'." frontiers

in Applied Mathematics and Statistics

ORIGINAL RESEARCH
published: 14 January 2020
doi: 10.3389/fams.2019.00067

OPEN ACCESS

Edited by:
Yiming Ying,
University at Albany, United States

Reviewed by:

Shao-Bo Lin,

Xi’an Jiaotong University (XJTU),
China

Sijia Liu,

Mayo Clinic, United States
*Correspondence:

Teja Kanchinadam
tkanchin@amfam.com

T These authors have contributed
equally to this work

Specialty section:

This article was submitted to
Mathematics of Computation and
Data Science,

a section of the journal

Frontiers in Applied Mathematics and
Statistics

Received: 09 August 2019
Accepted: 16 December 2019
Published: 14 January 2020

Citation:

Gupta S, Kanchinadam T, Conathan D
and Fung G (2020) Task-Optimized
Word Embeddings for Text
Classification Representations.

Front. Appl. Math. Stat. 5:67.

doi: 10.3389/fams.2019.00067

Check for
updates

Task-Optimized Word Embeddings
for Text Classification
Representations

Sukrat Gupta?, Teja Kanchinadam™?, Devin Conathan and Glenn Fung

Machine Learning Research Group, America Family Insurance, Madison, WI, United States

Word embeddings have introduced a compact and efficient way of representing text for
further downstream natural language processing (NLP) tasks. Most word embedding
algorithms are optimized at the word level. However, many NLP applications require
text representations of groups of words, like sentences or paragraphs. In this paper,
we propose a supervised algorithm that produces a task-optimized weighted average of
word embeddings for a given task. Our proposed text embedding algorithm combines
the compactness and expressiveness of the word-embedding representations with the
word-level insights of a BoW-type model, where weights correspond to actual words.
Numerical experiments across different domains show the competence of our algorithm.

Keywords: NLP (national language processing), word embedding, text classification, SVM—support vector
machine, text representation models

1. INTRODUCTION

Word embeddings, or a learned mapping from a vocabulary to a vector space, are essential
tools for state-of-the-art Natural Language Processing (NLP) techniques. Dense word vectors, like
Word2Vec [1] and GLoVE [2], are compact representations of a word’s semantic meaning, as
demonstrated in analogy tasks [3] and part-of-speech tagging [4].

Most downstream tasks, like sentiment analysis and information retrieval (IR), are used to
analyze groups of words, like sentences or paragraphs. For this paper, we refer to this more general
embedding as a “text embedding.”

In this paper we propose a supervised algorithm that produces embeddings at the sentence-level
that consist on an weighted average of an available pre-trained word-level embedding. The resulting
sentence-level embedding is optimized for the corresponding supervised learning task. The weights
that the proposed algorithm produces can be use to estimate the importance of the words with
respect to the supervised task. For example, when classifying movie reviews into one of two classes:
action movies or romantic movies, words like “action,” “romance,” “love,” and “blood,” will get
precedence over words, like “movie,” “i,” and “theater.” This leads to the shifting of the text-level
vector toward words with larger weights, as can be seen in Figure 1.

When we use an unweighted averaged word embedding (UAEm) [5] for representing the two
reviews, we see that all the words get the same importance, due to which the reviews—“I like
action movies” and “I prefer romance flicks”—end up close to each other in the vector space.
Our algorithm, on the other hand, identifies “romance” and “action” as two important words
in the vocabulary for the supervised task, and assigns weights with high absolute value to these
words. This leads to shifting of the representation of the two reviews toward their respective
important words in the vector space, increasing the distance between them. This indicates that,
for the task of differentiating an action movie review from a romantic movie review, our algorithm

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2019.00067
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2019.00067&domain=pdf&date_stamp=2020-01-14
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tkanchin@amfam.com
https://doi.org/10.3389/fams.2019.00067
https://www.frontiersin.org/articles/10.3389/fams.2019.00067/full
http://loop.frontiersin.org/people/757187/overview
http://loop.frontiersin.org/people/876971/overview
http://loop.frontiersin.org/people/671433/overview

Gupta et al.

Task-Optimized Word Embeddings

| romance
L]

d /’Iike

action U &1 ® prefer
o -

flicks® @
movies

® UAEm for “I prefer romance flicks”

® UAEm for “I like action movies”

< Distance between two embeddings

| romance
[]

/ P

/ S/ ,’hke

i /- ® prefer
action - pre
°--¢

flicks® @
movies

® OpEm for “I prefer romance flicks”

® OptEm for “I like action movies”

< Distance between two embeddings

for OptEm representation of the text.

