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It is a hot topic how entanglement, a quantity from quantum information theory, can assist
machine learning. In this work, we implement numerical experiments to classify patterns/
images by representing the classifiers as matrix product states (MPS). We show how
entanglement can interpret machine learning by characterizing the importance of data and
propose a feature extraction algorithm. We show on the MNIST dataset that when
reducing the number of the retained pixels to 1/10 of the original number, the
decrease of the ten-class testing accuracy is only O (10–3), which significantly
improves the efficiency of the MPS machine learning. Our work improves machine
learning’s interpretability and efficiency under the MPS representation by using the
properties of MPS representing entanglement.
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1 INTRODUCTION

Pattern recognition and classification is an important task in classical information processing. The
classical patterns in question may correspond to images, temporal sound sequences, finance data, etc.
During the last 30 years of developments in quantum information science, there were many attempts
to generalize classical information processing schemes to their quantum analogs. Examples include
proposing quantum perceptrons and quantum neural networks (e.g., see some early works [1–3] and
a review [4]), quantum finance (e.g., [5]), quantum game theories [6–8], to name but a few. More
recently, there were successful proposals to use quantummechanics to enhance learning processes by
introducing quantum gates, circuits, or quantum computers [9–14].

Conversely, various efforts have been made to apply the methods of quantum information theory
to classical information processing, for instance, bymapping classical images to quantummechanical
states. In 2000, Hao et al. [15] developed a representation technique for long DNA sequences and
obtained mathematical objects similar to many-body wavefunctions. In 2005 Latorre [16]
independently developed a mapping between bitmap images and many-body wavefunctions, and
applied quantum information techniques to develop an image compression algorithm. Although the
compression rate was not competitive with the standard algorithms like JPEG, this work has
provided valuable insight [17] that Latorre’s mapping might be inverted to obtain bitmap images out
of many-body wavefunctions, which was later developed in Ref. [18].

This interdisciplinary field becomes active recently, due to the exciting breakthrough in quantum
technologies (see some general introductions in, e.g., [19–22]). Among the ongoing research, an
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interesting topic is how to design interpretable and efficient
machine learning algorithms that are executable on quantum
computers [23–26]. Particularly, remarkable progresses have
been made in the field merging quantum many-body physics
and quantum machine learning [27] based on tensor network
(TN) [28–42]. TN provides a powerful mathematical structure
that can efficiently represent a subset of many-body states
[43–47] which satisfy the area law scaling of the entanglement
entropy. For example, the nearest-neighbor resonating valence
bond (RVB) state [48, 49] and the ground states of one-
dimensional gapped local Hamiltonians [50, 51]. Paradigmatic
examples of TN include matrix product states (MPS) [28, 29, 43,
52–56], projected entangled pair states [43, 57], tree TN states
[31–33, 58, 59], and multi-scale entanglement renormalization
ansatz [60–62]. It is worth noticing that the variational training of
tensor network can be realized on actual quantum platforms
[63–65], which is powerful in solving ground states of many-body
systems.

TN also exhibits great potential in machine learning, which
can provide a natural way to build the mathematical connections
between quantum physics and classical information. Among
others, MPS has been utilized to the supervised image
recognition [28, 65] and generative modeling to learn joint
probability distribution [29]. It was justified in [30] that long-
range correlation is not essential in image classification, which
makes the usage of MPS feasible. Tree TN with a hierarchical
structure is also used to natural language modeling [31] and
image recognition [32, 33].

Despite these inspiring achievements, there are several
pressing challenges. One of those concerns is how to improve
the interpretability of machine learning [66–73] by incorporating
quantum information theories. Classical machine learning

models are sometimes called “black boxes”, in the sense that
while we can get accurate predictions, we cannot clearly explain
or identify the logic behind them. For TN, one challenge is how to
improve the algorithms by utilizing the underlying principles
between the quantum states’ properties (e.g., entanglement) and
classical data.

