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Federated statistical analysis:
non-parametric testing and
quantile estimation

Ori Becher, Mira Marcus-Kalish and David M. Steinberg*

Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel

The age of big data has fueled expectations for accelerating learning. The

availability of large data sets enables researchers to achieve more powerful

statistical analyses and enhances the reliability of conclusions, which can be based

on a broad collection of subjects. Often such data sets can be assembled only with

access to diverse sources; for example, medical research that combines data from

multiple centers in a federated analysis. However these hopes must be balanced

against data privacy concerns, which hinder sharing raw data among centers.

Consequently, federated analyses typically resort to sharing data summaries from

each center. The limitation to summaries carries the risk that it will impair the

e�ciency of statistical analysis procedures. In this work, we take a close look

at the e�ects of federated analysis on two very basic problems, non-parametric

comparison of two groups and quantile estimation to describe the corresponding

distributions. We also propose a specific privacy-preserving data release policy for

federated analysis with the K-anonymity criterion, which has been adopted by the

Medical Informatics Platform of the European Human Brain Project. Our results

show that, for our tasks, there is only a modest loss of statistical e�ciency.

KEYWORDS

federated analysis, Mann-Whitney test, medical informatics, privacy preservation,

information loss

1. Introduction

The ability to analyze large sets of medical data has clear potential for improving

health care. Often, though, a large patient base is available only by combining data from

multiple silos. Combining data faces immediate challenges: data quality is often not uniform,

nor is granularity; sites may code data differently, requiring adjustment before analysis

is possible. Additionally, given the personal and sensitive nature of medical information,

sharing data across centers poses ethical and legal concerns. Many countries have enacted

laws protecting privacy. For example, data sharing in Europe must be consistent with the

General Data Protection Regulation (“GDPR”) and in the United States with the Health

Insurance Portability and Accountability Act (“HIPAA”).

Federated data analysis addresses privacy concerns by limiting data release from a center

to summary statistics, without revealing the raw data. The analysis must then rely on the

summary statistics. Federated analyses have been used to study a variety ofmedical problems,

including the clinical impact of atrial fibrillation for dementia [1], attenuation and scatter

correction for PET images [2], mortality following transcatheter aortic valve replacement

[3], detection of cancer boundaries [4] and histological response to chemotherapy in a rare

form of breast cancer [5].
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The applications above all exploit methods for federated

analysis that have been proposed in the machine learning literature;

however, little research has been done to examine the consequences

of the methods for statistical inference. Our goal in this paper is

to fill some of the gap, assessing the loss in statistical efficiency

when using federated data for some basic statistical analyses within

a particular privacy protection protocol.

The roots of our work are in the European Human Brain

Project (“HBP”). Data sharing is a major priority for the HBP, but

must be fully consistent with the GDPR. Salles et al. [6] spelled

out a detailed Opinion and Action Plan on “Data Protection and

Privacy” for the HBP. The plan gives important guidelines and a

sound administrative framework for data protection, but does not

present technical solutions. Several measures of privacy have been

proposed. One of the measures is the degree of anonymization—

the extent to which one is able to identify an individual from the

records in the data and link the sensitive information to her. A

well-known criterion for anonymization is K-anonymity [7]. A

dataset is K-anonymous if each data item cannot be distinguished

from at least K − 1 other data items. Fulfilling this criterion

introduces fuzziness into the data that makes it less likely to expose

a certain individual. One of the techniques to achieve K-anonymity

is generalization. For example, one could release that K patients

were between age 10 and 30 instead of releasing the exact ages

of each of these patients. Another popular criterion is differential

privacy, in which querying a database must not reveal too much

information about a specific individual’s record in it [8].

The Medical Informatics Platform (“MIP”), the HBP vehicle

for federated, multi-institutional, data analysis, adopted the K-

anonymity criterion for privacy protection. Specifically, any data

table exported from a member institution for use in federated

analysis on the MIP must have at least 10 subjects in any

cell of the table. Consequently, we chose to study the effect of

federated analysis on statistical efficiency when using the MIP

implementation of the K-anonymity criterion.

In Section 3, we propose a method for data summary

that supports the K-anonymity criterion used in the MIP. We

then address two common statistical problems: (i) use of the

nonparametric Mann-Whitney U statistic (henceforth “MWU”)

[9] to test the hypothesis that there is no difference between two

groups (in Section 4); and (ii) quantile estimation to describe the

corresponding distributions (in Section 5). We find that federated

procedures are almost as sensitive as the full-data methods for these

problems. For quantile estimation, they can be even more sensitive

due to the need for a more sophisticated estimation strategy.

Discussion and conclusions are in Section 6.

