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The coronavirus disease 2019 (COVID-19) pandemic is wreaking havoc in healthcare
systems worldwide. COVID-19 was reported for the first time inWuhan (China) and the first
case in Ecuador was confirmed on February 27, 2020. Several determinants are taken into
consideration for the establishment of asymptomatic or critical illness, and are necessary to
predict the dynamics and behavior of a pandemic. We generated a Susceptible, Infectious,
and/or Recovered model and reflected upon the COVID-19 pandemic in Ecuador. For the
entire Ecuadorian population, we estimated that the reproduction number (R0) was 2.2,
with 88% susceptible/infected individuals. To stop a national epidemic, a quarantine for
3–4months is required, and when 55% of the population has been immunized (equivalent
to 110 days since the first report of a COVID-19 case), a real decrease of new cases will be
observed. The effectiveness of quarantine should be analyzed retrospectively, and not as a
result of contemporary control of the COVID-19 epidemic.
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1. INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic that is wreaking havoc in healthcare systems
worldwide is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Several phylogenetic studies have determined the origin of this zoonotic virus and, simultaneously,
the potential reservoirs and amplifying species (especially mammals) [1–3].

The first report of SARS-CoV-2 infection was in December 2019 in Wuhan (Hubei Province,
China). Worldwide spread of SARS-CoV-2 was inevitable due to its easy dissemination (as droplets),
apparently low mortality, and high incidence of asymptomatic cases (≥15.8% of infected people)
[1–5].

In <3 months, 60% of countries reported COVID-19 cases, particularly in Europe (e.g., Italy,
Spain). Then, SARS-CoV-2 infection was documented in North America and, one week later, in
Brazil, Ecuador, and Chile.

For COVID-19, lethality has been estimated to be 4–6%, mortality to be 1–1.5%, and severe illness
to occur in ≥4.7% of diagnosed cases. The recovery time has been estimated to range from 8 to
11.5 days, but it is related to multiple factors [6–8].

TheMinistry of Public Health (MSP) of Ecuador reported the first case of COVID-19 on February
27, 2020. It was an Ecuadorian woman who returned from Spain to Guayaquil on a commercial flight
and had a welcoming party. Then, other cases at the northern (Tulcan) and southern (Machala)
borders appeared (arising potentially from Colombia and Peru, respectively) [8]. By the beginning of
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June, according to official reports, there were ≥43,120 confirmed
cases, with a higher prevalence in people aged 21–60 years,
lethality of 4–7%, and a mortality rate (<1%) [8, 9].

Mathematical models such as the Susceptible, Infectious, and/
or Recovered (SIR) model are used to predict different scenarios
related to epidemiologic factors and possible outcomes to assess
epidemic spread. The reproduction number (R0) is used to
estimate the capacity of viral transmission from one person to
another. The effective reproduction number (Re or Rt) refers to
the number of infected people in a specific time interval based on
the R0. The susceptible fraction (Fso) takes into account the
percentage of infected people that might exist in an epidemic.
These indices show how a population and a virus are related to
make predictions and consider the consequences at a given
moment [8, 10, 11].

We aimed to generate SIR models based on data provided by
the Ecuadorian MSP to estimate R0, Rt, Fso, time in quarantine,
and the required percentage of immunized people to consider a
reduction in the total incidence of COVID-19 in Ecuador. This
strategy would allow the creation of a new SIR model readily
without the need to have a large volume of regional data or
national data. The possibility of developing retrospective and
predictive models in this or other conditions based on an R0
calculation (observed here as a dynamic value) and the generation
of a dynamic Rt value that will serve as a reference to make
decisions in real-time, along with another type of model for
quarantine and immunization, would be very helpful.

2. METHODOLOGY

2.1. Data Source
The data used for these models were from daily reports produced
by the MSP. The data comprised of cumulative cases, new cases,
excluded cases, deceased cases, cases who recovered from
COVID-19, number of testing samples, and samples already
collected but waiting to be processed from day-1 to day 30 of
the epidemic (https://www.gestionderiesgos.gob.ec/informes-de-
situacion-covid-19-desde-el-13-de-marzo-del-2020/) [9]. Values
were taken from day 1 to day 30 of the epidemic considering the
range with the highest reliability of data.