In this work, we implement simple numerical experiments
using MPS representation of the classifier (Figure 1) [28] and
propose to use a quantum inspired technique for machine
learning. We show how entanglement can emerge from
images, which characterizes the importance of features, and
use it to improve the interpretability and efficiency of machine
learning under the MPS representation. The efficiency of a
feature extraction scheme is usually characterized by the
number of the extracted features to reach a preset accuracy.
Our feature extraction algorithm significantly improves the
efficiency while causes less harm to the accuracy. Specifically,
for the ten-class classifiers of the MNIST dataset [74](see
more details of MNIST dataset in Supplementary Appendix
A), the number of features can be safely lowered to less than 1/
10 of the original number with only O (10–3) decrease of
accuracy.

2 MATRIX PRODUCT STATE AND
TRAINING ALGORITHM

2.1 Mapping Image to Quantum Space
TN machine learning contains two key ingredients. The first one
is the feature map [33], which encodes each sample (image) to a
multi-qubits product state. Following the conventional TN
machine learning [28, 30], each feature (say pn,l, the lth pixel

FIGURE 1 | Illustration of MPS Ψ̂ for image classification. The pixels in an image are vectorized to many-qubit states v by the feature map (Eq. 1), and then be
contracted with the MPS Ψ̂ to obtain the prediction of the classification (Eq. 3). The MPS illustrated here covers the 2D image in a zig-zag path. Each red or orange ball
represents a tensor A[l], and the number l on the tensors indicates tensors’ ordering in the MPS. The tensor which is being optimized and carries the label bond is
highlighted in orange color. Ψ̂ satisfies the orthogonal conditions indicated by the arrows.
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of the nth image) is transformed to a single-site state given by a
d-dimensional normalized vector w[n,l] as

w[n,l]
m �

��������
d − 1
m − 1

( )√
cos

θπ

2
pn,l( )[ ]d−m

sin
θπ

2
pn,l( )[ ]m−1

, (1)

where m runs from 1 to d, and θ is a hyper-parameter that
controls the maximum angle. We take d � 2 in this work so each
qubit state is w[n,l] � w[n,l]

1 ↑| 〉 + w[n,l]
2 ↓∣∣∣ 〉. By adjusting θ in Eq. 1

as a hyper parameter, we find that the best accuracy is achieved
for θ � 0.5 without the discrete cosine transformation (DCT)
[75–77] and for θ � 7.8 with DCT. These values are used in the
following numerical experiments (see Supplementary Appendix
B for a discussion on θ). Note that here we use the bold symbols to
represent tensors without writing the components explicitly. In
this way, the nth image that contains L pixels is mapped to a
L-qubit product state

v[n] � ∏L
⊗l�1

w[n,l]. (2)

Besides mapping an image to a product state, there are other
types of quantum image representation [78–81], for example, the
FRQI [78] and 2-D QSNA [79] where the image is encoded in an
entangled state to minimize the needed number of qubits. Here
we choose the product state representation to cater for the MPS
structure.

2.2 Matrix Product State Representation
and Training Algorithm
The second key ingredient concerns theMPS representation and the
training algorithm. TN provides a powerful mathematical tool to
represent the wavefunction as a network of connected tensors. In the
context of quantum many-body physics, TN has been widely used,
for example, to simulate the ground states, the dynamic properties,
and the finite temperature properties of quantum lattice models
[43–45, 55, 56, 82–90]. For the image classification of ten digits, we
expect the short-range correlation between pixels, which makes
using MPS feasible [30]. An evidence for the short-range
correlation among pixels is the superior performance of
convolutional neural network with small convolution kernels.
One may expect the MPS representation to be less efficient when
working with images with long-range correlation (one example may
be the images with fractal patterns).

In our TN machine learning setup, a D-class classifier is a
linear map Ψ̂ which maps a dL-dimensional vector v[n] to a
D-dimensional vector u[n], with D being the number of image
classes in the classification. Its components are Ψ̂b,s1/sL

, where the
index b is the D-dimensional label bond, and the indexes {sl} are
the physical bonds (which will be contracted with the vectorized
images {v[n]}). The prediction of the classification for the nth
image is obtained by contracting the corresponding vectors v[n]

(in Eq. 2) with Ψ̂ as

u[n]b � ∑
s1/sL

Ψ̂
b,s1/sLv

[n]
s1/sL

. (3)

The bth component u[n]b of u[n] gives the prediction of the
probability for the nth image being in the bth class.