2. Related work

Most of the research on methods for federated data analysis

has focused on the predictive models commonly used in machine

learning, under the general header of Federated Learning. These

works emphasize the adjustment of machine learning algorithms

to federated settings, addressing algorithmic problems, security,

and communication efficiency. Several recent surveys provide good

summaries [10–12]. A notable example is [13], who presented the

“FederatedAveraging” algorithm, which combines local stochastic

gradient descent on each client with a server that averages results

across clients. Two related methods that also deal with inter-site

heterogeneity are “FedProx” [14], and “FedBN” [15]. Hwang et al.

[16] proposed the “FedPxN” algorithm, which modifies the way in

which local site models are aggregated, and used publicly available

medical data to compare the accuracy of these algorithms on several

classification tasks.

Research with an emphasis on statistical inference has been

less prominent. Nasirigerdeh et al. [17] created sPLINK, a system

used to conduct Genome-Wide Association studies in a federated

manner while respecting privacy. Algorithms such as linear and

logistic regression were adjusted to the federated setting using

data summaries from different data centers. Duan et al. [18, 19]

presented privacy-preserving distributed algorithms (“ODAL” and

“ODAL2”) to perform logistic regression. With a focus on efficient

communication, they made these one-shot algorithms, i.e., using

only one information transfer from each center; by contrast, most

algorithms are iterative and require multiple transfers. Liu and

Ihler [20] considered federated maximum likelihood estimation for

parameters in exponential family distribution models. Their idea

was to combine local maximum likelihood estimates byminimizing

the Kullback-Leibler divergence. Their method yields a federated

estimator that outperforms any other linear combination in various

scenarios and is equivalent to the global MLE when the underlying

distribution belongs to the full exponential family. Spath et al.

[21] developed an open-source platform for federated analysis of

time-to-event data that includes common methods like survival

curves, the log-rank test and the Cox proportional hazards model.

They found that their analyses lost little efficiency by comparison

with fully aggregated analysis. Their methods and results are

not directly relevant to the MIP, as they adopted differential

privacy and additive secret sharing to protect local data rather

than K-anonymity.

Related statistical literature is concerned with distributed

computing, in which the data is centralized but so large that

calculations are split over multiple servers in parallel to accelerate

calculations. For example, Rosenblatt and Nadler [22] showed that

the estimator from averaging estimates fromm servers is as accurate

as the centralized solution when the number of parameters p is fixed

and the amount of data n → ∞.

3. The binning algorithm

This section describes a procedure for constructing a K-

anonymous federated summary table when two groups are

compared with respect to a numerical variable. We denote the

groups by x and y and use the terms control and treatment for

them. The summary table will have B bins, with the bth bin given

by (cb−1, cb], and observation frequencies fbx for the control group

and fby for the treatment group. The table preserves K-anonymity

in that it is constructed from frequency tables released from the

centers in which all cell counts are either 0 or are ≥ K.

Here, is an outline of our table construction process. We

proceed sequentially to add information from each center,

beginning with the largest center and proceeding in decreasing

order of sample size. The initial summary table meets the cell count

constraint while attempting to minimize the width of the cells. Data
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from the other centers are then added, generating new bins if it is

possible to do so without violating the privacy constraint. Existing

bins are never removed. When cell counts from a new center are

between 0 and K, neighboring bins are combined and their total

count is redistributed among the bins that were combined (See

Algorithm 1 for details).

3.1. Binning the largest center

The process proceeds (arbitrarily) from small to large values.

The first bin is, initially, from a0 to a1, where a0 is the minimal

value in the data and a1, is the smallest data value for which [ao, a1]

has at least K observations from one group and either 0 or at least

K observations from the other group. The next tentative bin limit,

a2, is found in the same way, looking at the interval (a1, a2]. This

continues so long as a new bin limit can be found. When a limit

cannot be found, the number of unbinned data in at least one

group is between 0 and K. Tentatively extend the upper limit of

the previously formed bin to the maximal value of this group as the

next limit. The unbinned data from the other group might permit

continuation of the process, blocking off new bins in which that

group has counts of at least K, vs. counts of 0 for the first group.

When that group has fewer than K unbinned data, replace the last

bin limit by the maximal value in the second group (See Algorithm

S1 in Supplementary material for details.).

The initial bin boundaries a0, . . . , aB produced by the algorithm

above are actual data values and, unless many subjects share the

same value, violate the privacy condition. There is a simple fix for

a1, . . . , aB−1. All values in the jth bin are ≤ aj and all values in the

j+ 1st bin are > aj. So we can replace aj by cj = waj + (1− w)vj+1

where vj+1 is the smallest value in the (j+1)st bin andw is a uniform

random variable on (0, 1). The extreme boundaries a0 and aB are

the minimum and maximum in the data, so a different approach

is needed. One option is to take c0 = −∞ and cB = ∞. Another

option is to impose natural limits; for example, if by definition a

variable cannot assume negative values, we could choose c0 = 0.