The SIR model, predictions/estimations, and tabulation data
were processed using Excel

™
within Office

™
v16.37 (Microsoft,

Redmond, WA, United States). Model parameters were verified
using Vensim

™
v8.0.9 (Salisbury, United Kingdom) and

RStudio
™

v4.0 (R Foundation for Statistical Computing,
Vienna, Austria). Graphs were generated using Prism

™
v8.4.2

(GraphPad, San Diego, CA, United States).

2.2. Estimated Infection Rate for the
COVID-19 Epidemic in Ecuador
We used the parameters related to the number of individuals
infected per day, the trend of the epidemic, mean number of
samples processed, and samples waiting to be processed to
determine the percentage of “true” work carried out by the
MSP. Then, we compared the number of daily infected cases

and estimated the rate of increase (cases/day). This was done
using Eq. 1, in which the numerator is the number of reported
cases in a final period of time and the denominator is the number
of reported cases in an initial time [12, 13].

rate of increase[cases
day

] � Infected t2
Infected t1

(1)

contagion rate � (1 − rate of increase)p100% (2)

The result using Eq. 1 revealed whether the number of cases
increased or not from 1 day to another, and also predicted the
number of new cases for the next day. Thus, it also estimated the
daily rate of contagion (Eq. 2), and the percentage of contagion in
a certain period, based on the rate of increase. Both rates enabled
the observation of dynamic behavior with R0 and Rt.

2.3. Calculation of the Minimum Number of
Cases Required to Generate the COVID-19
Epidemic in Ecuador
A mathematical model based on sigmoid curves was applied to
estimate the minimum number of cases required to generate an
epidemic (“community infection”). To calculate the constants for
the equation, two methods were employed. First, Eq. 3 (K1) was
obtained from the curve for the number of positive case reported
by the MSP using logarithmic regression, where t is the time of
infection, and I is the number of people infected in time t. Second,
Eq. 4 (K2) was considered as a differential logarithm regarding
time, where Ti is the initial infection time, Tf is the final infection,
If denotes finally-infected individuals and Ii denotes initially-
infected people in an estimated period of time [14].

K1 � ∑ Ln(t) − Ln(I) − ∑ Ln(t)p∑ Lb(I)
n

∑ (Ln(t))2 − ∑ (Ln(t))2
n

(3)

K2 � Ln(If ) − Ln(Ii)
Tf − Ti

(4)

For K1 all the study data was used and in K2 data were from
shorter ranges. Then, K2 provides daily evolution while K1
provides a general view of the epidemic. To calculate It (Eq.
5) (the number of infections over time in an epidemic), Ic was the
number of infections present when the epidemic started. Based on
the results, K1 (Eq. 3) was 0.1972, and K2 (Eq. 4) was 0.2386.

It � [ 1
1 + Ice−kt

]Ic2 (5)

2.4. Duration of Quarantine
To determine the duration of quarantine and its subsequent
removal, we needed to calculate the recovery time of the
population. Hence, we took the minimum number of cases
after the first recovery of COVID-19, and a hypothetical daily
peak of infections (for our purpose this was considered to be 100
daily cases [15]) and a threshold of cases after this peak for
considering lifting the quarantine. Hence, when this number of
infected cases was reached, with no increase in the last few days,
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quarantine could be lifted. We assumed that all the daily reports
from the MSP detailed the maximum number of cases, so we
would know how long it would take for the recovery of these
infected individuals [14].

It � If
1 + (If − Reo)e− kIft (6)

k � Ln⎡⎣IfIt + 1

If
⎤⎦ (7)

td �
Ln[If

Ir−1
If ]

k
(8)

In Eq. 6, It is the number of recoveries in a period, If is the
maximum number of infections in a particular period, Reo is
the number of people who recovered on day-0 after reaching the
maximum number of infected individuals (usually 1). In Eq. 7, k
is the constant of proportionality. In Eq. 8, td is the duration of
quarantine, Ir is the maximum number of infected people minus
the threshold of 100 infected individuals [15] needed for lifting
the quarantine (Ir � If − 100) and If is the maximum of cases for
each day of quarantine.

