive cases is non-
decreasing (Q ≥ 0), ηi is not only non-negative for any perceived
disease prevalence P but also non-decreasing in P.

Equation (4c) describes how disease risk information can be
differently interpreted by different tolerance groups within the
same population. For instance, a group of individuals may focus
on the disease incidence rate while ignoring predictions of future
disease risk. For such individuals, one or both parameters ai and
bi in the information aggregate (Equation 4c) will be positive but
parameters ci, di, and ei will be zero. Another group may pay
attention to trend in disease incidence, opening the possibility
of adopting prophylactic behavior earlier when the trend moves
upwards, and also giving up such behavior when incidence
decreases. Such a group will have at least one of the parameters
ci, di, and ei being greater than zero. Between these two extreme
situations, there are many possibilities with various combinations
of small vs. large values of parameters ai and bi to reflect howmuch
attention is paid to current disease incidence by a tolerance group,
and parameters ci, di, and ei related to the relative importance of
trends to the group.

2.3 Prophylactic behavior dynamic

For a susceptible class with standard of evidence i, we consider
for simplicity two levels of prophylactic behavior: high prophylactic
behavior (i.e., individuals properly wearing mask where and when
this is recommended) vs. low prophylactic behavior. The overall
prophylactic behavior in the class Si can thus be summarized by the
prophylactic proportion mi ∈ [0, 1], i.e., the proportion of mask-
wearers. We assume that change in the prophylactic proportionmi

is proportional to change in the information aggregate ηi and to the
proportion of Si individuals already wearing masks:

∂mi

∂t
=

[

mi
1−m

αi
i

αi

]

∂ηi

∂t
(5)

where αi is a positive real which determines the nature and strength
of in-group behavior, and we have taken the proportionality

constant to be one to ensure that the coefficients of the linear
components of ηi (ai and ei) in the model are identifiable from
observed data. When αi = 1, ∂mi/∂t is proportional to both mi

and 1 − mi, and Si individuals give the same relative importance
to both mask-wearers and non-mask-wearers: for a unit increase in
the information aggregate, the highest increase in mi occurs when
mi = 0.5, i.e., when half of the Si individuals have engaged in
prophylactic behavior. For general αi values, the highest increase
in mi for a unit increase in ηi occurs when mi = (1+ αi)

−1/αi . It
appears that for αi ∈ (0, 1), the highest increase in mi occurs when
mi < 0.5 (weak influence of in-group non-prophylactic behavior),
and for αi > 1, the highest increase in mi occurs when mi > 0.5
(strong influence of in-group non-prophylactic behavior). Hence,
the larger αi, the larger impact in-group non-prophylactic behavior
will have, slowing down engagement in prophylactic behavior.

Since mi depends on time only through the information
aggregate ηi, we can interpret Equation (5) as a differentiation in
chain and write ∂mi/∂ηi = mi

(

1−m
αi
i

)

/αi, which appears to be
Richards growth equation [38] with intrinsic growth rate equal to
one. Solving formi yields the generalized logistic curve:

mi =
[

1+ exp {δi − ηi}
]−1/αi (6a)

where δi is a constant related to the proportion mi0 ∈ (0, 1) of Si
susceptibles who would hold a high prophylactic attitude even in
the absence of any evidence of disease (i.e., when ηi = 0, which
happens for t ≤ τ ) by

δi = log
(

m
−αi
i0 − 1

)

. (6b)

Figure 1 shows the prophylactic proportion mi as a function
of time for a few selected parameter values, with a perceived
disease prevalence P varying from zero to 33%. It appears that
the coefficients bi, ci, di, and ei in Equation (4c) have distinct
effects on mi and capture different reactions of susceptibles to
disease risk. For instance, bi and di can be described as response
acceleration parameters for high and low prevalence values,
respectively. Indeed, a susceptible group more responsive to large
prevalence values than to low prevalence values corresponds to
bi > 0 (Figure 1A), whereas di > 0 corresponds to groups
more responsive to low prevalence values than to high prevalence
values (Figure 1C). Similarly, ci > 0 corresponds to groups where
engagement in prophylactic behavior is stronger (Figure 1B), and
ei > 0 to groups where engagement in prophylactic behavior is
earlier (Figure 1D), but in both cases, disengagement also happens
early, once the number of new detected case starts dropping (Q <

0).
The in-group behavior parameter αi allows additional flexibility

inmi by controlling how the aggregated information is jointly used
with howmany individuals are already behaving prophylactically in
a susceptible group. Whereas bi and di can be viewed as parameters
inducing behavioral response acceleration with respect to change
in risk information (P and Q, respectively), αi is an intrinsic
acceleration/deceleration parameter, i.e., the acceleration of mi

happens not because of change in risk information, but rather in
response to the current (low or high) value of mi itself. Figure 2
shows mi curves for a few selected parameter values. It can be
observed that ceteris paribus, a larger αi value, implies an overall
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FIGURE 1

E�ects of di�erent information weights on prophylactic proportion m
(αi )
i

(i = −1, 1) for various parameter values. The light blue curve repeated on all

plots corresponds to a response to prevalence only, i.e., only the coe�cient ai = 20 is non-zero in Equation (4c); the dark blue curves on plots (A–D)

correspond to combinations of ai = 20 with bi = 50 (A), ci = 150 (B), di = 50 (C), and ei = 10 (D). The prevalence P (solid black) and the rate of

change Q (dashed black) are respectively given by Equations (4a, 4b), Id is given by Equation (3), ρd = 1/14, and the daily number of new detected

cases is given by the logistic curve C(t) = N0e
vt / (1+ evt )2 with N0 = 100, 000, vt = (t− 50)/8. The proportion of prophylactic individuals in

disease-free conditions is mi0 = 0.05 and the in-group behavior parameter is αi = 1.

weaker prophylactic behavioral response. Indeed, the derivative of
mi with respect to αi, given by

∂mi

∂αi
= −

mi

αi

[

log

(

mi

mi0

)

+m
αi
i

(

1− e−ηi
)

log (mi0)

]