A final option is to extend the bin limits by “privacy buffers”.

To make these reasonably close to the data, we base them on the

observed gaps between successive observations in the extreme bin.

For example, compute cB as aB+d̄B, where d̄B is themean difference

between consecutive data points in the last bin. (If d̄B = 0, cB = aB,

but this is now privacy preserving, as all observations in the last bin

are equal to one another, with more than K in each group that has

data.) Similarly, compute c0 as a0 − d̄1.

3.2. Joining additional centers

A new algorithm is needed to add the data from a new center,

preserving all bin boundaries from the first center. The simple

option of increasing the frequency counts in each current bin is

not an option, as the incremental table from the new center will

typically not be K-anonymous. Further, the incremental counts for

some existing bin might be so large that data from the new center

could actually be used to split it into two or more bins.

Input: x1, x2

bins, frequencies1, frequencies2 = empty list

while true do

next_point = next_2d_point(x1, x2)

if next_point is None then

frequencies1[length(frequencies1)] +=

length(x1)

frequencies2[length(frequencies2)] +=

length(x2)

bins[length(bins)] = ∞
return bins, frequencies1, frequencies2

end if

f1 = length(x1[x1<next_point])

x1 = x1[x1 ≥ next_point]

f2 = length(x2[x2<next_point])

x2 = x2[x2 ≥ next_point]

bins.append(anonymize_boundary(next_point, x1,

x2))

frequencies1.append(f1)

frequencies2.append(f2)

end while

Output{bins, f1, f2}

Algorithm 1. Binning algorithm.

Algorithm S3 in Supplementary material is used to add the

information from a new center to an existing summary table.

We first iterate over the current bins, creating finer bins if

possible. Then we remove any counts that are not K-anonymous

by combining and redistributing data from adjacent cells. Pseudo-

code for Algorithm S3 and for two algorithms called by it are given

in the Supplementary material.

Splitting an existing bin into two bins forces us to reallocate

the previous frequencies. We do so proportionally to the relative

frequencies from the new center. For example, suppose a bin

with a current count of 27 for one group is split into two

new bins, which have equal counts at the new center. Then

we split the 27 equally to the two new groups, adding 13.5

to each. Note that this procedure can result in counts that are

not integers.

After creating new bins wherever possible, we iterate again

and fix bins where the new center has frequencies between 0

and K. Proceeding from bin 1 to bin B, these non-private bins

are combined with the next bin to the right until all counts

from the new center are either 0 or at least K. Then the total

counts are distributed among the original bins proportionally

to the relative frequencies of the bins in the current table.

Supplementary Table 1 shows an example that illustrates how the

algorithm works.

The extreme bin limits c0 and cB must be compared with the

minimum and maximum values, respectively, in the new center. If

the new center has a more extreme data value, we need to revise

these bin limits. We do so by applying the buffer method that

was used to find c0 and cB in the largest center, but now adding

buffers that depend only on the data in the extreme bin from the

new center.
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4. Testing

This section considers the problem of hypothesis testing with

federated data, studying the common problem of determining

whether numerical outcomes from two groups come from the same

distribution (the null hypothesis, H0); or whether one group has

larger values than the other. The standard choice is the independent

samples t-test, which requires the mean, the standard deviation

and the number of observations in each group. All of these are

privacy-preserving summary statistics, so the t-test can still be used

with federated data. However, the t-test relies on the assumption,

often invalid, that the data are normally distributed. We consider

here the standard non-parametric alternative, the Mann-Whitney

U (“MWU”) test [9] (or, equivalently, the Wilcoxon rank sum test).

4.1. The Mann-Whitney U-test

The MWU statistic can be defined as follows. Denoting the

observations in the two groups by X1, . . . ,Xn and Y1, . . . ,Ym,

U =
n
∑

i=1

m
∑

j=1

S
(

Xi,Yj

)

with

S(Xi,Yj) =











1 Yj > Xi

0 Yj = Xi

−1 Yj < Xi

IfH0 is true, the expected value ofU is 0 and its variance is V =
mn(N+1)

3

[

1−
∑D

r=1(t
3
r−tr)

N(N2−1)

]

, where N = n+m, D is the number of

distinct values in the data, and tr is the number of observations that

share the rth distinct value. The second term corrects the variance

for the presence of ties in the data. If Y
d= c + X, c ∈ R, the

distribution of U is stochastically increasing as a function of c. The

power of the test depends on P(Y > X) and is high when this

probability differs from 0.5.

The MWU test involves direct comparison of each data point

in one group with each data point from the other group. As this

includes comparisons of observations from different centers, it is

impossible to compute the MWU statistic for a federated analysis.