FIGURE 1 | Unweighted (UAEm) (left) and Optimal embeddings (OptEm) (right) of two movie reviews in feature space. Distance between the two reviews increases

produces a representation at the review level more adequate for
discriminating between the two kinds of reviews.

Our algorithm has many advantages over simpler text
embedding approaches, like bag-of-words (BoW) and the
averaged word-embedding schemes discussed in section 2. In
section 4, we show results from experiments on different datasets.
In general, we observed that our algorithm is competitive with
other methods. Unlike the simpler algorithms, our approach
finds a task-specific representation. While BoW and some
weighting schemes, like tf-idf, rely only on word frequencies
to determine word importance, our algorithm computes how
important the word is to a specific task. We believe that for
some applications, this task-specific representation is important
for performance; one would expect the importance of words to
be very different whether you are trying to do topic modeling or
sentiment analysis.

It is important to note that other deep-learning-based
approaches for text classification also implicitly optimize the
text-level representation from word-level embedding in the top
layers of the neural network. However, in order to train such
models large datasets are needed. Our empirical results show
that our proposed representation is in general competitive with
traditional deep learning based text classification approaches and
outperforms them when the training data is relatively small.

Additionally, by generating importance weights to each one
of the words in the vocabulary, our algorithm yields a more
interpretable result than looking at the weights corresponding
to the word-embedding dimensions that have no human-
interpretable meaning. Effectively, our text embedding algorithm
combines the compactness and expressiveness of the word-
embedding representations with the human-interpretability of
a BoW-type model.

Furthermore, in contrast with some deep-learning-based
approaches, our approach does not impose constraints or require

special processing (trimming, padding) with respect to the length
of the sentence or text to be classified. In summary, we can
summarize the contributions of the paper as follows:

e Our algorithm provides a task optimized text embedding from
word level embeddings.

e Our algorithm outperforms other more complex algorithms
when training data is relatively small in size.

e Our algorithm can be implemented by leveraging existing
libraries in a trivial way as it only requires access to a SVM
implementation.

e Our resulting task specific text embedding are as compact as
the original word level embedding while providing word level
insights similar to a BOW type model.

The rest of the paper is organized as follows: in section 2,
we discuss related work. Later, in section 3, we present a
detailed explanation and mathematical justification to support
our proposed algorithm. In section 4, we present and described
our proposed algorithm.

2. RELATED WORK

Various representation techniques for text have been introduced
over the course of time. In the recent years, none of these
representations have been as popular as the word embeddings,
such as Word2Vec [1] and GLoVE [2], that took contextual usage
of words into consideration. This has led to very robust word and
text representations.

Text embedding has been a more challenging problem over
word embeddings due to the variance of phrases, sentences,
and text. Le and Mikolov [6] developed a method to generate
the embeddings that outperforms the traditional bag-of-words
approach [7]. More recently, deeper neural architectures have

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

been developed to generate these embeddings and to perform text
classification tasks [8] and some of these architectures involve
sequential information of text, such as LSTMs [9], BERT [10], and
XLNET [11]. Furthermore, recently developed attention models
can also provide insights about word importance, however they
require large amounts of training data.

Methods have been developed that use word embeddings to
generate text embeddings without having to train on whole texts.
These methods are less costly than the ones that train directly on
whole text, and can be implemented faster.

Unweighted average word embedding [5] generated text
embeddings by computing average of the embeddings of all the
words occurring in the text. This is one of the most popular
methods of computing text embeddings from trained word
embeddings, and, though simple, has been known to outperform
the more complex text embedding models especially in out-of-
domain scenarios. Arora et al. [12] provided a simpler method
to enhance the performance of text embedding generated from
simple averaged embedding by the application of PCA.

The unsupervised text embedding methods face the problem
of importance-allocation of words while computing the
embedding. This is important, as word importance determines
how biased the text embedding needs to be toward the more
informative words. DeBoom et al. [13] introduced a method
that would assign importance to the words based on their tf-idf
scores in the text.

Our method generates weights based on the importance of
the words perceived through a supervised approach. We use
classifiers to determine the weights of the words based on their
importance captured through the procedure. The advantage of
this method over other methods is that we keep the simplicity
of Wieting’s algorithm [5], while incorporating the semantically
agreeable weights for the words.