, (7)

is negative (mi decreases with αi) for ηi > 0 (i.e., when prophylactic
proportion is above the disease-free level mi0). However, if
information aggregate reaches zero (ηi = 0), ∂mi/∂αi (Equation 7)
vanishes, and if ηi becomes negative, ∂mi/∂αi > 0. This happens
around t = 96 days in Figure 2D, where ei > 0 (i.e., in a
population where Q is given much attention) allows ηi < 0 after
Q becomes negative, and as the epidemic dies out (P → 0), Q
dominates the information aggregate: the ordering of prophylactic
proportions switches such that a lower αi value corresponds to
a weaker prophylactic behavioral response for ηi < 0. This can
be interpreted as a return of the early engagement of a group
with ei > 0 (Figure 2D, m(0.1)

1 ). In this respect, αi appears as a
parameter which exaggerates behavioral response regardless of the
sign of information aggregate. But as the disease-free prophylactic
proportion mi0 is typically low (mi0 = 0.05 in Figure 2), there will
generally be less room for this exaggeration when the epidemic dies
out (ηi < 0) than at disease outbreak (ηi > 0).

2.4 Contact and transmission rates

We assume for simplicity that the detected infectious
individuals are isolated (e.g., hospital and home) and do not
mix actively with other classes. Using the “quarantine-adjusted”
incidence mechanism [46] yields the force of infection λi (the
average number of adequate contacts of one Si susceptible person
with infectives per unit time):

λi(t) =
βia(t)Ia(t)+ βis(t)Is(t)

N(t)− Id(t)
(8a)

where βia and βis are rates of effective contacts with asymptomatic
and symptomatic infectious individuals, respectively. The effective
contact rate βij depends on a baseline contact rate β0 (possibly
restricted by public health policies), the prophylactic attitude of
Si susceptibles, the average efficiency κ ∈ (0, 1) of prophylactic
behaviors in reducing transmissions, and the probability φj ∈ (0, 1)
of disease transmission on contact with Ij infections:

βij(t) = β0
[

1− κmi(t)
]

φj. (8b)
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FIGURE 2

E�ects of di�erent in-group behavioral response on prophylactic proportion m
(αi )
i

(i = −1, 1) for various parameter values. The solid light blue curve

on graphic (A) corresponds to a response to prevalence only, i.e., only the coe�cient ai = 20 is non-zero in Equation (4c); the solid dark blue curves

correspond to combinations of ai = 20 with ci = 150 (B), di = 50 (C), and ei = 10 (D). All the solid blue curves have in-group behavior parameter

αi = 1/10 (strong e�ect of in-group prophylactic behavior). On each plot, the dashed-dotted blue curve corresponds to αi = 1 (neutral in-group

prophylactic behavior), the dashed blue curve to αi = 2 (strong e�ect of in-group non-prophylactic behavior), and the dotted blue curve to αi = 3

(stronger e�ect of in-group non-prophylactic behavior). The prevalence P (solid black) and the rate of change Q (dashed black) are respectively

given by Equations (4a, 4b), Id is given by Equation (3), ρd = 1/14, and the daily number of new detected cases is given by the logistic curve

C(t) = N0e
vt / (1+ evt )2 with N0 = 100, 000, vt = (t− 50)/8. The proportion of prophylactic individuals in disease-free conditions is mi0 = 0.05.

2.5 The behavior-disease dynamics model

For a target population, we consider a period of study short
enough for both disease-related death and natural demographic
rates (births, net immigration, and deaths) to be negligible relative
to the total population size N (assumed large but finite). As a
result, the population size in Equation (1a) remains constant and
equal to an initial size N0 = N(0). Joining the behavior and
disease dynamics mechanisms described in Sections 2.3, 2.4 gives
the Behavior-SEIR model depicted on the flow diagram in Figure 3
with parameters described in Table 1. After sufficient contacts
with infectious individual(s), a susceptible individual enters an
incubation period (class E) lasting 1/θ time units on average, in
a non-infectious state, and without any disease symptom. Some
of these exposed individuals are early detected with probability
π thanks to contact tracing or systematic tests on target groups,
and enter the class Id. In the non-early detected exposed group,
100σ% develop symptoms and enter the class Is, and 100(1 − σ )%
remain asymptomatic and enter the class Ia. Individuals in the class
Is are then identified at a high rate γs. Thanks to contact tracing
or systematic tests on target groups again, some asymptomatic
individuals in the class Ia are identified at a lower rate γa. All
exposed individuals eventually recover from the disease, entering
the class R (removals).

The Behavior-SEIR dynamics model is described at time t by
the following system of non-linear differential equations:

Ṡ−1(t) = −λ−1(t)S−1(t), (9a)

Ṡ1(t) = −λ1(t)S1(t), (9b)

Ė(t) = λ−1(t)S−1(t)+ λ1(t)S1(t)− θE(t), (9c)

İa(t) = (1− σ )(1− π)θE(t)− (γa + ρa)Ia(t), (9d)

İs(t) = σ (1− π)θE(t)− (γs + ρs)Is(t), (9e)

İd(t) = πθE(t)+ γaIa(t)+ γsIs(t)− ρdId(t), (9f)

Ṙ(t) = ρaIa(t)+ ρsIs(t)+ ρdId(t), (9g)

with the non-negative initial conditions Si(0) = Si0, E(0) = E0,
Ia(0) = Ia0, Is(0) = Is0, Id(0) = Id0, and R(0) = R0 such that
N0 = S−10+S10+E0+ Ia0+ Is0+ Id0+R0. The proposed model is
a system of neutral delay differential equations [37] where the force
of infection λi (Equation 8a) depends throughmi (Equation 8b) on
the information available at time t, precisely P (dependence on state
variables) andQ (dependence on first derivatives of state variables),
which are delayed by τ time units.

The parameter τ accounts for two potential sources of
information delay: (i) reporting delay, i.e., the delay between the
moment exposed or infectious individuals are detected and isolated
from the mixing population, and the moment the number of
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FIGURE 3

Flow-chart of a Behavior-SEIR dynamics model showing the flow of humans between di�erent compartments. The susceptible population is

distinguished in individuals with low standard of evidence (S−1) and individuals with high standard of evidence (S1). The classes E, Ia, Is, Id, and R

denote respectively the exposed, the asymptomatic infectious, the symptomatic infectious, the detected infectious, and the removed (recoveries)

populations. Recruitment (births and net immigration) and deaths (natural and disease-related) are assumed negligible relative to the population size.