Two broad options are possible for federated analysis.

• Compute the MWU statistic separately for each center and

then combine them across centers.

• Generate a federated table summarizing the data from all

the centers and then compute the MWU statistic on the

federated table.

The next subsections present options for combining center-

specific MWU statistics and the second analysis option, used in

conjunction with our federated binning algorithm.

4.2. Sum of U-statistics

Denote by Ul the MWU from the lth center, based on nl andml

observations from the two groups, with Nl = nl + ml; and denote

by Vl its variance under H0. A simple way to form a federated

test statistic is to sum the individual statistics over the centers and

normalize them by their standard deviation, leading to

Tsum =
∑L

l=1 Ul
(

∑L
l=1 Vl

)0.5

H0→ N(0, 1). (1)

4.3. Weighted average of U-statistics

A simple generalization is to replace the sum of the statistics by

a weighted sum, with an optimal choice of weights. It is convenient

to do this using the normalized test statistics for each center, Zl =
Ul/V

0.5
l

. The weighted test statistic is then

Tw =
∑

l alZl
(
∑

l a
2
l

)0.5

H0→ N (0, 1) . (2)

The choice of weights can be made to maximize the power of the

test when the null hypothesis is not true, using the fact that

Tw =
∑

l alZl
(
∑

l a
2
l

).5

H1→ N

(

∑

l alδl
(
∑

l a
2
l

).5
, 1

)

where δl is the standardized effect in center l. For the MWU

statistic, the standardized effect can be expressed as

δl = E(Zl) =
mlnl(P

+
l
− P−

l
)

SD(Ul|H0)
,

where P+
l
= P(Y > X) and P−

l
= P(Y < X) in center l. Although

the formula permits the probability difference to vary over centers,

the natural basis for defining the weighted sum statistic is to

assume a constant difference, in which case the optimal weights

depend on the sample sizes and, if present, the extent of tied data.

See Equation S1 in the Supplementary material for derivation of

the weights.

4.4. Fisher’s method

Fisher’s method [23] combines the p-values from independent

samples. The corresponding statistic is TF = −2
∑L

l=1 log(pl)
H0→

χ2
2L where pl is the p-value from the MWU test result in the

lth center.

4.5. Federated table MWU statistic

We can compute the MWU statistic from the federated

summary table generated by the algorithm described in Section 3.

The table will have B bins whose frequencies are fxi and fyi. The

frequencies sum to the total amount of data over all the centers, but

need not be integers.
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TABLE 1 Observations per center.

Number
of centers

Number of observations
in each group

Each group
total

3 698, 476, 326 1,500

5 492, 368, 276, 208, 156 1,500

10 307, 250, 208, 172, 143, 118, 98, 81,

67, 56

1,500

The MWU statistic for the federated table compares

observations on the basis of their bins and is given by

Ufed =
B
∑

i=1

B
∑

j=1

fxifyjS
(

ci, cj
)

(3)

where c0 < c1 < · · · < cB are the endpoints of the bins and

S(ci, cj) =











1 cj > ci
0 cj = ci
−1 cj < ci

The variance of Ufed can be computed from the formula in Section

4.1, keeping in mind that all observations in the same bin are tied.

4.6. Comparison of the tests

A simulation study was used to compare the different federated

MWU tests to an analysis of the combined data. Our goals are

to assess how the federated analysis affects the power of the tests,

and to use the power analysis to compare the testing methods. We

also vary the simulation settings to examine how the results and

comparisons are affected by the number of centers in the study and

by heterogeneity across centers.

We simulated situations with 1,500 observations in each group,

divided over 3, 5, or 10 centers, with the number of observations

unbalanced among the centers (see Table 1).

For the Mann-Whitney test, only the order of the observations

is important, so any distribution can be used to simulate the data.

Our model generates control group observations at center l as

xil = ǫil + αl

and treatment group observations as

yjl = ǫjl + αl + βl.

The possibility that centers may differ from one another is

represented by αl ∼ N(0, σ 2
α ). The difference between treatment

and control at center l is βl ∼ N(δ, σ 2
β ) where δ is the overall

difference, and σβ represents heterogeneity of the treatment effect

across centers. The terms ǫil, ǫjl ∼ N(0, 1) are random errors. All

random variables are independent of one another.

We simulated experiments with several different combinations

of input parameters. We chose σα ∈ {0, 0.1, 0.2} and σβ ∈
{0, 0.05, 0.06} to achieve between center variance, and δ ∈
{0, 0.05, 0.1}. Including δ = 0 allowed us to verify that the tests

remain reliable when both groups have the same mean. Note,

however, that the variance is slightly larger for the treatment group

if σβ > 0, so that this setting does not fully match the null

hypothesis of identical distributions.