3. OPTIMAL WORD EMBEDDINGS

A sentence, paragraph, or document can be represented using a
given word-level embedding (wle) as follows:

k
A= Z(Sij)‘jvj (1)
=1

where,

e A; € R"is a vectorial representation or embedding at the
sentence, text or document level (we will refer it as tle in rest
of the paper) of ith sample;

o we will assume that A; is the ith row of a matrix A € R"™*"
containing a collection of m documents, k is the number of
words in the wle corpus V;

e 1j € R is a weighting factor associated with the jth word
vj € V. Note that for the widely used averaged tle (text2vec)
representation [5], Aj = 1, Vj;

e §;j is a normalized occurrence count. It is the number of
times jth word appears in the document i divided by the total
number of words in the document i.

Our proposed algorithm assumes that we have a supervised
classification problem for which we want to find an
optimal representation at the document (text) level from
the word embeddings.

More concretely, we consider the problem of classifying m
points in the n-dimensional real space R", represented by the
m X n matrix A, according to membership of each point A; in the
classes +1 or —1 as specified by a given m x m diagonal matrix D
with ones or minus ones along its diagonal.

In general, this linear classification problem can formulated
as follows:

min cL(y) + R(w)

(W,)/,)/ZO) (2)
st. D(Aw —ey)+y > e

where,

e € R™*1 is a column of ones;

y € R™*1 g a slack vector;

(w, y) € RUHDX1 represents the separating hyperplane.

L is a loss function that is used to minimize the
misclassification error.

R is a regularization function used to improve generalization.
e ¢ is a constant that controls the trade-off between error and
generalization.

Note that, if L(.)=||(.)+]I5 and R()=]|.||5, then Equation (2)
corresponds to an SVM formulation [14]. The corresponding
unconstrained convex optimization problem is given as:

mincl(e — D(Aw = ey))+ 13 + Iwll3 (3)

which we will denote by
(w,¥) = SVM(A, D, ¢) 4)

From (1), we can rewrite A as:

k
A Z;{:l S1jAjvj
A2 Z‘: 52‘)\'1/'
A= |2 j 1- j iV 5)
L
Am Zj:l Smjhjvj
That is,
A= AAV (6)

where A € R"™*K; is a matrix of occurrences count with dij in the
(i,j) position. A = diag((Ay,...,Ar)) € Rk*k and V e RF*" js
the matrix whose rows are all the word2vec vectors considered in
the word2vec corpus or dictionary.

From (3) and (6),

g;gc||(e—D((AAV)w— ey)+ 13 + Iwl3 ?)
where A = (A1,...,Ap).

Formulation (7) is a biconvex optimization problem, which
can be solved using alternate optimization [15]. By solving this

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

problem, not only do we obtain an SVM-type classifier, but also
learn the optimal importance weights for each word in our corpus
(A1,...,Ak) which can be used to interpret classification results
for the specific tasks at hand. Though we could have restricted
the X; to be positive, we choose to leave them unconstrained in
order to make our algorithm more scalable and computationally
efficient. Another interesting consideration would be to add
a relative importance constrained on addition to the non-
negativity bounds of the form:

MAA+...+r =1 (8)

but again, we choose not to for computationally efficiency. We
will explore this option in the future.
In (7), if we fix A to a constant A, we have:

A= AAV (9)

We can obtain the corresponding optimal solution for (w, y) by
solving (wx, yx) = SVM(A, D, ¢).
On the other hand, if we fix (w, y) = (#, /), we get

Aw = (AAV)w = (AW)A (10)

where W € Rkxk = diag(Vw). y ;
Similarly, from (7) and (10) and making M = AW, we have

minyj, cli(e = DUIA — ey e I3 + 113)y
= min, , cll(e — DA — e))+ |2
since w is a constant.

We can obtain an approximate optimal (X,y) by solving
(A*,y*) = SVM(M, D, c). Note that this solution will consider
a regularization term for A.

We are ready now to describe our proposed alternate
optimization (AO) algorithm to solve formulation (7).

One of the advantages of the algorithm is that it can
be easily implemented by using existing open-source SVM
libraries, like the ones included in scikit-learn [16] or
a more recent GPU-based fast SVM implementation like
ThunderSVM [17].

The optimal text embedding algorithm, then, inherits the
convergence properties and characteristics of the AO problems
[15]. Tt is important to note that the set of possible solutions
to which Algorithm 1 can converge can include certain type of
saddle points (i.e., a point that behaves like a local minimizer
only when projected along a subset of the variables). However,
it is stated in the paper [15] that it is extremely difficult to find
examples where converge occurs to a saddle point rather than to
a local minimizer.