The parameters of the model are described in Table 1.

detected cases is publicized and can be considered by susceptible
individuals to assess their risk, and (ii) reaction time, i.e., the
delay between the moment the number of detected cases is made
public and themoment susceptible individuals actually consider the
information to adjust their adherence to preventive prophylactic
behavior. We focus on reporting delay which can be included
in public health policy design [47]. Indeed, official statistics are
often reported with a time delay that may arise from a desire for
thorough verification [48]. However, reporting delays can produce
the dangerous illusion of an improving epidemic situation since the
most recent days have the least cases accounted [48]. Including the
time delay parameter τ in model (Equation 9) allows to investigate
the extent to which reporting delay can affect the evolution of an
epidemic through the behavioral response to delayed information.
For our simulation experiments (see Section 2.8), we consider
information delays ranging from 1 day to 1 week (τ = 1, 3, 5, 7
days).

2.6 The e�ective reproductive number

We compute the effective reproductive number based on
the Behavior-SEIR model (Equation 9) using the next-generation
matrix approach [49]. Starting from any disease-free state Xc =

(S−10, S10, 0, 0, 0, 0,R0)⊤, the basic reproductive number R(0) for
system Equation (9) is given by

R(0) = Ro

∑

i∈A

Si0

N0
(1− κmi0) , (10a)

Ro = β0(1− π)

(

φa
1− σ

γa + ρa
+ φs

σ

γs + ρs

)

(10b)

where N0 = S−10 + S10 + R0 > 0 and Ro (Equation 10b) is
the reproductive number when there is no differential evidentiary
group, R0 = 0, and all prophylactic proportions are zero (mi0 = 0).
As expected, the basic reproductive number R(0) (Equation 10a)

depends on both the distribution of the population between
evidentiary groups, and the prophylactic proportion of each group
when no disease evidence is available (both perceived disease
prevalence P and rate of change Q are zero). Along an epidemic,
the effective reproductive number is then given by

R(t) =
∑

i∈A

Si(t)

S(t)
Ri(t) with (10c)

Ri(t) = Ro
S(t)

N0 − Id(t)

[

1− κmi(t)
]

(10d)

where Ri(t) (Equation 10d) is the effective reproductive number
for Si susceptibles such that R(t) is the average of Ri(t) over all
groups of susceptibles.

We would normally conduct here a stability analysis of the
model, including the bifurcation diagram for interesting model
parameters such as the time delay τ and the level of protection κ .
However, these investigations are out of the scope of this conceptual
analysis which focuses on the behavioral response to an outbreak
and its impact on the dynamic of an epidemic. Such investigations
can however be carried out after extending the model to represent
more realistic scenarios, including, for instance, vital rates (births
and immigration, natural deaths, and disease-related death), flow
between susceptible compartments (S−1 and S1), and immunity lost
(flow from R back into S−1 and S1).

2.7 Epidemic severity measures

To allow for comparison between various epidemic scenarios,
we define some measures to quantify epidemic severity and overall
disease dynamic.

(a) The number nw of epidemic waves.
When the maximum number of detected cases (Ct) over

the study period is less than one plus the initial number of
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TABLE 1 Description and values of parameters in the

behavior-disease model.

Parameter Description Values

τ Time delay (days) of risk
information

1, 3, 5, 7

a†
i Main response of Si

(susceptibles) to prevalence
(P)

20

bi Non-linear response of Si to P
(i.e., P2)

0, 50

ci Responsiveness of Si to the
interaction P × Q

0, 150

di Non-linear response of Si to Q
(i.e., Q2)

0, 50

ei Main response of Si to rate of
change (Q)

0, 10

αi Strength of in-group
non-prophylactic behavior

0.1, 1, 2, 3

mi0 Prophylactic proportion in
the absence of risk evidence

0.05

κ Average efficiency of
prophylactic behavior

1
2 ,

3
5 ,

3
4 ,

9
10 ,

19

20
, 1

β0 Baseline transmission rate 1/2, 1, 2, 3

φj
∗ Probability of disease

transmission by Ij infectious
1

1/θ Duration of incubation
(latent) period (days)

4

π Early detection probability for
exposed individuals

1
4 ,

1

2
, 2
3 ,

3
4

σ Proportion of symptomatic
infectious

1/2

γj Detection rate of Ij infectives
2

14×5 ,
4

14×5

ρj Removal rate of Ij infectious
3

14×5 ,
1

14×5 ,
1
70

Si0 Initial number of Si
susceptibles

49, 998

E0 , Ij0 Initial number of exposed and
infectious

2, 1, 1, 0

R0 Initial number of recovered
individuals

0

N0 Total population size 100, 000

All parameters take non-negative values.
†i = standard of evidence level defined in Equation (1b).
∗j = a (asymptomatic), s (symptomatic), or d (detected) infectives.

For parameters with multiple values (τ , ai , ci , di , ei , αi , κ , β0 , π), the default value is bolded.

infected individuals in the population at time t = 0, we
consider that the disease dies out and there is no epidemic wave
(nw = 0). Otherwise, we have nw ≥ 1. For nw ≥ 1, to cut up
the epidemic period based on observable epidemiological data
(Ct) and identify epidemic waves, we consider a wave detection
algorithm based on five properties imposed upon the height
of waves, and the troughs between waves: (i) the number of
detected cases at the trough between two successive waves is
<500, (ii) the duration between a trough and the preceding
peak is 5 days or more, (iii) an epidemic wave lasts at least
1 week, (iv) the prominence of the peak of a wave is 10 or
more detected cases (per day) above the surrounding valley
(specifically the highest of the left and right troughs), and (v)

the prominence of the peak represents at least 50% of the peak
height. The algorithm is a modification [addition of properties
(i) and (ii)] of Harvey et al. [50]’s epidemic wave identification
algorithm. The wave detection algorithm is implemented in R
freeware [51] (R package wavefinder with source available on
the Git repository SE-SEIR).

(b) The overall peak height Hp (number of detected cases) and
peak time Tp (days).