Ψ̂ suffers an exponentially scaled parameter complexity as L
grows. To represent Ψ̂ efficiently, we take the MPS ansatz
(Figure 1). MPS is one of the simplest 1D TN structure, which
is convenient and efficient [28, 29]. The specific form of MPS
we use is

Ψ̂b,s1/sL
�∑

a1/aL−1
A[1]

s1 ,a1
A[2]

s2 ,a1 ,a2
/A[l]

sl ,b,al−1 ,al/A[L]
sL ,aL−1 .

(4)

The elements of each tensor {A[l]} are initialized as random
numbers generated from the normal distribution N (0, 1). The
indexes {a}, which are called the virtual bonds, will be summed
over. The dimension χ of the virtual bonds determines the
maximal entanglement that can be carried by the MPS. With
the MPS ansatz, the total number of parameters in Ψ̂ increases
only linearly with L, i.e., O (dχ2L). We take χ � 32 for the
numerical simulations in this work.

To train the MPS Ψ̂, we optimize the tensors {A[l]} one by one
to minimize the cost function–the negative logarithmic likelihood
(NLL) [29, 91].

C � − 1
|Γ|∑n∈Γln |u

[n]
bn
|2

Z
. (5)

For supervised learning task, bn in the u[n]bn
denotes the known

correct classification of the nth image in the training set. The
predicted probability of the nth image being correctly classified as

the bn-th class is given by
|u[n]bn

|2
Z with Z the norm of the MPS. In the

practical simulation, we utilize the canonical form of MPS [29]
and keep Z � 1 in the whole updating process. Γ denotes the total
number of the training samples, and the summation goes through
the training set. There is no upper bound for the cost function and
the lower bound is 0 when the predictions of all training samples
perfectly have u[n]b � 1 for b � bn and u[n]b � 0 for b ≠ bn.

We use the gradient descent algorithm [28] to optimize {A[l]}
one by one, sweeping back and forth along the MPS until the cost
function converges. The label b is always at the tensor that we
wish to optimize. Let’s take update forward as an example, to
update A[l]

sl bal−1al , we first decompose it using singular value
decomposition (SVD):

A[l]
sl bal−1al � ∑

alal′

Ual−1sl ,alSal ,al′Va
l′ ,alb

. (6)

We then replace A[l] with U and A[l+1] with SVA[l+1]. Notice
that the label b is passed to A[l+1] in this step. After that, we
perform the gradient descent algorithm andA[l] is updated byA[l]

− αzC/zA[l] with other tensors being fixed. The step of the
gradient descent (learning rate) is controlled by α, which is a
small empirical parameter. Having updated A[l], we proceed
forward to update A[l+1] using the same method and pass the
label b toA[l+2], so on and so forth. After a round of optimization,
all the tensors are updated once, and the label b is back on the
tensor we start at.
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2.3 Entanglement of Matrix Product State
In quantum information science, entanglement measures the
quantum version of correlation that characterizes how
two subsystems are correlated. The MPS classifier can be
regarded as a many-qubit quantum state. Given a trained
classifier Ψ̂, to capture its entanglement, we introduce two
entanglement measures: single-site entanglement entropy
(SEE) and bipartite entanglement entropy (BEE). The reduced
density matrix ρ̂[l] of the lth site is obtained by contracting all
indexes except sl and sl′,

ρ̂[l]
sl s′l

� ∑
b,s1/sl−1sl+1/sL

Ψ̂
b, s1/sl/sL

Ψ̂
b,s1/s′

l
/sL

. (7)

Note ρ ̂[l] is non-negative. When calculating ρ ̂[l] with an MPS,
the leading computational complexity scales linearly with the
length of the MPS (O(L)). After normalizing ρ ̂[l] by
ρ ̂[l]←ρ ̂[l]/Trρ̂[l], the SEE can be defined as

S[l]SEE � −Trρ̂[l] lnρ ̂[l]. (8)

SEE captures the entanglement entropy between one qubit
located at site l and the rest of the system.