In order to further reduce the computational complexity
of the proposed algorithm, we can consider a simplified
loss function L(.)=[.|5 and R(.)=|.|3. Then formulation

(7) becomes the corresponding unconstrained convex
optimization problem:
min clle — D((AAV)w — ey)|13 + | wll3 (12)

AN

Algorithm 1: Optimal Text Embedding

Input : Training vocabulary matrix (V); scaled word
occurrence matrix (A); vector of labels diag(D);
max number of iterations maxiter;
tolerance tol;
regularization parameters ¢; and cy;

Output: optimal word weight vector A*;
classification hyperplane (w*, y*);

Initialize Vj A;=1; Ag=diagonal(X)

i=0;

while i < maxiter or |Aj — Aj_1]|| > tol do
iter++;

Given Aj_1, calculate A = AA;_; V;
Solve (wj, y) = SVM(A, D, c1);
Given (wj, v), calculate A W as described in equation
(10);
Solve (Ai,) = SVM(M, D, c2);
end
A=A
(W*> V*) = (wj, Vi);

Fixing A = A, from (9) and (12), we have

clite = D(Aw — ep))ll3 + w3 (13)
This formulation corresponds to a least-squares or Proximal
SVM formulation [18, 19], and its solution can be obtained
by solving a simple system of linear equations. We will denote
formulation (13) by

(w,y) = LSSVM(A, D, ¢ (14)
IfA = [A - e] then the solution to (13) is given by
(w,y) = (ATA + %I)flATDe (15)
On the other hand, fixing (w, y) = (w,), we have
miny clle = DUAWR) =) B+ 1913y
= miny c[le — D((AWR) —ey)ll;
since w is a constant. Hence,
A= (AW AW)THAW) De(1 ~ y) (17)
Furthermore,
(AW)T(AW) = wiaATAW (18)
From (17) and (18),
A= (WIATAW) " H(AW) De(1 — y)
= (ATAW)"Y (W) 'WATDe(1 -) (19)

= diag(5)(ATA)T'ATDe(1 - y)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

For some problems, AT A can be ill-conditioned, which may lead
to incorrect values for L. In order to improve conditioning we
add a Tikhonov regularization perturbation [20]. (19) becomes

1

WATA 4+ eD)'ATDe(1 —) (20)
Vw

A = diag(

where € is a very small value.

Note that (ATA 4 €I)~! involves calculating the inverse of a
k x k matrix, where k is the number of words in the word2vec
dictionary. In some cases, k can be much larger than m, the
number of training set examples. If this is the case, we can use
the Sherman-Morrison-Woodbury formula [21]:

(Z+ uvT)_1 =z'—z7luwa+ VTZ_lu)_lvTZ_1 (21)

withZ = el,u = v = AT. Then (ATA + €I)~! becomes
1
(ATA+ eV =21 - AT(AAT +eD)7TA) (22)
€

which involves inverting an m x m matrix with m << k.
The A we obtained is a vector of weights of the words that
would be used in (1) to calculate text2vec of a given sample.
Algorithm 1 can be modified to consider formulation (3)
instead of (13) by making two simple changes:

1. Substitute line 6 of Algorithm 1 by: Solve Equation (15) to
obtain (wj,);

2. Substitute line 8 of Algorithm 1 by: Solve Equation (19) to
obtain A;;

4. EXPERIMENTS

We used binary classification as the task for evaluating our
algorithm performance by comparing it to the following
methods:

1. UAEm: Unweighted average of the word vectors that comprise
the sentence or document [5].

2. WAEm: Weighted averaged text representations. We
computed WAEm using tf-idf coefficients as the weights as
described in De Boom et al. [13].

3. FastText [22], an open-source, free, library that allows users
to learn text representations and text classifiers. The classifiers
are based in a simple shallow model instead of deep one which
allows the framework to train models in a fast manner.

4. AdvCNN [8] is a CNN based deep network which comprises
of parallel convolutional layers with varying filter widths and
it achieves state-of-the-art performance on sentiment analysis
and question classification.

5. VanillaCNN is a custom CNN architecture we designed and
is similar to Kim [8] except that in this case there is only one
convolutional layer instead of parallel layers.

Note that in both the CNN experiments we have initialized the
embedding layer with pre-trained word2vec models and these
vectors are kept static.

We implemented two versions of our Algorithm 1: SVM-
based (SVM-OptEm) (Formulation 3) and least square SVM-
based (LSSVM-OptEm) (Formulation 12).

In SVM-OptEm, we used a support vector machine (SVM)
[23] as the classifier. We used a scikit-learn [24] implementation
of SVM for the experiments.

In LSSVM-OptEm, we used a least square support vector
machine (LS-SVM) [23] as the classifier.

4.1. Datasets

To showcase the performance of our model, we chose fifteen
different binary classification tasks over the subsets of different
datasets. Twelve public datasets are briefly described in Table 1.