(c) The time Tc1 to curb the first outbreak.
The duration from disease outbreak (R(0) > 1) to the first

time when the effective reproductive numberR (Equation 10c)
falls to one:

Tc1 = arg
t
min

{

R(t) = 1
}

. (11)

(d) The final epidemic size FT .
For a given time horizon T, the final epidemic size is given

by FT = 1−ST/N0, where ST is the total number of susceptible
individuals at time t = T andN0 is the total (initial) population
size.

2.8 Simulation experiment

We carried out a simulation experiment to explore
combinations of model parameters related to disease transmission
(β0), early detection of exposed individuals (π), delayed acquisition
or reaction to risk information (τ ), behavioral reaction (ai, bi, ci,
di, and ei), in-group behavior (αi), and efficiency of prophylactic
behaviors (κ) that lead to patterns where the course of an epidemic
depends more or less on differences between risk perception and
related feedback loops.

2.8.1 Simulation design
We first considered a variety of basic behavioral response

profiles including a reference population (0) responsive to
prevalence only, and the four profiles of populations in Figures 1A–
D: profile 0 corresponds to ai = 20 (bi = ci = di = ei = 0), profile
A corresponds to ai = 20 and bi = 50 (ci = di = ei = 0), profile
B to ai = 20 and ci = 50 (bi = di = ei = 0), profile C to ai = 20
and di = 50 (bi = ci = ei = 0), and profile D to ai = 20 and
ei = 10 (bi = ci = di = 0). These five profiles are homogeneous
with respect to behavioral reaction to risk information. We then
included heterogeneous populations obtained as combinations of
the reference profile (half of the population) with one of profiles A–
D. For each profile, we varied other model parameters including β0,
π , τ , κ , and αi (see parameter values in Table 1). Since αi is group
specific, we have the between-group difference 1α = α−1 − α1,
which measures heterogeneity in in-group pressure.

For each simulation setting, we solved system (Equation 9)
using the function dede from the R package deSolve [52] (code in
the R package BSEIR with source available on the Git repository
SE-SEIR), and recorded the number of epidemic waves up to T =

1, 000 days after the first outbreak (nw), the overall peak time (Tp)
and height (Hp), the time to curb the first epidemic wave (Tc1), and
the final epidemic size (F1,000).
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2.8.2 Statistical analyses
To summarize simulation results, we computed descriptive

statistics for epidemic severity measures in R, and fitted
generalized linear models [53] to the number of secondary
epidemic waves (Poisson regression) and the epidemic peak size
(gamma regression) as functions of population response profiles
and the varied model (Equation 9) parameters (see descriptive
statistics in Supplementary Table S1). We also fitted a one-
inflated beta regression model [54] to the final epidemic size
(F1,000) using the R package gamlss [55]. For each model, we
checked goodness-of-fit using a χ2-test on residual deviance, and
evaluated the explanatory power of the model using a deviance
based pseudo-R2 [56]. Supplementary Table S2 provides descriptive
statistics for the different epidemic severity measures over all
simulation scenarios.

3 Results

3.1 Epidemic severity across types of
responses

Our simulation results indicate important variations in
epidemic severity measures between levels of in-group pressure.
Indeed, an increase in in-group pressure for pro-prophylactic
behavior (decreasing αi) increases the average number of
secondary waves, but decreases the epidemic peak size and final
size (Table 2).

Table 3 shows summaries of epidemic severity measures
comparing populations with the reference response profile 0 and
profiles A–B, averaged over all levels of in-group pressure (αi ∈

{0.1, 1, 2, 3}). All investigated parameter settings result into an
epidemic, the disease quickly dying out in only 1% of settings with
the homogeneous profile B (i.e., populations with a reaction to
rate of change Q proportional to perceived prevalence P). When
there is an epidemic, one secondary epidemic wave occurs in 9% of
settings with the reference profile 0. Secondary epidemic waves are
the most likely (19%) under profile A [homogeneous populations
with a strong (quadratic) reaction to P only], and the least likely
(2%) under profile B. The epidemic peaks after about 64 days on
average in populations responsive to P only (profile 0) to ∼3,209
new reported cases. Slightly lower average peak time and size result
from a stronger reaction to P (3,050 case after 62 days for profile A)
or an additional response to Q (3,126 cases after 60 days for profile
D). Ignoring the sign of Q increases the average peak time to about
72 days (profile C) while decreasing the peak size to∼32,748 cases,
with intermediate result for profile B (2,840 cases after 66 days). The
final epidemic size is typically large, 91% on average, under profile
0 (and C). A stronger reaction to P (profile A) slightly reduces the
final size to 90% whereas an additional response to Q (profiles B
and D) increases the final size to 94%. In summary, a stronger
reaction to P essentially leads to more secondary waves whereas an
additional response to Q hastens the epidemic peak and increases
the final size, with lower peak sizes in both scenarios. A response to
Q proportional to P also increases average final size, but delays the
peak (with a lower size).

Heterogeneity in the behavioral reaction to risk information
generally leads to intermediate results half way between the two

combined homogeneous profiles (Table 3). Exceptions include the
time to curb the first epidemic wave (larger than expected) under
profiles 0 × C and 0 × D, and the peak time (larger than
expected) and size under profile 0 × D (smaller than expected).
Figure 4 shows the timely number of new positive cases under
profiles 0, D, and 0 × D, exhibiting an interactive effect between
in-group pressure and heterogeneity. Indeed, it appears that in
an heterogeneous pro-prophylactic behavior population (Figure 4,
α = 0.1) where half of individuals are responsive to P and the other
half is additionally responsive to Q, the epidemic peak size (1,380
new detected cases) is smaller than in homogeneous populations
with profile 0 (1,819 new detected cases) or D (1,653 new detected
cases).

When we restrict attention to populations where in-group
pressure is neutral (αi = 1), we observe that a stronger reaction
to P leads to one secondary epidemic wave in 24% of settings,
as opposed to 19% across αi values (Supplementary Table S3).
Similarly, an additional response to Q increases the peak time and
does not increase the final epidemic size (90% under profile D),
unless the reaction to Q is proportional to P (93% under profile
B). These discrepancies point out to important variations between
levels of in-group pressure.