The BEE is defined as the entanglement entropy between the
first l qubits of theMPS and the rest, which can be obtained by the
reduced density matrix after tracing over the first l sites of the
MPS. Another way to compute BEE is by implementing SVD,
where BEE is calculated from the singular values (Schmidt
numbers). By grouping the indexes b, s1/sl and sl+1/sL, we
obtain the following SVD decomposition on the virtual bond:

Ψ̂ b,s1/sl sl+1/sL � ∑
αα′

Xb,s1/sl ,αλ
[l]
αα′
Yα′ ,sl+1/sL, (9)

where the singular values are given by the positive-definite
diagonal matrix λ[l], and X and Y satisfy the orthogonal
conditions XXT � YTY � I. Normalizing λ[l] by λ[l] ←λ[l]/Tr λ
[l], BEE can be expressed as

S[l]BEE � −∑
α

(λ[l]αα)
2
ln(λ[l]αα)

2
. (10)

In the context of MPS, one can implement the gauge
transformations to bring the MPS to the center-orthogonal
form [47]. The details of the central-orthogonal form of the
MPS classifier for supervised machine learning can be found
in Ref. [28]. Under the center-orthogonal form, λ[l] can be
obtained by the SVD of the tensor in the center A[l] as
A[l]
slal−1al � ∑αα′X slal−1 ,αλ

[l]
αα′
Yα′ ,al . The leading computational cost

(of the center-orthogonalization and SVD) scales linearly with the
MPS size (O(L)).

It is worthy to notice that SVD is also widely used in the
classical image processing algorithms [92–94], where the singular
values are the global properties of the images. In our algorithm,
the SVD is performed on the virtual bond connecting different
sites. In this way, the singular values for a given cut reflect the
local properties (importance of features), which makes it different
from the classical case.

3 FEATURE EXTRACTION BASED ON
ENTANGLEMENT

3.1 Entanglement in Image Classification
Taking the “1-7” binary classifier as an example, the entanglement
properties of the MPS classifier are shown in Figure 2 (we include
more data on binary classifiers in Supplementary Appendix D).
The size and darkness of the nodes illustrate the strength of the
SEE of each site, and the thickness of the bonds shows the
strength of the BEE obtained by cutting the MPS into two pieces
at the bonds. An important part of our proposal is the way of
arranging the features in a 1D path to contract with the MPS.
For the images, the features (pixels) are originally placed as a 2D
array, while the tensors in an MPS are connected as a 1D
network. Therefore, a 1D path should be chosen so that each
feature (after implementing the feature map) is contracted with
one of the tensors in the MPS. Figure 2 illustrates three different
paths we use in this work.

Figure 2A shows a 1D path that connects the neighboring rows
in 2D in a head-to-tail manner, which we dub as the “line-by-line”
path. Note the label is put in the middle of the MPS. By naked eyes,
one can see that the SEE forms a shape of overlapped “1” and “7”.
This implies that the sites with larger SEE generally form the shape of
the digits to be classified.Meanwhile, the sites close to the edge of the
image exhibit almost vanishing SEE. Besides, by following the 1D
path, the BEE increases when going from either end of the MPS to
the middle. These observations are consistent with the fact that the
pixels near the edges of the images contain almost no information.
Our results suggest that the importance of features can be
characterized by the entanglement properties.

In Figure 2B, we first transform the images to the frequency
components using discrete cosine transformation (DCT) [75–77],
which is a “real-number” version of the Fourier transformation
(see more details of DCT in Supplementary Appendix C). The
frequency components are the coefficients of the image’s
frequency modes in the horizontal and vertical directions. The
frequency increases when going from the left-top to the right-
bottom corner of the 2D array. This allows a natural choice of the
1D path from left-top to the right-bottom (Figure 2B), which we
call the “zig-zag” path. In this case, the label bond is put on the
first tensor of the MPS. The frequency components are then
mapped to vectors by the feature map and subsequently
contracted with the MPS to predict the classification.