We also performed experiments on three datasets belonging
to the insurance domain.

e BI-1 and BI-2: These datasets consist of the claim notes with
binary classes based on topic of phone conversation. These
notes were taken by call representative of the company after
the phone call was completed. For BI-1, we classified the call
notes into two categories based on claim complexity: simple
and complex. For BI-2, we wanted to identify notes that
documented a failed attempt made by the call representative
to get in touch with the customer. It is important to note that
the corpus is same for these two datasets but the classification
task is different.

e TRANSCRIPTS: These datasets consist of the phone
transcripts with two classes: pay-by-phone calls and others.
These transcripts were generated inside the company for the
calls received at the call center. Each call would be assigned a
class based on the purpose of the call.

4.2. Word Embeddings

We chose to work on different word2vec-based word
embeddings. These word embeddings have either been pre-
trained models or in-house trained models. These embeddings
were used on the datasets based on their contextual relevance.

o wikipedia [38]: The skip-gram model was trained on English
articles in Wikipedia by FastText [39].

e google-news [40]: The model was trained on Google News
Data, and is available on the Google Code website [41].

e amzn: The skip-gram model was trained in-house on amazon
reviews [27, 28]. Gensim [42] was used to train the model.

e yelp: The skip-gram model was trained in-house on yelp
reviews [37]. Gensim was used to train the model.

e transcript: The continuous bag-of-words model was trained
in-house on the transcripts generated in the of the calls
from call centers. Gensim was used to train the model over
approximately 3 million transcripts.

e claim-notes: The continuous bag-of-words model was trained
in-house on the notes taken by call representatives after the
call was completed. C-based code from Google Word2vec
website [41] was used to train the model over approximately
100 million notes.

We used different word2vec models to verify that our models
works well independently of the underlying embedding

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

TABLE 1 | Brief description of the public datasets used for our experiments.

Dataset Description Positive class References
20NEWSGRP-SCI 20 Newsgroup documents Science-related documents [25]
AMZN-EX Amazon reviews Electronics review [26]
AMZNBK-SENT Amazon book reviews Positive review [27, 28]
BBC BBC news articles Sports article [29]
BLOG-GENDER Blog articles Male Writer [30]
DBPEDIA Wikipedia articles Artist article [31-33]
IMDB IMDB movie reviews Positive review [34]
SCIPAP Sentences from scientific papers Owner-written sentence [35]
SST Movie reviews Positive sentiment [36]
YAHOO-ANS Questions from Yahoo's question-answer dataset Health-related question [33]
YELP-REST Yelp Restaurant Reviews Restaurant-related review [37]
YELP-STAR Yelp Reviews Positive review [37]

representation. Moreover, it also gives better contextual
representation of words for these datasets.

4.3. Text Processing

The method of processing employed on text was similar to the
one done for training the word2vec models. This ensured the
consistency of word-occurrence in the dataset in lieu to the model
that would be used for mapping the words.

Different word2vec models had different processing
procedures, such as substitutions based on regular expressions,
removal of non-alphabetical words, and lowercasing the text.
Accordingly, text-processing was done for the training data.

4.4. Results

To compare performance of the algorithms tested, we decided
to use area under curve (AUC) for evaluation. This metric was
chosen in order to remove the possibility of unbalanced datasets
affecting the efficacy of the accuracy of the models.

The performance of our models for the experiments can be
seen in Table 2.

Our algorithm provides better or comparable performance
against UAEm and WAEm. This performance is achieved over
multiple iterations, as seen in Figure 2. The number of iterations
required to reach the best performance for our model varies with
the dataset and training size.

It is important to note that our proposed algorithm tends to
achieve better AUC performance when the training data is small
which it is the case for many scenarios in the insurance domain
where labels are difficult and expensive to obtain. This fact make
the algorithm a good choice for active learning frameworks where
labels are scarce specially at early iterations of such approaches.

In general, our algorithm approached an “equilibrium” stage
for the vector A, as seen in Figure 3. In other words, as the
algorithm iterate, the norm of the difference between the current
weights and the weights from the previous iteration of the words
approaches zero. This behavior is seen consistently for all the
experimental cases. This shows that our algorithm exhibits good
convergence behavior as expected.

4.5. Text Representation

One of the advantages our model holds over UAEm and WAEm
is that our model can be used to extract the most important
words in the training set. As our model reconfigures the weights
of the words at each iteration, it also indirectly reassigns the
degree of importance to these words. We can obtain these
words by taking the absolute values of the weights assigned
to these words at the end of the iteration. This information
can be used for improving different algorithms, such as visual
representation of text and topic-discovery, and as features for
other models.