The results of fitted models shown in Table 4 corroborate our
observations for the number of secondary waves (model coefficient
estimates < 0 for α−1 and 1α), the peak size, and the final
epidemic size (coefficient estimates > 0 for α−1 and 1α). It also
appears that among the profiles A–D, only profile B (population
with a response to the rate of change proportional to prevalence)
leads to a decrease in the number of secondary epidemic waves
and an increase in the final epidemic size, as compared to the
reference profile 0. In addition, the model results indicate that for
an heterogeneous population, the expected number of secondary
epidemic waves or the expected final epidemic size is intermediate
between the outcomes for the two corresponding homogeneous
populations, except when half the population has profile D. For the
latter, after controlling for disease dynamic and in-group pressure
parameters, the expected number of secondary epidemic waves is
15.9% (100× 0.159) higher for the homogeneous profile D, but
31.8% higher for the heterogeneous profile 0 × D, as compared to
an homogeneous profile 0.

The fitted models also indicate that a 1-day increase in
risk information delay (τ ) leads to a 2.6% average increase
(100× 0.026) in the average odd ratio for a random individual to
get infected over the course of the epidemic, a 3.3% increase in the
overall peak size, and a 6.5% decrease in the number of secondary
waves (Table 4). A discussion of the biological interpretation of
these statistics is provided in Section 4.1. As for other varied
model parameters (β0, π , and κ), apart from in-group pressure, the
variations of the number of secondary waves are mostly driven by
the level of protection by prophylactic behavior, to the extent that a
1%-point increase in κ results into a 15.5% increase in the number
of secondary waves. In other words, if 80% level of protection
yields one epidemic wave on average, then increasing the level of
protection by 10% (i.e., from 80 to 90%) results in an expected
2.55 waves (1 + 1 × 0.155 × 10). Both the peak size and the final
epidemic size are mainly determined by the baseline transmission
rate (β0) and the probability of early detection of exposed
individuals (π).
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TABLE 2 Summary of epidemic severity measures comparing populations with various levels of in-group pressure (αi ∈ {0.1, 1, 2, 3}).

Statistics† Median Mean SD Median Mean SD

α−1 = α1 = 0.1 α−1 = 0.1, α1 = 1

Epidemic? 1.00 1.00 0.06 1.00 1.00 0.05

Nb2. waves 0.00 0.26 0.45 0.00 0.20 0.41

Peak time 50.50 67.26 47.88 49.50 66.95 49.11

Peak size 2,158.11 2,293.38 1,473.21 2,453.50 2,499.49 1,480.42

Time to curb∗ 48.50 65.91 50.64 49.50 67.10 51.55

Final size 0.95 0.88 0.15 0.96 0.89 0.15

α−1 = α1 = 1

Epidemic? 1.00 1.00 0.03

Nb2. waves 0.00 0.12 0.33

Peak time 47.50 65.44 49.53

Peak size 2,838.61 2,826.22 1,525.38

Time to curb∗ 47.00 65.73 51.47

Final size 0.97 0.91 0.13

α−1 = α1 = 2 α−1 = 1, α1 = 2

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.02

Nb2. waves 0.00 0.02 0.15 0.00 0.06 0.25

Peak time 46.00 65.82 52.62 46.50 65.80 50.91

Peak size 3,371.64 3,295.01 1,580.77 3,010.69 2,990.65 1,525.65

Time to curb∗ 45.50 67.00 54.03 47.50 67.12 52.48

Final size 0.99 0.93 0.11 0.98 0.91 0.13

α−1 = α1 = 3 α−1 = 1, α1 = 3

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.00

Nb2. waves 0.00 0.01 0.09 0.00 0.01 0.11

Peak time 45.50 66.36 54.49 45.50 66.07 53.38

Peak size 3,551.96 3,540.48 1,619.83 3,459.73 3,385.74 1,587.77

Time to curb∗ 45.00 68.11 55.92 45.50 67.78 54.75

Final size 1.00 0.96 0.08 1.00 0.94 0.09

SD, standard deviation; Nb2. waves, number of secondary waves.
†The statistics are based on n = 3, 456 simulations across the profiles 0–D, and values of model parameters β0 , π , τ , and κ in Table 1.
∗Time to curb = time to curb the first epidemic wave defined in Equation (11).

Italic (bold) figures indicate average values lower (larger) than the reference (αi = 1) for homogeneous populations (α−1 = α1).

3.2 Epidemic severity across levels of
prophylactic protection

Figures 5, 6 show the cumulative number of cases detected
up to 1,000 days after the outbreak for various values of
κ , π , and β0. For κ ∈ {0.5, 0.6}, no secondary epidemic
wave was observed (Figure 5). It appears that if the disease
surveillance mechanism for early detection and removal is
loose (π = 0.25), disease dynamic is barely sensitive
to behaviors (Figure 5A). When disease surveillance is more
effective (π ≥ 0.5), disease dynamic (peak and observed

final size) becomes more sensitive to behaviors (Figures 5B–
D), especially when the baseline disease transmission rate is
low (β0 = 0.25).

When prophylactic behavior offers (almost) perfect protection
(κ ∈ {0.95, 1}), secondary epidemic waves (one or two) were
observed in 28% of these settings. Figure 6 shows the cumulative
numbers of detected cases when there are secondary waves (see
Supplementary Figure S1 for unique wave scenarios). It can be
observed that at such high levels of protection by prophylactic
behavior, disease dynamic is highly sensitive to behavioral changes,
even when the baseline disease transmission rate is high (β0 = 3).
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TABLE 3 Summary of epidemic severity measures comparing populations with profiles A–B to the reference profile 0 under various in-group pressure

(αi ∈ {0.1, 1, 2, 3}).