Supplementary Figure 1 shows the distributions of p-values for

all the tests in the null setting δ = 0. The left panel includes

heterogeneity across centers (σα = 0.1), but no effect heterogeneity,

and shows a uniform distribution for all the tests, as desired. The

right panel adds a small amount of effect heterogeneity (σβ = 0.05.

This results in a slightly wider spread of p-values for all the tests,

so that actual type 1 errors are inflated from their nominal values.

The fraction of p-values below 0.05 (0.01) was approximately 0.08

(0.025). The inflation was slightly weaker when more centers were

included and slightly larger only for Fisher’s test. The additional bias

of Fisher’s test is not surprising, as it is sensitive to the existence of

an effect within a center, but not to having a consistent direction of

the effect.

Figure 1 compares methods when δ 6= 0 across

different parameters and numbers of centers. See also

Supplementary Table S1. The federated table and weighted

tests have p-value distributions that are very similar to those from

combining all the data, indicating almost no loss of power. The

sum test has higher p-values, hence consistently lower power. The

p-values with Fisher’s method are a bit higher when the treatment

effect is consistent across centers (σβ = 0). When the effect is

not consistent, they are lower. However, as already seen, Fisher’s

test in this case fails to preserve type 1 error, with a bias toward

low values.

Figure 2 focuses on how closely the federated test results

compare with those from the combined test (i.e., using the full data)

by comparing the p-values of each method on the same simulated

data set. The Y axis presents log(piv/pis) where i represents the

simulation number, s is the combined test and v is the federated test.

A federated test that produces the same p-values as the combined

test has no loss of power. The more tightly concentrated are these

distributions around 0, the more nearly identical are the p-values of

the federated method to those of the combined method.

Across all the settings, the weighted test most closely replicates

the p-value of the combined test. The federated table is also similar,

but more variable, especially when δ 6= 0. In the top left panel,

where H0 is true, all methods are similar to the combined test.

However, adding treatment heterogeneity (top right panel) induces

bias in the p-values from Fisher’s test, which will reject the null

hypothesis too often. It also increases the variance of the log

ratio for that test and for the sum. In all the settings with center

heterogeneity (σα > 0), the sum test gave, typically, slightly higher

p-values than the combined test, hence had lower power.

To assess the power of the tests as a function of the effect size,

we simulated p-values over a set of 4 increasing values of δ, when

σα = 0.1 and σβ = 0.05. Figure 3 compares the methods to the

unconstrained test using log(piv/pis) (Y-axis) where i represents

the simulation number, s is the unconstrained method and v is

the other method. Again the weighted test is most similar to

the combined test, followed by the federated table. Table 2 shows

the median of the p-value distributions with 10 centers; smaller

medians correspond to higher power for the test. The medians for

the weighted test are consistently the lowest ones; with even the

modest heterogeneity present here, they are lower even than those
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FIGURE 1

Comparison of methods across di�erent parameters and number of centers. Panels represent the number of centers, the Y-axis presents the

p-values and the X-axis the parameters (δ, σα , σβ ). The di�erent methods are color-coded.

for the combined test. The test from our federated table has slightly

higher medians throughout than does the combined test. Similar

quantiles were found for 3 and for 5 centers, indicating that, for

the settings we examined, the number of centers has little effect

on power.

5. Estimation

This section considers the problem of quantile estimation

when data are located in different centers. Quantile estimates

are valuable for directing visual summaries of data distributions

such as histograms or Kaplan-Meier plots. Standard methods for

computing sample quantiles cannot be used, as they begin by

ordering all the data, violating privacy. We propose and compare

several methods for federated quantile estimation. Throughout we

denote by F(x) the CDF and by Qp = F−1(p) the pth quantile of

the distribution.

5.1. Federated estimates using the quantile
loss

A quantile can be estimated as the solution to a

minimization problem,

Q̂p,Loss = argmin
q



(p− 1)
∑

yi<q

(

yi − q
)

+ p
∑

yi≥q

(

yi − q
)



 , (4)
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FIGURE 2

The figure shows log(piv/pis) on the Y axis, where s is the combined data analysis. The panels correspond to the di�erent parameter settings for

(δ, σα , σβ ). The number of centers is on the X axis and the methods are color-coded.

where the target function is the quantile loss function. The

optimization can be carried out on federated data by returning

function and gradient values from each center, proceeding

iteratively to compute Q̂p,Loss. The need for an iterative algorithm to

minimize the loss, has the drawback of communication inefficiency.

A more serious concern is that the quantile loss compromises

privacy. The loss function within each center is piecewise

linear with a change in derivative at each data value in

the center. Thus the information from a collection of calls

can be used to recover the original data values at the

federated node.