Figure 4 shows weights of top 15 words for three of our
datasets. Weights assigned to the words are based on the role
they play in helping the classifier determine the class of any
given sample.

Table 3 shows the top 10 words for three of our datasets. The
words are determined by taking the absolute value of the weights
i.e,, A* learned from the algorithm and rank them in descending
order. For a human eye, these words clearly makes sense with
respect to the given classification task. For example,

1. AMZN-EX classification task is to predict items belonging to
eletronics category based on reviews.

2. YAHOO-ANS classification task is to predict health related
questions.

3. DBPEDIA classification task is to predict artistic articles.

We also found that words that are least informative about the
given task have weights(1*) close to zero.

Following our results presented in Table2, we want to
highlight the following observations:

e Our method is competitive with more sophisticated models.
As a matter of fact, we are winning on 7 out of 15 text
classification tasks from various domains.

e Our method seems to significantly outperform other
approaches when the dataset size is relatively small in size.
This might be very relevant in situations where labeling data is
expensive to obtain which is often the case in many industrial
applications.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

TABLE 2 | Binary text classification AUC and accuracy results for test data for: UAEm, WAEm, VanillaCNN, AdvCNN, the SVM-based implementation (SVM-OptEm)

and the least square SVM-based implementation (LSSVM-OptEm).

Data size Area under curve
Dataset Word2Vec model Avg length (words)
Train Test UAEm WAEm SVM-OptEm LSSVM-OptEm FastText VanillaCNN AdvCNN
20NEWSGRP-SCI Google-news 86 3000 2000 0.904 0.9053 0.9427 0.9040 0.9081 0.9150 0.9139
AMZN-EX Wikipedia 100 10,000 10,000 0.9914 0.9897 0.9887 0.9822 0.9838 0.9921 0.9924
AMZNBK-SENT ~ Amzn 5 10,000 10,000 0.9294 0.9218 0.9344 0.9269 0.9294 0.9273 0.9378
BBC Google-news 458 1,850 500 0.9978 0.9973 0.9959 0.9978 0.9946 0.9921 0.9948
BLOG-GENDER Wikipedia 422 2,000 1,000 0.7668 0.7536 0.7992 0.7813 0.7580 0.7428 0.7569
DBPEDIA Wikipedia 48 10,000 10,000 0.9921 0.9870 0.9930 0.9935 0.9934 0.9974 0.9976
IMDB Wikipedia 237 5,000 2,500 0.9116 0.8935 0.9321 0.9209 0.9206 0.8981 0.9102
SCIPAP Wikipedia 26 1,600 750 0.8630 0.8515 0.9208 0.9220 0.9205 0.8973 0.9105
SST Google-news 11 10,000 10,000 0.9016 0.8990 0.9040 0.8967 0.8722 0.9203 0.9168
YAHOO-ANS Wikipedia 12 20,000 10,000 0.9316 0.9293 0.9287 0.9248 0.8819 0.9334 0.9280
YELP-REST Yelp 117 40,000 40,000 0.9733 0.9709 0.9696 0.9627 0.9342 0.9773 0.9779
YELP-STAR Yelp 125 20,000 10,000 0.9707 0.9652 0.9707 0.9665 0.9567 0.9747 0.9778
BI-1 Claim-notes 128 1,508 561 0.8850 0.8270 0.8852 0.9114 0.9014 0.7023 0.7907
BI-2 Claim-notes 137 1,081 238 0.7653 0.666 0.8007 0.8338 0.5403 0.4875 0.5640
TRANSCRIPTS Transcript 828 5,000 3,000 0.9616 0.9604 0.9638 0.9620 0.9617 0.9745 0.9736
The highest score for each evaluation metric is in boldface.
—— OptEm AUC =-- Unweighted AUC
DBPEDIA IMDB
0.935
0.930 A
0.992 1
9] (@] 4
=2 = 0.925
< <
0.990 1 0.920 A
0.915 A
T T T T T T
0 20 40 0 20 40
lteration lteration
TRANSCRIPTS AMZNBK-SENT
0.968
09664 \[\ | SN~ | 093 e _______—_—
S
= 0.964 1
0.962 1
I--------I-------I---- T T T
0 20 40 0 20 40
lteration lteration

FIGURE 2 | AUC scores of test data over iterations.

5. CONCLUSIONS AND FUTURE WORK

Our paper provides an alternative way of sentence/document-
level representation for supervised text classification, based on

optimization of the weights of words in the corresponding text
to be classified. This approach takes labels into consideration
when generating optimal word’s weights for these words.
Numerical experiments show that our proposed algorithm is

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

competitive with respect with other state-of-the-art techniques
and outperformed CNNs when the training data was small

and we even show that this approach is not sensitive to
document lengths.