Statistics† Median Mean SD Median Mean SD

0 (Prevalence only, ai = 20)

Epidemic? 1.00 1.00 0.00

Nb2. waves 0.00 0.09 0.29

Peak time 42.00 63.50 51.53

Peak size 3,214.47 3,209.03 1,707.75

Time to curb∗ 44.00 65.36 52.80

Final size 0.98 0.91 0.13

A (ai = 20, bi = 50) 0 × A

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.00

Nb2. waves 0.00 0.19 0.39 0.00 0.15 0.35

Peak time 41.50 61.97 4941.50 62.62 50.18

Peak size 3,007.55 3,049.14 1,708.02 3,050.56 3,104.21 1,707.56

Time to curb∗ 43.50 63.38 50.56 43.50 64.58 51.38

Final size 0.96 0.90 0.14 0.97 0.91 0.14

B (ai = 20, ci = 150) 0 × B

Epidemic? 1.00 0.99 0.08 1.00 1.00 0.00

Nb2. waves 0.00 0.02 0.16 0.00 0.03 0.18

Peak time 47.00 65.77 52.28 44.75 64.39 52.05

Peak size 2,873.28 2,839.71 1,509.91 2,883.91 2,890.16 1,560.58

Time to curb* 47.00 68.27 53.39 46.00 67.52 53.10

Final size 1.00 0.94 0.12 0.99 0.92 0.13

C (ai = 20, di = 50) 0 × C

Epidemic? 1.00 1.00 0.03 1.00 1.00 0.00

Nb2. waves 0.00 0.13 0.35 0.00 0.13 0.33

Peak time 54.50 71.83 48.81 49.00 68.01 49.99

Peak size 2,757.37 2,747.60 1447.82 2,886.43 2,849.68 1,468.74

Time to curb∗ 51.50 66.96 54.78 50.00 69.96 51.20

Final size 0.97 0.91 0.13 0.97 0.91 0.13

D (ai = 20, ei = 10) 0 × D

Epidemic? 1.00 1.00 0.00 1.00 1.00 0.00

Nb2. waves 0.00 0.13 0.34 0.00 0.12 0.33

Peak time 39.75 59.80 40.92 49.00 68.95 52.40

Peak size 3,391.18 3,126.29 1,525.01 2,776.41 2,805.00 1,507.89

Time to curb∗ 39.50 59.28 43.90 50.50 71.16 53.62

Final size 1.00 0.94 0.10 0.97 0.91 0.13

†The statistics are based on n = 3, 840 simulations across the values of model parameters in Table 1.
∗Time to curb the first epidemic wave Equation (11).

Italic (bold) figures indicate average values lower (larger) than the reference.

When the efficiency of prophylactic behavior is
between these two extremes (κ ∈ {0.75, 0.9}), secondary
epidemic waves (one or two) were observed in 4% of
these settings (Supplementary Figures S2, S3): with these
levels of protection by prophylactic behavior, disease

dynamic is already sensitive to behavioral changes,
especially when the baseline disease transmission rate
is β0 < 2, and the higher the probability of early
detection (π), the higher the number of secondary
epidemic waves.
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FIGURE 4

Number of new positive cases for homogeneous populations responsive to prevalence only (profile 0) or both prevalence and the rate of change of

new positives (profile D), and an heterogeneous population (half profile 0 and half profile D) with pro-prophylactic behavior (αi = 0.1), neutral (αi = 1),

or non-prophylactic behavior (αi = 2) in-group pressure. The dashed blue curve indicates for each row (each αi value) the average of the numbers of

new positive cases for profiles 0 and D. Disease-related parameters have their default (bold) values in Table 1.

4 Discussion

4.1 Main contributions

In this study, we introduce a new behavior-disease
compartmental model where risk perception is a function of
both perceived disease dynamic and an interpretation domain
(in-group pressure). That is, the risk information derived from
disease dynamics can include predicted incidence (as expressed by
the rate of change Q of new positive cases) in addition to historical
incidence (as expressed by the perceived prevalence P given the
disease surveillance system), and the actual risk perceived by an
individual can arise not only from disease dynamics but also from
the pro/non-prophylactic behavior of others in the individual’s
social group.

Under the social influence-based model which uses true disease
incidence as risk information, Tyson et al. [14] found that
populations more responsive to risk information can experience
more severe epidemics in terms of final size and undergo multiple
epidemic waves, although the epidemic peak sizes will be smaller.

We observe similar trends when matching increase in social
influence with increase in pro-prophylactic behavior in-group
pressure. Considering populations responsive to historical risk
information, our results regarding the number of epidemic waves
and the peak size are consistent with Tyson et al.’s [14] findings, i.e.,
a stronger reaction to perceived disease prevalence produces more
epidemic waves but smaller peak size. Indeed, a strong reaction to
prevalence results in transient prophylaxis that slows down and

stops disease progression (smaller peak) while many susceptible
individuals are still in the population. Low disease prevalence then
leads to relaxation of prophylactic behaviors and subsequently to a
new outbreak (multiple waves).

A new aspect of behavior-disease dynamic captured by our
model is the importance of response profiles. For instance, we
considered two kinds of populations, ones that are only responsive

to historical risk and ones that are additionally responsive to

predicted risk. For risk predicting populations, the epidemic
peak size does not monotonically decrease with increasing pro-

prophylactic in-group pressure (the epidemic peak size is smallest
when in-group behavior is neutral). In other words, in the context

of risk information overload [36], in particular, when disease

evolution curves are overly discussed on mass media and social

media, stronger social influence or in-group pressure can lead
to more severe epidemic outcome, at least as measured by the
epidemic peak size.

Our results also indicate that erratic disease evolution curves
can be explained by strong behavioral response to predicted disease

curves shown on mass media or in social media. For a population

paying attention to predicted risk information, a strong response

reduces the time scale of the chain of reactions that leads to
multiple epidemic waves, giving rise to very fast oscillations in

the observed disease incidence curve (see Figure 4), both as the
epidemic establishes (before peak) and as the epidemic is waning.

This risk-prediction feature also makes our model quite different

from others where each epidemic peak is necessarily followed by
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TABLE 4 Model fit results: variations of the number of secondary epidemic waves (Poisson model, log link), the peak size (gamma model, log link), and

the final epidemic size (one-inflated beta model, logit link) across response profiles.