Despite the privacy violation, we will include Q̂p,Loss in the

subsequent comparisons as a benchmark.

It is possible to exploit the loss function to compute

approximate quantile estimators that are differentially private [24].

5.2. Estimating quantiles from the federated
data using the Yeo-Johnson transformation

The binning algorithm we introduced in Section 3 can be used

to compute a federated estimate of Qp that is K-anonymous. Here,

we apply the single group version of the algorithm which gives

a summary table that has B bins with endpoints b0 < b1 <

b2 < · · · < bB and frequencies fx,k. Let F̂x,i denote the cumulative

distribution for the federated table at bi.

A naive estimate is the smallest bin limit with cumulative

frequency greater than 100p% of the data. However, restricting

Qp to the set of bin limits is an obvious drawback, especially for

quantiles in the tails of the distribution. A simple improvement is

to interpolate the estimated CDF from one bin limit to the next.

Linear interpolation corresponds to the assumption of a uniform
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FIGURE 3

Comparison of methods across di�erent parameters and number of centers. Rows correspond to the number of centers and segments within rows

represent hyper-parameter configurations. The Y-axis represents the p-values. The methods are color-coded.

distribution within each bin. That may be reasonable for bins in the

center of the data. However, it is not likely to work well in the tails,

especially in the most extreme bins. We did attempt to use linear

interpolation, but the results were poor and are not reported here.

We propose here a more sophisticated interpolation method

based on the Yeo-Johnson transformation (“YJ”) [25], a power

transformation used to achieve a distribution that is closer to

the normal. The approach extends the well-known Box-Cox [26]

transformation to also handle variables that can take on negative

values. The transformation is defined by

hλ(x) =



















(

(1+ x)λ − 1
)

/λ if λ 6= 0 and x ≥ 0

log(1+ x) if λ = 0 and x ≥ 0

−
(

(1− x)2−λ − 1
)

/(2− λ) if λ 6= 2 and x < 0

− log(1− x) if λ = 2 and x < 0

(5)

5.2.1. YJ table method
In this method, the goal is to find values of λ, a0 and a1 for

which the transformed bin limits approximately match a normal

distribution with mean a0 and standard deviation a1,

hλ(bk) ≈ a0 + a18
−1(F̂(bk)) (6)

where bk is a bin limit, F̂ is the estimator of the distribution function

from the federated table and hλ(x) is the (“YJ”) [25] transformation.

The quantile Qp is then estimated by

Q̂p,YJTable = h−1

λ̂
(â0 + â18

−1(p)). (7)

Given λ, we can compute a0, a1 using linear regression. To

estimate λ, we use the idea that an effective transformation hλ

should have transformed quantiles that are linearly related to the
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TABLE 2 Comparison of the tests for di�erent values of δ with 10 centers

when σα = .1, σβ = .05, and the 0.5 quantile of the p-value distributions.

Quantile 0.5

δ 0.05 0.0625 0.075 0.0875 0.1

method

Combined 0.0921 0.0514 0.0228 0.0093 0.0037

Federated 0.0949 0.0538 0.0234 0.0091 0.0038

Fisher 0.0917 0.0536 0.0274 0.0119 0.0049

Sum 0.1050 0.0646 0.0304 0.0157 0.0066

Weighted 0.0908 0.0510 0.0224 0.0090 0.0036

Similar results were found for 3 and for 5 centers.

TABLE 3 A summary table constructed from quantile estimates, based on

1,500 observations from 3 centers, with a mixed gamma distribution.

p Qp Q̂p,Loss Q̂p,YJData

0.02 1.027 1.137 1.076

0.25 2.565 2.551 2.595

0.50 3.716 3.700 3.695

0.75 5.175 5.155 5.125

0.98 9.216 9.321 9.512

YJ-estimated quantiles. This can be achieved by choosing λ to

maximize the correlation between them,

λ̂ = argmax
λ

(

cor
(

8−1(F̂(X)), hλ(X)
))

(8)

where the values ofX we use are the interior bin limits b1, . . . , bB−1.

Note that the range of the inverse transformation in 5 is

given by

hλ(R) =











(−1/|λ − 2|,∞) if λ > 2

R if 0 ≤ λ ≤ 2

(−∞, 1/|λ|) if λ < 0

(9)

To ensure that the inverse transformation has values in R we

set the constraint 0 ≤ λ ≤ 2 for equation 8.

The YJ Table method is a “one pass” algorithm, calling the data

only to produce the federated summary table. Thus it enjoys full

communication efficiency.