Our model also brings additional benefits to the table.
It provides a ranking of the relevance of the words with

£ BI-2
Qo 04
2
o
K]
=
2 -1 . . - : .
< 0 10 20 30 40 50
Iteration
= YAHOO-ANS
a8 00
2
K=y
- 4
= 0.5
o
> T T T T T T
< 0 10 20 30 40 50
Iteration
& AMZN-EX
8 04
2
o
T
=
g
> T T T T T T T T
< 0 10 15 20 25 30 35 40
Iteration

FIGURE 3 | Average of weight difference over iteration for three datasets. This
difference approaches zero over iterations.

respect to the text classification problem at hand. This ranking
TABLE 3 | Top 10 Words with highest absolute weights for AMZN-EX,
YAHOO-ANS, AND DBPEDIA.

AMZN-EX YAHOO-ANS DBPEDIA
Book Period Born
Sound Profile Author
Product Mushrooms Singer
Player Medicare Directed
Use Daily Album
Unit Youngest Artist
Price Longest Writer
Quiality Anger Known
Lens Aerobics Musician
Radio Confirm Novelist
For a human eye, most of these words makes sense given the classification task.

0.281

0.26 \
0.24/ \

Weight
P

claims

singer-

0.22
0.20
0.18/
i 2 3 &
o - -
3 £ H
o =
g ¢t
= =]
©
] €
- 3
25 N\
\
\
\
2.4 N\

A
£2.31 -
5
-

H
2.2
2.1
2.0
3 ® T 8
§ & =
E g ©
o
o

amazing

actress -

AMZNBK-SENT

= - -
E c I3
2 e o
i b ¢
x s
[} °
-3
o
©
=
T
BBC
= o .
i] 3 8
7] = =
5 &
2

s @
T =
s 32
°
E-]

c
3
g
\\ S
g £
£ ¥
o [
T £

/

engrossing

election -

sadly |
ridiculous

coach -
series

FIGURE 4 | Weights of top 15 words identified by OptEm for two of the datasets used in our experiments. The words appear to be very informative; some can be
easily associated to corresponding class.

firm. |

poorly

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

of words by importance can be used for different NLP
applications related to the same task, such as extraction-based
summarization, context-matching, and text cleaning. By learning
the optimal weights of the words, our model also tends to
remove or ignore less informative words, thus performing its
own version of feature selection. Our text embedding algorithm
combines the compactness and expressiveness of the word-
embedding representations with the human-interpretability of a
BoW-type model.

We intend to extend this work to make the proposed
algorithm more scalable in order to incorporate larger, more
complex classification models and tasks, such as multi-label,
multi-class classification and summarization.

We want to explore using other normalizations and
constraints to the weight vector. One possibility is to explore 1-
norm regulation for the weight vector to make it more sparse
and have a more aggressive feature (word) selection. Another
interesting direction is to consider group regularization similar
[43], where the groups of words are suggested by a graph

REFERENCES

1. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. In: Proceedings of ICLR Workshop. Scottsdale,
AZ (2013).

2. Pennington J, Socher R, Manning CD. GloVe: global vectors for
word representation. In: Empirical Methods in Natural Language
Processing (EMNLP) (2014). p. 1532-43. Available online at:
http://www.aclweb.org/anthology/D14-1162

3. Levy O, Goldberg Y. Linguistic regularities in sparse and explicit word
representations. In: CONLL. Ann Arbor, MI (2014).

4. Lin C, Ammar W, Dyer C, Levin LS. Unsupervised POS induction with word
embeddings. CoRR. (2015) abs/1503.06760. Available online at: http://arxiv.
org/abs/1503.06760.

5. Wieting], Bansal M, Gimpel K, Livescu K. Towards universal paraphrastic
sentence embeddings. CoRR. abs/1511.08198 (2015).

6. Le Q, Mikolov T. Distributed representations of sentences and documents. In:
Proceedings of the 31st International Conference on International Conference
on Machine Learning - Volume 32. ICML14. (2014). p.II-1188-11-1196.
Available online at: http://dl.acm.org/citation.cfm?id=3044805.3045025

7. Harris Z. Distributional structure. Word. (1954) 10:146-62.

8. Kim Y. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:14085882. (2014). doi: 10.3115/v1/D14-1181

9. Palangi H, Deng L, Shen Y, Gao J, He X, Chen J, et al. Deep sentence
embedding using long short-term memory networks: analysis and application
to information retrieval. IEEE/ACM Trans Audio Speech Lang Proc. (2016)
24:694-707. doi: 10.1109/TASLP.2016.2520371