2.5. SIR Models for COVID-19
We wished to model and predict the behavior of the COVID-19
epidemic in Ecuador. Hence, we took into account three
mathematical models based on SIR, differed in the use of
different parameters for the equations and the calculation of
R0, where we did not consider the rate of asymptomatic cases (not
a well-established value at the time of analyses).

The first model (Eqs 9–16) was based on the number of
infections generating new cases. The parameters for construction
were the recovery rate (95%), mortality rate (5%), time needed for
recovery (17 days), R0 (taken from international databases [5],
and assuming that 40% of the population was under total
quarantine (that is equivalent to 4% less probability of
becoming infected). N was the total population of Ecuador
and the R0 was the ratio between the number of infected
people and the number of people who recovered and those
who died (Eqs 13, 16) [13, 16–18].

%P � NCoM
IiTDSi

(9)

CoM � IiTDSi
N%P

(10)

Re � Iip(TR
DI

) (11)

M � Iip(TM
DI

) (12)

R0 � CoM

(Re +M) (13)

Rt � CoM(t)
(Re(t) +M(t)) (14)

dRt � R0p( 1

1 + e(So
N))p(SoN)p(e(So

N)) (15)

R0m � ������������
R01pR02pR0nn

√
(16)

Sf (Eq. 17) represents the number of vulnerable individuals, If
(Eq. 23) is the number of infected people, Rf (Eq. 21) is the
number of people who recovered from COVID-19,Mf (Eq. 22) is
the number of people who died; all of these parameters were taken
after a certain period of time. DI represents the duration of illness
in days, TD (Eq. 10) is the percentage of infections (R0), %P
(Eq. 9) is the probability of becoming infected, TR (Eq. 11) is
the percentage of people who recovered, TM (Eq. 12) is
the percentage of individuals who died, and Rt (Eqs 12, 15) is
the R0 that varies through time and the function of infected
people.

The second model (Eqs 17–26) takes into consideration
differential equations from a standard model that were
integrated subsequently with national data where the
percentage of people who recovered (c) (Eq. 17) was 95%,
mortality (μ) (Eq. 22) was 5%, and the time for recovery (TR)
(Eqs 9, 11, 20) was 17 days. To calculate R0 for Ecuador, we
considered standard calculations (Eqs 21, 26). Rt (Eqs 14, 15, 24)
was based on the variation in the percentage of susceptible people
during a particular time, and p (Eq. 17) was the relationship
between the number of people who recovered from COVID-19
and the infection rate [13, 19].

p � c

β
(17)

p � N − Sf

Ln(cN−cR
cSo ) (18)

R0 � β

c
So (19)

Sf � Soe−[N−So
p ] (20)

Rf � ( c

TR
)Ro (21)

Mf � μIi (22)

If � Sf � Ii − Ri −Mi (23)

Rt � Rope(So
N) (24)

dRt � R0p( 1

1 + e(So
N))p(SoN)pe(So

N) (25)

R0m � ������������
R01pR02pR0nn

√
(26)

The third model (Eqs 27–36) was based on the infection rate
calculated with the equation for the rate of increase, so the β value
(Eq. 27) was assigned to it. For the recovery rate (c), it was
considered that 17 days was the minimum time required to
recover, and a 3% mortality percentage (μ) in accordance to
the MSP report [10, 13].

β � 1 − rate (27)

c � 1
recuperation time

(28)

R0 � β(c + μ) (29)

Infection(Con) � βpIipR0p(So − Ii
N

) (30)
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If � So − Con − Re −Mu (31)

Recuperation(Re) � If pc (32)

Dead(Mu) � If pμ (33)

Rt � Rope(So
N) (34)

dRt � R0p( 1

1 + e(So
N))p(SoN)p(e(So

N)) (35)

R0m � ������������
R01pR02pR0nn

√
(36)