Response Nb. secondary waves Peak size Final epidemic size

Term Coe�cient (SE) Coe�cient (SE) Coe�cient (SE)

(Intercept) –16.055 (0.362) 7.449 (0.012) 5.210 (0.027)

Profile 0 0 0 0

Profile 0× A 0.479 (0.068) –0.046 (0.007) –0.138 (0.015)

Profile A 0.734 (0.065) –0.071 (0.007) –0.196 (0.015)

Profile 0× B –1.013 (0.104) -0.113 (0.007) 0.175 (0.016)

Profile B –1.506 (0.127) –0.132 (0.007) 0.673 (0.016)

Profile 0× C 0.339 (0.070) –0.102 (0.007) –0.066 (0.015)

Profile C 0.399 (0.070) –0.141 (0.007) –0.080 (0.015)

Profile 0× D 0.318 (0.071) –0.133 (0.007) –0.045 (0.015)

Profile D 0.159 (0.073) –0.146 (0.007) –0.038 (0.015)

α−1 –1.233 (0.031) 0.194 (0.002) 0.408 (0.004)

1α –0.217 (0.017) 0.063 (0.002) 0.074 (0.004)

κ 15.524 (0.362) –0.541 (0.010) –3.332 (0.021)

τ –0.065 (0.007) 0.033 (0.001) 0.026 (0.002)

π 1.161 (0.092) –0.771 (0.009) –4.186 (0.021)

β0 0.012 (0.017)ns 0.571 (0.002) 1.525 (0.004)

GOF: χ2(df ) 7, 011.37 (34, 509)ns 4, 772.52 (34, 509)ns 2, 8501.19 (34, 507)ns

R2 (%) 63.59 72.46 99.69

SE, standard error.

Profiles 0 andA toD are defined as follows: 0 is the reference (hence coefficient is fixed to 0) corresponding to a population responsive to prevalence only (i.e., ai = 20, with bi = ci = di = ei = 0

for i = −1, 1), A corresponds to ai = 20, bi = 50, B corresponds to ai = 20, ci = 50, D corresponds to ai = 20, bi = 50, 0× A corresponds to half of the population is 0 and the other half is A;

1α = α1 − α−1 , α−1 , α1 , κ , τ , π , and β0 are model parameters defined in Table 1 with summary statistics given in Supplementary Table S1; ns indicates a non-significant test result at 5% level

(i.e., the probability to observe an effect size equal to or bigger than the observed effect by random chance only is >5%); GOF, Goodness-of-fit; df , number of residual degrees of freedom; χ2 is

the deviance statistic which is expected to be at most of the order of df if the assumed model is appropriate; R2 is the percentage of deviance from perfect fit explained by the included predictors

as compared to no predictor. The dispersion parameter of the gamma distribution for peak size is 0.1074. For the final epidemic size, the dispersion parameter of the beta distribution is 0.1982,

and the probability mass at one is 0.0045.

an almost disease-free interval before emergence of the following
peak [14, 57]. Because of this, which is rather frequent is real
epidemic data [50], our model requires a wave delimitation method
to identify epidemic waves. Also note that, unlike in Aziz-Alaoui et
al. [2], ourmodel targets a short-term dynamic, and epidemic waves
in our model framework are not related to immunity lost (no flow
from R back to Si in Figure 3) but fully generated by the behavioral
response to the outbreak.

Our model allows us to explore the impact of heterogeneity in
the behavioral response of a population to disease risk information.
In general, two-group heterogeneity in response profile (pro- vs.
contra-prophylactic behavior in-group pressure, or responsiveness
to predicted risk or not) leads to an intermediate epidemic outcome
as compared to the two sub-populations evolving separately.
One interesting finding is that under strong pro-prophylactic
in-group pressure, a population consisting of two same sized
sub-populations where only one group is exposed/responsive to
predicted risk information can experience a less severe epidemic
as measured by peak size.

Finally, we investigated the effect of delayed risk information
on the severity of an epidemic in our model framework. Our

simulation experiments indicate that delayed risk information
slows down the behavioral response to the progression of the
epidemic, contributing to a more severe epidemic outcome, i.e.,
larger peak and final size. For an individual with a 50% average
risk to get infected in a 1-day reporting delay context, the risk
to get infected becomes 54% if the reporting delay is 1 week (6
days increase). Although a 4% increase may appear small at an
individual level, it would represent 4,000 more infections, given
the population size in our simulations (community of 100,000
individuals). Similarly, for an epidemic that peaks to 1,500 new
detected cases (see, e.g., Figure 4) under a 1-day reporting delay
scenario, a reporting delay of 1 week would result into 50 additional
detected cases on the peak day. These simulated results are in
accordance with the work of Gutierrez et al. [47], who found
that the COVID-19 epidemic in Mexico progressed much faster
when delays are larger, resulting in more severe epidemic outcomes
(larger death peak size and cumulative death toll). A viable solution
for policymakers to reduce information delay-related increase in
epidemic severity is to use a nowcasting technique to adjust the
daily number of confirmed new cases for delayed reporting [48],
especially in populations reactive to predicted risk, since delayed
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FIGURE 5

Cumulative number of detected cases when the e�ciency of prophylactic behavior is medium: κ ∈ {0.5, 0.6}. The curves on (A) correspond to low

early detection probability (loose disease surveillance mechanism), (B) medium early detection probability, (C) high early detection probability, and

(D) very high early detection probability. For each probability of early detection of exposed individuals (π ), the rightmost gray curves correspond to

the lowest baseline disease transmission rate (β0 = 0.5) and the dark curves (leftmost) correspond to the largest transmission rate (β0 = 3). More or

less gray curves have intermediate transmission rates (β0 = 1, 2).

FIGURE 6

Cumulative number of detected cases when there are one or two secondary waves with (almost) perfect protection from prophylactic behavior:

κ ∈ {0.95, 1}. The curves on (A) correspond to low early detection probability (loose disease surveillance mechanism), (B) medium early detection

probability, (C) high early detection probability, and (D) very high early detection probability. For each probability of early detection of exposed

individuals (π ), the gray curves (rightmost) correspond to the lowest baseline transmission rate (β0 = 0.5) and the dark curves (leftmost) correspond

to the largest baseline transmission rate (β0 = 3).
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risk information creates an illusion of a downward trend. We must
remind the reader, however, that our primary interest is to do
a conceptual analysis and none of these results should be taken
literally without empirical validation.