We still take the “1–7” binary classifier as an example to
investigate the SEE and BEE of the MPS. The sites with larger SEE
appear mainly at the left-top corner, which shows that the
relatively highly entangled qubits correspond to the low-
frequency components. This agrees with the well-known
knowledge in computer vision that the main information for
images is usually encoded in the low-frequency data. It further
verifies our claim that the importance of features can be
characterized by the entanglement properties. Compared to
the “line-by-line” path, the number of the highly entangled
sites is much less than that in Figure 2A, which shows that
images will become much sparser after DCT.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org August 2021 | Volume 7 | Article 7160444

Liu et al. Entanglement-Based Feature Extraction

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Fig. 2 (c) c MPS, where the real-space pixels are arranged in
such a way that those with larger SEE are closer to the center of
the MPS (the label is at the center). Only 100 features that possess
the largest SEE are retained, and the rest are discarded. In the
following, we will propose a feature extraction scheme by using
such an optimized path.

3.2 Feature Extraction Based on
Entanglement
If the lth qubit in the MPS gives zero SEE, it means there is no
entanglement between this qubit and the other qubits (including
the label). In this case, the classification will not be affected no
matter how the value of the lth feature changes. In other words,
the features corresponding to the qubits with vanishing SEE are
irrelevant to the prediction of the classification.

Based on this observation, we propose the following feature
extraction algorithm, which extract the important features from
the samples according to the entanglement properties of theMPS.
With a MPS trained by minimizing the cost function (Eq. 5), we
first optimize the path of the MPS according to SEE so that the
important features (with larger SEE) are arranged in the middle,
closer to the label index (Figure 2C). Using the optimized path,
we then re-initialized and train a new MPS, whose SEE would
become more concentrated when going from the middle to the
ends. We use the new SEE for the next path optimization. This

process is repeated until SEE is sufficiently concentrated. We then
calculate the BEE and keep only ~L features with the largest BEE in
the middle of MPS in the optimized path (Figure 3). Finally, we
can train the MPS classifier using only the retained features. The
main steps of our algorithm are listed in Figure 4.

To explain how this algorithm works, let us give a simple
example with a three-qubit quantum state |ψ〉 � |↑↑↓〉 + |↓↑↑〉,
where |↑〉 and |↓〉 stand for the spin-up and spin-down states,
respectively. We assume that the first spin carries the label
information of a binary classification. Since the second spin of
|ψ〉 can be factored out as a direct product, ρ̂[2] is a pure state,
and the SEE of the second spin is zero. Therefore, discarding the
feature corresponding to the second spin will not affect the
classification.

Meanwhile, path optimization will lead to a more efficient
MPS representation of the classifier. By writing the wave function
into a three-site MPS, one can check that the two virtual bonds
are both two-dimensional. The total number of parameters of this
MPS is 22 + 23 + 22 � 16. However, if we define the MPS after
moving the second qubit to either end of the chain (say swapping
it with the third qubit), the wave function becomes |ψ〉 � |↑↓↑〉 +
|↓↑↑〉 � (|↑↓〉 + |↓↑〉) ⊗|↑〉. Now the virtual bonds of the MPS are
two- and one-dimensional respectively, and the total number of
parameters is reduced to 22 + 22 + 2 � 10.

We test the feature extraction algorithm in the ten-class
MPS classifier of the images in the MNIST dataset. We

FIGURE 2 | The entanglement properties of the “1–7” binary MPS classifier using different paths (which show how the MPS covers the 2D images). The size and
darkness of nodes represent the SEE’s strength on each site (sites with vanishing SEE are represented by small black dots). The thickness of the bonds represents the
strength of the BEE by cutting the MPS at the bonds. (A) demonstrates the SEE and BEE of the MPS trained by images (without DCT). In this case, we use the “line-by-
line” path, and the label is at the middle site. (B) shows the SEE and BEE of the MPS trained by the frequency components after the DCT, where we use the “zig-
zag” path. In this case, we put the label on the first tensor of the MPS. (C) gives the results trained by images (without DCT) using an optimized path where the sites with
larger SEE are arranged closer to the center of the MPS. We only keep the 100 pixels with the largest SEE, and the label is put on the middle site of the MPS.