2.6 Variation of the SIR Model With Different
Values of R0
Taking into consideration the first proposed SIR model (Eqs
9–16), we generated different R0 values (Eqs 13, 16) and
observed their behavior during a particular time. This strategy
allowed for the ascertainment of how Rt and the epidemic cycle
were related so that we could observe it and identify possible
“bottlenecks”, when the number of susceptible people decreased
(for whatever reason). Simultaneously, we compared the
derivative of Rt (Eq. 15), which allowed us to observe the
maximum number of infections when Rt varied, and worked
to adjust a national R0 [14]. For model validation, we applied a
difference between the curve for infected people (from the MSP
report) and the number of infections generated with the three
SIR models. Then, the curve (of these three models) that best fits
to the real data reported by the MSP, was selected for further
analysis [14].

2.7. Susceptible Factors and the Minimum
Percentage Required for Immunization
Using Rt
For the Rt of each model, we calculated the susceptible factor (Fso)
(Eq. 37). This strategy allowed us to observe the highest percentage
of infections (based on the variation in Rt) to generate a threshold
that estimated the direction of the epidemic and where R0 was
located in Ecuador [10, 19]. With Fso and R0 generated in each
model, we could predict the minimum percentage (%Pi,v) (Eq. 38)
required for immunization (by vaccination or herd immunity) to
stop COVID-19 spread [10, 19].

fSo(t) � 1 − e−Rt (37)

%Pi, v � 1 − 1
R0

(38)

2.8. Vaccination and Immunization
After the derivation of %Pi,v from Eq. 38, we considered the
incorporation of the Rt toward the population (N). Considering
the variation in infection, we could recognize how long it would
take for a vaccination strategy to obtain results and stop infection.
We could also observe the number of immunized individuals and
those who would not be infected during a particular time [10, 18,
20].

Immunizate population(Piz) � Np(1 + ( 1
2Rt2

)) (39)

Infected population(Pif ) � N − Np(1 + ( 1
2Rt2

)) (40)

3. RESULTS

Upon analyses of all the reported data by the MSP, a marked delay
in sample processing was noticed (40% CI � ±0.0035) and an
increase in the number of new daily cases of 28.5% (CI � ±0.00146)
was reported. Hence, the infection curve was delayed in 28.5% of
cases (∼40% of undetermined cases). This observation was
confirmed when the rate of increase per day remained the
average between the number of delayed samples and number of
reported cases. This resulted in 1.20 reported cases per day (CI �
±0.0103). When we analyzed the number of cases with COVID-19
reported by the MSP, there was a 30% delay in confirmatory
diagnose. This problem was most evident at day 33 of the
epidemic when there was 60% delay in confirmatory diagnoses
(Figure 1).

We usedK values (Eqs 3, 4) to determine theminimumnumber
of cases required to generate an epidemic in Ecuador. In our
simulation using K1, five cases were needed for an epidemic in
Ecuador. Also, the model using K2 showed that with six cases, an
exponential communitarian infection was possible (Figure 2), and
that recovery from COVID-19 could take 18 days (CI � ± 0.0945).

While observing the trend in the increase in infected cases, one
key question was how long the quarantine should last until there
were 100 infected cases. We calculated that quarantine should be
lifted after approximately 80–110 days (CI � ±0.2001) because the
maximum number of cases had been reached (Figure 3).

Simultaneously with obtaining results, we generated three SIR
models with variation of some parameters to obtain R0 and
observed which model was the best fit.

When the number of infected people was compared for each
model, model 1 (SIR 1) obtained the closest values to the true
situation. Hence, we chose model 1 to observe the dynamic in
cases once quarantine had been implemented (Figure 4). Using
this model, R0 � 2.2 (CI � −1.644, +2.75). Importantly, with each
model, an R0 value was generated so a different Rt analysis was
undertaken to detect the appearance of a bottleneck in a
susceptible population. We found that, for each model, the R0
was between 1 and 3 (CI � −1.865, +1.974) (Table 1).

Using these values, we calculated the maximum number
of people susceptible to SARS-CoV-2 infection for each R0
value (95.02%, CI � ±1.27). The same calculation showed
that a maximum of 66.67% (CI � ±2.70) of the same
population would need to be immunized to stop the
epidemic (Figure 5).