5.2.2. YJ likelihood method
The parameters in the YJ transformation can also be estimated

by maximum likelihood. Denoting by xil the observations from

center l and by N the total number of observations, the log

likelihood is

− N/2 log
(

σ̂ 2
λ

)

+ (λ − 1)

L
∑

l=1

nl
∑

i=1

sign (xil) log (|xil| + 1) (10)

where

σ̂ 2
λ = 1

N

L
∑

l=1

nl
∑

i=1

hλ(xil)
2 − (

1

N

L
∑

l=1

nl
∑

i=1

hλ(xil))
2. (11)

For a fixed value of λ, the log-likelihood requires only summary

statistics from each center, so can be computed in a federated

manner. This can be embedded in a simple optimization routine

that maximizes the log likelihood over λ.

As with the quantile loss, the YJ likelihood method employs

an iterative algorithm, and thus is not communication efficient.

However, unlike the quantile loss, the YJ log likelihood for each

center is not a simple function of the data that can be immediately

inverted to recover data values. Thus the privacy violations of the

quantile loss do not occur here.

Once we have λ̂, we can again use summary statistics from the

centers to compute µ̂
λ̂
, σ̂

λ̂
. The resulting quantile estimator is

Q̂p,YJ Data = h−1

λ̂
(µ̂

λ̂
+ σ̂

λ̂
8−1(p)). (12)

The likelihood maximization is iterative, so requires multiple

communication steps with each center. By contrast, the methods

based on the federated table are “one pass”, requiring just one call

to each center. This communication inefficiency of the maximum

likelihood method can be improved by submitting to each center

a grid of possible λ values. The centers then return the moments

needed to compute the log likelihood for each value in the grid.

The resulting estimate of λ can either be the best value among those

in the grid or the maximizer of an empirical fit to the relationship

between the log likelihood and λ. The result is an approximate, one

pass MLE.

5.3. Constructing summary tables from
quantile estimates

Federated quantile estimates can be used to generate an

alternative summary table, which presents a collection of quantiles.

See Table 3 for an example, with estimates from optimizing the

quantile loss and the YJ likelihood.

5.4. Simulation results

We compared the three quantile estimators using a simulation

configuration similar to that in the testing chapter. As the quantiles

are univariate summaries, we generated data and estimated

quantiles only in one group. Another important difference is that

the form of the underlying distribution affects the estimation

results. In particular, methods may vary when faced with long

rather than short tails. To gain insight into this issue, we chose

the Gamma as the base distribution for assessing the quality of

quantile estimation.

Each simulated data set included 1,500 observations, spread

across 3, 5, or 10 centers exactly as described in Table 1. The

observations were generated from the following model: xil =
ǫil exp(αl) where xil is observation i at center l with αl ∼ N(0, σ 2

α )

and ǫil ∼ Gamma(r, 1) r ∈ {4, 10}. The skewness of Gamma is 2√
r
,

so the smaller value for r has a longer right tail.

For the Gamma data, heterogeneity across centers was induced

using scale rather than location shifts. The value of σα was chosen

to achieve between center heterogeneity similar in extent to that

in Section 4. There the key term was the ratio σα/σǫ , which was
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FIGURE 4

Estimation errors - Q0.98. The figure shows the standardized errors,
(

Q̂p −Qp

)

/
√
r (on the Y axis) for estimating the 98th quantile. Each column

represents the shape r and each row the number of centers. The methods are color-coded. The rest of the quantiles are depicted separately in

Figure 5 due to having a di�erent error scale.

taken to be 0, 0.1 or 0.2. With Gamma data, the standard deviation

of the homogeneous data is proportional to the median, so the

analogous choice is to set σα = log
(

Q0.5+φσǫ

Q0.5

)

, with φ similar to

the values chosen above. We used only φ = 0.1 in our simulations

for quantile estimation.

For each combination of the parameters, 2,000 simulations

were run. The true quantile Qp for each simulation was computed

from themixture (over centers) distribution by solving the equation

below with l as the center index.

L
∑

l=1

nl

N
Ŵr(x/exp(αl)) = p (13)

where N is the number of observations from all centers, nl
the observations in center l and Ŵr is the standard Gamma

CDF with shape parameter r. A dominant part of the quantile

estimation errors is the natural variability of the underlying

Gamma distribution. As the standard deviation for Gamma(r, 1)

is
√
r, we summarized results via the normalized estimation error

(

Q̂p − Qp

)

/
√
r where Q̂p is the estimator of Qp.

The simulation results for estimating Q0.98 are shown in

Figure 4. This quantile is presented separately, as it is the

most challenging case, in the right tail of a right-skewed

distribution. Results for Q0.02,Q0.25,Q0.5,Q0.75 are depicted in

Figure 5. Further detail is provided in Supplementary Tables S2–

S5, which give, respectively, the estimated bias and standard

deviation, the mean squared error (MSE), and the ratio

of squared bias to variance for all the methods and all

the quantiles.