FIGURE 3 | Illustration of the feature extraction by cutting the “tails” of the MPS. The size and darkness of nodes represent SEE’s strength at each site, and the
thickness of bonds represent the BEE’s strength by cutting the MPS at the bonds. After optimizing the path based on the SEE, the MPS is cut and only ~L features with
largest BEE are retained. The qubits on the cut tails possess small entanglement with the bulk of the MPS, which can be safely discarded.
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randomly selected one thousand images from each class as the
training set. Figure 5A shows the SEE of the trained MPS
(trained by images without DCT) with and without optimizing
the path according to SEE. Without path optimization, the
features with large SEE are distributed almost over the whole
MPS; while using path optimization, the larger values of the
SEE are much more concentrated to the middle. Note we
optimize the path according to the SEE of the previously
trained MPS, and then we train a new MPS with the
updated path, whose SEE would decrease in general but
fluctuate when going from the middle to the ends. The
magnitude of the fluctuations converges after optimizing the
path for O (1) times, and the features with large SEE will be
well concentrated to the middle. Figure 5B shows the SEE of
the MPS trained by the frequency components of the images
(after DCT) with and without the path optimization. The
number of features with large SEE becomes much smaller
than that from the MPS trained without DCT. This indicates
we can achieve a similar accuracy with much less features when
using DCT.

Figure 5C shows the BEE of the MPS’s. It can be seen that
the tails with small BEE become longer by either
implementing DCT or optimizing the path, which implies
that more features can be discarded safely. Figure 5D shows
the ten-class classification accuracy for the test set where ~L is
the number of retained features. We observe that the testing
accuracies in the four cases are almost identical as long as we

keep sufficient features (~L> 400 approximately). With
relatively small numbers of the extracted features, higher
accuracy can be achieved using DCT or path optimization.
For instance, with only 20 features, the accuracy is 82% by
using DCT and the optimized path, while the accuracy is 56
and 76% with only the path optimization and DCT,
respectively (Figure 5D). When keeping ~L � L/10, the
decrease of accuracy is only O (10–3) by using DCT and
path optimization.

We also apply our feature extraction algorithm to the binary
MPS classifiers of the images in Fashion-MNIST dataset [95] (see
Supplementary Appendix E for details), where we come to the
similar observations. This show the algorithm is universal and
capable of handling the more complicated dataset.

4 SUMMARY

In this work, we implement numerical experiments with MPS for
image classification and explicitly show how entanglement
properties of MPS can be used to characterize the importance
of features. A novel entanglement-based feature extraction
algorithm is proposed by discarding the features that
correspond to the less entangled qubits of the MPS. We test
our proposal on the MNIST dataset of handwritten digits and
show that high accuracy can be achieved with a small number of
retained features using DCT and path optimization. Our results
show that for the ten-class classifiers of the MNIST dataset, the
number of features can be safely lowered to less than 1/10 of the
original number.

In the literature, the feature extraction of images is typically
achieved by image segmentation and matrix transformation
(applying various filters) [96–99]. The spatial or transformed
features are directly used as reference to decide which features are
more important. Our algorithm does not rely on the
segmentation, and focus on the correlation between features.

Our work gives a convincing startup of building connections
between the entanglement properties (SEE/BEE of the MPS) and
machine learning tasks. Interpretability is a challenging issue in
machine learning [66–73], which concerns the interpretations of
how machine learning models work, how to design the models,
how information flows during the processing, and so on. One
important issue of interpretability is to characterize the
importance of features, which will assist in explaining the
main factors that affect the results and implementing feature
extractions, to name but a few. In the literature, somemethods are
proposed to improve the intepretability of machine learning
[100–105], although there still exist various limitations. Our
work explicitly shows how entanglement properties of MPS
can be used to characterize the importance of features.
Therefore, our work can be regarded as a tensor network
version of sensitivity analysis [106], which may provide an
alternative to other interpretability methods, such as the
influence functions and Kernel method, etc. Our proposal can
also be applied to the TN’s with more sophisticated architecture,
such as projected entangled pair states [43, 57, 107], for efficient
machine learning.

FIGURE 4 | The flowchart of the feature extraction algorithm.
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