When quarantine parameters were generated with SIR 1, the
peak of the maximum number of infected individuals would be
reached on day 154 of the epidemic (65 more days than if
quarantine was not applied). The number of new cases would
decrease (64.6%, CI � ±2.35) but not disappear, demonstrating
that when the quarantine time increased, the number of infected
cases was redistributed. This phenomenon was observed when
the different Rt values (generated by a variation in parameters)
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were analyzed (Figure 6) and demonstrated that, for each unit
increase in Rt, the epidemic would increase by 10 days (CI �
±0.295).

To confirm the obtained R0 with SIR 1, we analyzed the
variation in Rt with its derivative, in addition to the variation in

Fsowith regard to Rt. As the bottleneck appeared with Rt, without
considering quarantine, the value of Rt remained in this
bottleneck demonstrating that, in reality, R0 was between 1.5
and 2.5 CI � −1.51, +2.48. When comparing these data with Fso,
we found that the maximum number of cases using this R0 value

FIGURE 1 | Report of the COVID-19 epidemic in Ecuador in January 2020. Section (A) shows the diagnoses of people in Ecuador from 15 February to 23 April
2020 (15 at 55 days of the epidemic) whereby red denotes the number of positive cases, blue denotes the number of negative cases, and black the number of samples.
(B) shows in blue line the increase rate of cases in MSP report, red line represents the possible real number of reported cases (including 30% delay in confirm diagnose).
The model SIR 1 showed the more accurate tendency (orange line).

FIGURE 2 |Model for the minimum number of cases required for an epidemic in Ecuador showing different simulations with various K constants for observing this
number, communitarian infection, and the average time needed for recovery.
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was 80%, with a maximum time of 90 days (when the epidemic
would begin to decrease). However, if quarantine was applied,
this value reached 86% of infected people at a time of 140 days
(Figure 7).

Upon application of all the different data of R0, an issue was
observed when an immunization appeared (even for vaccination
or herd immunity). The most important question is how long
will it take to observe if this strategy is successful. Our model

FIGURE 3 |Model for the number of days required for quarantine and the maximum number of daily cases. It was observed that the number of days necessary to
finish the quarantine remained the same despite the increasing number of cases daily.

FIGURE 4 | Fso and herd-immunity values with R0 for each model. An increase in R0 for each SIR model led to an increase in the infected population and herd
immunization, but neither of these values reached 100% of the population.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org November 2020 | Volume 6 | Article 5715446

Espinosa et al. SIR Model for COVID-19 Pandemic in Ecuador

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


showed that, without quarantine from day-80 to day 100, the
introduction of vaccination, the rebound of immunized
individuals, and a decrease in the number of infected cases
applying quarantine between day 100 to day 120 would result in
the same outcome (Figure 8).

4. DISCUSSION

The model used in our study is not the only model to predict the
behavior of COVID-19. Onemust consider the dynamic of SARS-
CoV-2 transmission, availability of resources, and delay in
diagnosis when choosing the best model. For Ecuador, an
important issue was the large number of people with pending
SARS-CoV-2 tests. This factor, together with asymptomatic
individuals and underreporting of “true” infected people (by
consensus, it is 55%), demonstrated why our model was not
well-fitted with the data reported by the MSP [9, 23].

Although the estimated time needed for a patient to
recover from COVID-19 was 18–20 days, some scholars
have stated it is 8–10 days using SIR models. According to
the MSP, it takes 20 days, which poses problems for
healthcare units in terms of space and resources [5, 23,
24]. Determining this value is a key component in the
prediction based on SIR models because it is based on
local data. Subsequently, extrapolations can be made in the
hope that they are not too far from reality.

In our study, the time for recovery from COVID-19 was
based on a K model and observing how the recovery curve was
adjusted to the true situation. Mistakes can be generated
because of the issues mentioned above as well as from the
reports of patients who have recovered from COVID-19. Even
though this value cannot be observed directly, it can be
estimated through the report of deaths by the MSP and
comparing them with the registry of the National Institute
of Statistics of Ecuador. This comparison resulted in a
difference of ≥20% and has been observed in other studies
too [23–26].