The YJ data estimator achieved lower MSE than the quantile

loss estimator. For the extreme quantiles, the decrease in MSE

ranged from 14% to 44%. The “one pass” YJ table estimator was

very accurate for estimating the median and the quartiles, but

lost efficiency for the extreme quantiles with the more skewed of

the two Gamma distributions and when the number of centers

was large. In that setting, the estimator for Q0.02 suffered from

negative bias and its MSE was almost 3 times as large as

for the quantile loss estimator; the MSE for Q0.98 was about

80% larger.

For the settings we studied, variance was the dominant

component of MSE. Bias was a substantial problem only

in a small number of cases. The YJ methods had large

positive bias for Q0.98 when r = 4; however, when r =
10, and the distribution is itself closer to normal, the bias

was negligible.
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FIGURE 5

Estimation errors - Q0.02,Q0.25,Q0.5,Q0.75. The figure shows the standardized errors,
(

Q̂p −Qp

)

/
√
r (on the Y axis) for estimating the quantiles (on the

X axis). Each column represents the shape r and each row the number of centers. The methods are color-coded.

6. Summary

In this work we presented novel methods for federated data

analysis and investigated their statistical properties. We proposed

a simple algorithm for creating K-anonymous data tables in one-

and two-group problems and we compared federated approaches

for the non-parametric Mann-Whitney U (MWU) test and for

estimating quantiles. Our federated data table is created in a “one

pass” format, so that it is communication efficient.

For the MWU test, we found that the most powerful method

was the weighted average of theMWU statistics from the individual

centers, with weights reflecting the sample sizes. This statistic is

also communication efficient, gives nearly identical p-values to

those from the combined data and has the advantage of adjusting

for inter-center heterogeneity, effectively treating each center as a

block. The logged ratios of p-values from this method to those from

the MWU test on the combined data were heavily concentrated

around 0. With increasing effect sizes, the median p-value from

the weighted MWU test was lower than that for the combined test,

so actually increases power. The test based on our federated table

was slightly less effective. The logged ratios of p-values were still

strongly concentrated around 0, but with more spread than for the

weighted average. With increasing sample size, the median p-values

were slightly larger than those for the combined test. Thus, both of

these tests will have almost identical power to the combined data

test regardless of the level of significance desired.

For quantile estimation, the fully optimized YJ method

consistently had the lowest MSE of the methods we compared. For

the extreme quantiles, it improved by 14% to 44% over the quantile

loss estimator. The “one pass” YJ table estimator had almost

identical MSE for estimating the median and the quartiles, but lost

efficiency for the extreme quantiles when the number of centers

was large. The increase in MSE was more substantial (almost 80%)

with the more skewed of the two Gamma distributions we studied.

This is not surprising: our YJ method exploits a transformation

to normality and is less successful when the distribution is further

from the normal.

It is important that research on federated data analysis will

relate to statistical efficiency and not just to algorithmic efficiency.

Our work opens this avenue, but much more could be done. Here

are some examples. One important extension is to consider the

impact of federated analysis on a wider range of statistical inference

procedures. Another needed direction is to consider alternative

mechanisms for privacy protection and to compare them with

respect to the loss in statistical efficiency. Our proposals raise

a number of specific questions. The construction method for a

federated summary table could be extended to multiple variables

and to higher dimensions; our method creates the bins in a way
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fitted to a one-dimensional variable. This would be needed, for

example, to produce a federated analog of a scatter plot. Our

findings suggest that heterogeneity can harm the federated analysis.

Methods are needed to identify heterogeneity and to account for it

in the analysis. The investigation of quantile estimators could be

extended to a wider class of distributions. Our implementation of

the YJ method applies a single transformation to the distribution.

For quantiles in the tails of the distribution, it might be better to

use separate transformations in the left and in the right tails.

Our results, like those of [21], are encouraging for the use of

federated statistical analysis. We show that the Mann-Whitney U

test and quantile estimation can be used at close to full efficiency

on federated data with the K-anonymity constraint (for K = 10).

Similarly, Spath et al. [21] found little loss of efficiency for time-

to-event analyses when differential privacy is applied. We do point

to some potential problems, for example in coping with inter-

center heterogeneity. At the same time, the challenges of federated

statistical analysis can also stimulate more efficient methods;

our use of the Yeo-Johnson transformation improved upon the

standard quantile estimator for most of the settings examined. In

any particular setting, we advise researchers to carefully assess the

choice of methods for their analyses. As we show, efficiency also

depends on how many centers are being federated, how diverse are

the data across centers, and what statistical methods will be used

for the analysis. The simulation framework that we describe and

exploit here can be applied to assess and compare options.
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