4.2 Limitations

Although the proposed model framework is quite general for
coupling risk tolerance and disease dynamics, we have in our
presentation limited attention to populations with relatively simple
structures. In this section, we highlight and discuss the most
important assumptions that may strongly affect our conclusions,
and explore some potential routes to their relaxation. The
prophylactic proportion defined in Equation (6) makes the strong
assumption that risk information derived from in-group behavior
is of no use if there is no change in risk information aggregate.
However, in-group behavior can lead to change in prophylactic
behavior even if risk information is constant, i.e., people can change
behavior by inferring the need to engage (or the appropriateness of
disengaging) based on how many individuals are already (or are
still) behaving prophylactically, not because the risk has increased
or decreased but because there is extant risk and in-group pressure
has changed the risk perception.

Another strong assumption in Equation (6) is that the evolution
of prophylactic behavior does not depend on how long people have
already been engaging in prophylactic behavior, and how strong
their engagement was during that time. However, prophylactic
behavior is often subject to fatigue. Indeed, preventive behavior
fatigue during secondary epidemic waves of a disease has been
particularly well-documented since the COVID-19 pandemic
event [58–75]. Failing to account for prophylactic behavior fatigue
in behavior-disease model likely introduces bias in model outputs.

To account for the above two limitations of Equation (6), we
propose to extend Equation (5) describing change in the proportion
of prophylactic individuals in a susceptible group i as:

∂mi

∂t
=

[

mi
1−m

αi
i

αi

] [

∂ηi

∂t
+ ωiηi

]

(

1− fi
)

(12)

where ωi ≥ 0 is the weight of “indirectly perceived change
in risk” derived from in-group behavior (how informative in-
group behavior is about perceived risk) and fi ∈ [0, 1] represents
prophylactic fatigue in group i. It follows from Equation (12) that
Equation (6a) can be generalized as:

mi =
[

1+ exp
{

δi − ηi
(

1− fi
)

− ζi
}]−1/αi (13a)

with fi(t) = 1− exp
{

−ǫMi(t)
}

, and (13b)

ζi(t) =

∫ t

0
ηi(u)

[

ḟi(u)+ ωi

[

1− fi(u)
]

]

du (13c)

where we assumed that enthusiasm for prophylactic behavior
decays exponentially as experience under disease-related
restrictions increases, with ǫ ≥ 0 expressing the extent to
which prophylactic behavior is exhausting (ǫ = 0 means that there
is no prophylactic fatigue over time, fi = 0), and the variable Mi

quantifies how much effort the susceptible group i has invested in
prophylactic behavior since the epidemic outbreak:

Ṁi = log

(

m
αi
i

1−m
αi
i

)

− log

(

m
αi
i0

1−m
αi
i0

)

(13d)

andMi(0) = 0. Note from Equation (13a) that Ṁi can be rewritten
as Ṁi = ηi

(

1− fi
)

+ ζi. Equation (13a) is reduced to Equation (6a)
when ωi = 0 and fi(t) = 0. To solve system (9) with the
prophylactic proportion mi given by Equation (13), we can extend
the differential system Equation (9) with Equation (13d) for the
pseudo-state variable Mi, and an additional pseudo-state variable
ζi whose first derivative is given by the integrand in Equation (13c),

i.e., ζ̇i = ηi

[

ḟi + ωi

(

1− fi
)

]

, which simplifies to

ζ̇i = ηi
(

1− fi
) (

ǫṀi + ωi

)

. (14)

However, it appears that prophylactic fatigue, as introduced in
Equations (12–14), affects equally engagement and disengagement
in prophylactic behavior. A post-hoc but inelegant solution to that
issue is to modify Equation (12) to have the form in Equation (15):

∂mi

∂t
=

[

mi
1−m

αi
i

αi

] [

∂ηi

∂t
+ ωiηi

]

(

1− figi
)

(15)

where gi = 1 if ∂ηi/∂t ≥ 0, and 0 otherwise. We leave the
implementation and exploration of such speculations for future
work.

Another strong hypothesis of our SEIR framework is the well-
mixture assumption, i.e., for each time point, the probability of
interaction between two random individuals in the population
is uniformly distributed [76]. While a low standard individual
might tend to interact more with low standard individuals than
high standard individuals, for instance, our model assumes an
homogeneous mixture of low standard and high standard groups.
More generally, heterogeneity in a population goes beyond risk
tolerance groups, and may be related to other factors such
as geographical location [77], age [78], and behavioral risk
factors [79]. In particular, the mixture of individuals from various
geographical regions is generally non-uniform, and explains the
large disparities among different geographical locations in the
COVID-19 pandemic context [80]. Thus, to be realistic, our
model should be extended to include spatial components to
reveal or account for the contribution of the spatial structure of
individuals to an observed epidemic dynamic. This can be achieved
using, for instance, non-autonomous coupling functions between
adjacent areas [6], a diffusion process [81], an agent-based infection
graph [82], or a location network [83].

Finally, we point out to the possibility of an evolving pathogen,
as observed for the COVID-19 pandemic [84]. For a multi-
strain pathogen, a realistic epidemic model should account for
mutation process occurring during infection of individuals in the
population [85, 86]. As such a future direction for our study
is to consider many variants of a target disease and investigate
behavioral feedback loops as a pathogen strain dominates the
population and is then replaced by a new pathogen, appearing
through evolutionary process or interactions with adjacent
geographical regions.
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4.3 Conclusion

In this study, we assessed the impact of differential behavioral
response profile on epidemic outcomes. Our main contributions
for understanding feedback loops between transient prophylaxis
and disease dynamic include (i) the distinction of historical risk
from predicted risk information overly discussed on mass media
and social media, and (ii) the inclusion of an interpretation domain
where the collected risk information is subjected to in-group
pressure. It was known that the final size of an epidemic has a non-
monotonic relation with the behavioral response of a population to
risk information. Our results indicate that this non-monotonicity
extends to epidemic peak size as a measure of epidemic severity, in
populations under strong in-group pressure.

An obvious future direction is to assess the ability of this
model to predict disease dynamics, using real epidemic data
(from, e.g., the world health organization, https://covid19.who.int)
along with behavioral change data from surveys (e.g., adherence
to COVID-19 protective measures [87, 88]). The inclusion of
more than two social groups, based, for instance, on age or
spatial location may be integral parts for establishing some
predictive power of the model. However, our aim here was not
predictive, but rather to better understand how to represent
assumptions about heterogeneous risk tolerance and in-group
pressures, and then in turn study their potential effects on
disease dynamics.
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