Through an assessment of the first 100 cases of COVID-19, a
marked difference in acceleration and control of the epidemic was
made in Taiwan. The Taiwan government isolated and
quarantined all individuals related to each COVID-19 case,
and tracked all asymptomatic individuals. This strategy
showed that, according to the proposed model, quarantining
the first six cases rapidly and aggressively would have created
a different scenario from that seen presently but, as the author
mentions, the switch from theory to practice is not easy [25].
Another important observation is the rate of increase of cases. At
the national level, the rate of increase was constant (the number of
cases increased in 5–7 days), as has been observed on a global
scale [9, 27]. Hence, locally obtained data were a reflection of

TABLE 1 | R0 values generated with three SIR models showing the maximum
number of people who may be infected (Fso), and herd immunity for
each model.

R0 R0m Fso (%) Herd immunity (%)

R0 Ref. 28 2.1 2.1 87.75 52.3
SIR 1 1.73 2.20 (CI� −1.644, +2.75) 81.73 41.18

3 95.02 66.67
2.1 87.75 52.38

SIR 2 1.76 1.92 82.80 43.18
2.1 (CI� −1.865, +1.974) 87.75 52.38

SIR 3 0.95 1.19 61.33 −5.26
1.5 (CI� −1.042, +1.337) 77.69 33.33

R0m is the average of the R0 value calculated in each model.

FIGURE 5 | SIR1model with modified parameters for quarantine. Different simulations were undertaken for COVID-19, with and without quarantine. The number of
infected individuals decreased but the duration of infectivity was prolonged by >200 days.
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what occurred in the past when SARS-CoV-2 spread in Asia and
Europe [9, 27].

Our model estimated that lifting the quarantine should occur
approximately 2–3 months after the peak of infection has been
reached. In China, after the peak of infection (after 17 days), the
quarantine was lifted during day 13 to day 14. Such lifting is
dependent upon time and the capacity of the health system of a
particular country. In addition, a strict quarantine works not
only by holding back the appearance of new cases, but also

allows the health system to recover and prepare for new cases
[5, 27].

The mortality rate for COVID-19 has been estimated to be
about 3–7%, and results in another problem for SIR models. In
our model, we took a mortality rate of 5% (in other models, it
varies between 3 and 4.5%). However, one must consider other
causes of death unrelated to COVID-19 that can affect a model
indirectly [5, 23, 24, 29]. The increase in R0 determines how
effective the strategies taken by local authorities are. In our study,

FIGURE 6 | SIR1 model comparing the parameters regulated with quarantine. (A) The number of infected people without quarantine (blue) and with quarantine
(red). (B) Simulation of Rt in the SIR1 model varying the parameters with and without quarantine over the duration of the epidemic.

FIGURE 7 | SIR1 model comparing regular parameters with quarantine. In (A) the simulation of Rt is observed in the SIR1 model varying the parameters with and
without quarantine throughout the epidemic duration. (B) shows the number of infections without quarantine (blue) and with quarantine (red).
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R0 � 2.2, which is not too far from the international trend (Ye
et al. estimated the same value of R0, and the World Health
Organization value is between 1.4 and 2.5).

The time of infection is generated based on R0 (which depends
on whether the value increases or decreases). If we compare the
R0 for other diseases caused by viruses of the same family (Middle
East respiratory syndrome-related coronavirus, <1; SARS, 2–4),
this value does not reflect the lethality for each one [5, 23, 27, 30,
31]. Hence, defining R0 is not easy and is mired in controversy.
Each population could “fix” their value and reflect the variation in
parameters of the equation used (β and α) in each SIR model. The
latter could be constructed and calculated in different ways
depending on data reliability. However, the R0 is very
important because from it the minimum number of
immunized people required to stop the epidemic, and the
maximum number of individuals susceptible to infection, can
be calculated [10, 11, 32, 33].

Some problems were identified when the R0 was calculated on
the basis of the total population. However, in reality,
interventions are applied only in specific or priority groups.
We analyzed different R0 values for the COVID-19 epidemic
in Ecuador and, despite an increase in R0, 100% of a population
will not be infected. With the prediction models used for
smallpox prevention, the R0 was 10, but the maximum
percentage of infected individuals in a vulnerable population
was 70% and, upon introduction of a vaccine, any epidemic can
be prevented with a coverage of 60% of the population [6, 16].

Complex and dynamic clinical phenomena occur during
disease development. The immune response, nutritional state,
chronic diseases, or co-infections can interfere (accelerate or

decelerate) epidemic expansion, and are not taken into
account when the R0 is calculated [11]. Hence, Li and
colleagues [11] postulated the interpretation and analyses of
R0 in four categories. Their model explains the rapid
expansion of a disease but with a relatively slow recovery process.

Rt provides a clearer picture of the time of increase of an
epidemic according to the percentage of susceptible people over
time. Initially, the Rt shows an acceleration in the number of
infected individuals, then becomes constant at the end of the
epidemic, and reaches a value of 0, thereby allowing calculation of
an adjusted R0 adapted to constant changes or population
variation over time [33, 34]. A bottleneck has been observed
in the Rt as the number of days of an epidemic increase, and the
R0 is closer to reality because, with fewer people to infect, the true
infective capacity of a virus is observed. However, this scenario
was not entirely accurate in our model (R0 � 1.97). Even though
our R0 is lower than that reported worldwide, some scholars have
calculated an R0 value between 0 and 1. This does not mean that
an epidemic is improving or ending; in some cases, this value
shows a latency period [11, 32, 34, 35]. For a more accurate
adjustment of the R0, we applied Fso based on our obtained Rt
value. As seen in Figure 7, the point where both curves intersect
corresponds to the R0 and simultaneously coincides with the
bottleneck observed in Rt (Figure 5), and we showed a similar
value of R0 to that obtained in previous studies [10, 33].

The minimum number of infected people required to stop an
epidemic has been mentioned [9, 23, 33, 36]. However, this value
must be considered very carefully because these infected
individuals will probably die. Importantly, 60% of the
population should be immunized (based on R0) to stop the

FIGURE 8 |Calculation model to reach herd immunity. (A) is the model without quarantine and shows the time that must pass for herd immunity to occur. (B) is the
model with quarantine and shows the time that must pass for herd immunity to occur.
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COVID-19 epidemic in Ecuador [9, 23, 33, 36]. This concept is
seen more clearly with “collective immunity” or “collective
protection”, which refers to the fact that a group of infected
people who recover will prevent the disease from spreading to the
entire population [21, 22, 37]. By applying this concept to our SIR
models, this collective protection will be reached with 60% of the
infected population but, as stated by Rashid and colleagues, there
are three main problems of assuming this value as real.

The first problem is the heterogeneity of the population
(i.e., the different immune responses that each person presents
to SARS-CoV-2). Hence, even though 60% of the population can
be infected, this does not ensure that people can generate an
immune state that protects the remaining susceptible members of
the population [35, 37].

The second problem refers to the R0 and the criterion of the
equation for %Pi,v. Rashid et al. explained that, because the
population is composed mostly of people at a high risk of
contagion, the R0 is overestimated. Hence, collective
protection does not correspond to the one that has been
calculated. In these cases, one must include in the equation
the efficiency of the country’s vaccination campaigns to
understand how the epidemic can be controlled [20, 35, 37].
This was not applied in the present study because a vaccine for
COVID-19 has not yet been found.

The third problem identified by Rashid et al. is the possible
impact of co-circulation of other pathogens (depends on the
characteristics of each population) during an epidemic. This
could modified SIR models through the calculated R0 with less
or more impact in predictions, and not are fitted to reality.

We evaluated the impact of the quarantine implemented in
Ecuador using two variables: the percentage of people
quarantined (used in the SIR model) and Rt variation (by
the effect of this measure). Quarantine reduces the number
of people on the streets, and decreases the number of SARS-
CoV-2 infections in a particular period [23, 24]. We took as a
reference the percentage of people quarantined as 40%. Other
models have considered 10%, and observed a decrease of 50% in
the number of expected cases that would be observed if no
health strategy was implemented. This 50% reduction does not
mean that the cases will not exist, only that they will be
redistributed over the duration of the epidemic. Hence, the
epidemic would last 300 days due to the quarantine instead of
180–200 days, thereby ensuring that the health system does not
collapse [29, 30]. Although quarantine has been a good strategy
for control of infectious diseases, it is not considered a good
strategy from dynamic and economic viewpoints because
external factors will affect Fso (the maximum number of
susceptible people that can be infected). In our model, Fso
increased by 10% (from 80 to 90%) if quarantine was applied in
40% of the population. This increase occurred because the
longer the quarantine lasts, the greater the probability that the
population will not comply with it. Since quarantine was
applied in Ecuador, the unemployment rate increased from
3.9 (2019) to 4.4% (2020). This increase forced people to take to
the streets in search of work and increased the number of
people exposed to SARS-CoV-2, and, consequently, Fso
increased [24, 34, 38].

We also estimated the number of people with acquired
immunity to SARS-CoV-2 based on the R0. We showed that a
decrease in the number of newly infected cases would be observed
by day 80 to day 100 of the epidemic. Other scholars say that this
value depends on the responsiveness of the local government to
report and identify cases, diagnostic capacity, and the delay in
sample processing [9, 23, 33, 36].

We identified a delay in sample processing in ≥40% of cases,
this parameter has not been reported before. Another value that
can be estimated through the R0 and Fso is the duration of
infection. If 40% of the population were in quarantine, we
estimated that the duration of infection would increase to
15 days, which was also observed by Li et al. and Massed
et al. Both research teams agreed that the duration of
infection and number of immunized individuals should not
be taken into account to estimate the reduction of an epidemic.
A latency period denotes the time when reinfections occur or the
epidemic disappears. Hence, if we know the R0, we could
estimate the percentage of infected people required to stop
the epidemic, which is equivalent to the one during this
latent period. Our model determined it to be 65% but, in
reality, this value will not be observed until it reaches 90% of
infected people and only then will we observe a decrease in the
infection rate [11, 23, 24, 33].

Although SIR models provide accurate data for the number
of patients who have recovered from COVID-19, infected
cases, and exposed patients, they require a large volume of
reliable data. SIR models could be used in countries with
better contingencies and strategies than those in most Latin
American countries. Traditional models are dimensionless in
time (results are not affected whether days or months are
used) so the infection rate will not fit well with dynamic
populations. For our models, we used a specific unit of time
that allowed for the daily adjustment and discreet
visualization of an increase or decrease of the epidemic. In
the context of public health, the use of our model could enable
prompt redistribution of resources according to infection
trends.

A weakness of our models was not providing the percentage
of asymptomatic cases and exposed cases. This led to a
reduction of the power of prediction for infected people
(≥15%). Although this percentage could affect the fit between
the real curve and model curve, this range of variation is
acceptable because the exact proportion of asymptomatic
COVID-19 individuals in Ecuador is not known. A lack of
reliable and updated data was the main limitation of our models.
This resulted from a deficiency in the structure of surveillance
measurements taken, identification of cases, sample-processing
capacity, as well as weakness in recollection, updating, and data
analyses from the MSP during the COVID-19 epidemic. The
MSP is the only entity that possesses full access to the data, and
those data are not open for external analyses or validation. In
addition, the number of reported cases and tests performed
changed dramatically over time without robust justification
from the MSP. Another important limitation was the
assumption of some of the parameters for our models. They
were obtained from countries from the same region with similar
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behavior of SARS-CoV-2 infection/COVID19 so did not affect
our results.

5. CONCLUSIONS

For the entire Ecuadorian population, we estimated that R0 � 2.2, with
88% susceptible/infected individuals. To stop a national epidemic, a
quarantine for 3–4months is required, and when 55% of the
population has been immunized (equivalent to 110 days since the
first report of a COVID-19 case), a real decrease of new cases will be
observed. The effectiveness of quarantine should be analyzed
retrospectively, and not as a result of contemporary control of the
COVID-19 epidemic.
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