10. Devlin J, Chang MW, Lee K, Toutanova K. Bert: pre-training of deep
bidirectional transformers for language understanding. arXiv preprint
arXiv:181004805 (2018). doi: 10.18653/v1/N19-1423

11. Yang Z, Dai Z, Yang Y, Carbonell], SalakhutdinovRR, Le QV. Xlnet:
generalized autoregressive pretraining for language understanding. In:
Wallach H, Larochelle H, Beygelzimer A, d’Alch é-Buc E Fox E, Garnett
R, editors. Advances in Neural Information Processing Systems 32. Curran
Associates, Inc. (2019). p. 5754-64. Available online at: http://papers.nips.
cc/paper/8812-xlnet- generalized- autoregressive- pretraining- for-language-
understanding.pdf

12. Arora S, Liang Y, Ma T. A simple but tough-to-beat baseline for sentence
embeddings. In: 5th International Conference on Learning Representations,
ICLR 2017 (Toulon). Available online at: https://openreview.net/forum?id=
SyK00v5xx

naturally defined by the distances between the words provided
by the word embedding. In this way, semantically similar words
would be weighted similarly and the result of the algorithm would
be a clustering of terms by semantic meaning or topics that are
relevant to the classification problem at hand.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

GF was the technical advisor and the central figure for driving
this project to completion. SG was responsible for running
all the initial set of experiments and dataset preparation. TK
was responsible for finishing all of the remaining experiments
and manuscript writing. DC was part of research discussions
and brainstorming.

13. De Boom C, Van Canneyt S, Demeester T, Dhoedt B. Representation learning
for very short texts using weighted word embedding aggregation. Pattern
Recogn Lett. (2016) 80:150-6. doi: 10.1016/j.patrec.2016.06.012

14. Lee Y], Mangasarian OL. SSVM: a smooth support vector
machine for classification. Comput Optim Appl. (2001) 20:5-22.
doi: 10.1023/A:1011215321374

15. Bezdek JC, Hathaway R]. Convergence of alternating optimization. Neural
Parallel Sci Comput. (2003) 11:351-68.

16. scikit-learn. Support Vector Machines (2017). Available online at: http://scikit-
learn.org/stable/modules/svm.html

17. Wen Z, Shi], Li Q, He B, Chen J. ThunderSVM: a fast SVMlibrary on GPUs
and CPUs.] Mach Learn Res. (2018) 19:797-801.

18. Fung G, Mangasarian OL. Proximal support vector machine classifiers.
In: Provost E Srikant R, editors. Proceedings KDD-2001: Knowledge
Discovery and Data Mining. San Francisco, CA; New York, NY:
Asscociation for Computing Machinery (2001). p. 77-86. Available online at:
Ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-02.ps

19. Suykens JAK, Vandewalle J. Least squares support vector machine classifiers.
Neural Process Lett. (1999) 9:293-300. doi: 10.1023/A:1018628609742

20. Neumaier A. Solving ill-conditioned and singular linear systems:
a tutorial on regularization. SIAM Rev. (1998) 40:636-66.
doi: 10.1137/S0036144597321909

21. Golub GH, Van Loan CF. Matrix Computations, 3rd Edn. Baltimore, MD:
Johns Hopkins University Press (1996).

22. Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of tricks for efficient text
classification. In: Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers.
Valencia: Association for Computational Linguistics (2017). p. 427-31.

23. Cortes C, Vapnik V. Support-vector networks. Mach Learn. (1995) 20:273-97.
doi: 10.1023/A:1022627411411

24. Pedregosa F Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
et al. Scikit-learn: machine learning in Python. J Mach Learn Res. (2011)
12:2825-30.

25. Lang K. NewsWeeder: learning to filter netnews. In: Proceedings of the 12th
International Machine Learning Conference. Tahoe City, CA (1995). p. 331-9.

26. Blitzer], Dredze M, Pereira F. Biographies, bollywood, boom-boxes and
blenders: domain adaptation for sentiment classification. In: Proceedings of
the Association for Computational Linguistics (ACL) (2007).

27. McAuley], Targett C, Shi Q, van den Hengel A. Image-based
recommendations on styles and substitutes. In: Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

January 2020 | Volume 5 | Article 67

http://arxiv.org/abs/1503.06760
http://arxiv.org/abs/1503.06760
http://dl.acm.org/citation.cfm?id=3044805.3045025
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.1109/TASLP.2016.2520371
https://doi.org/10.18653/v1/N19-1423
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1023/A:1011215321374
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1137/S0036144597321909
https://doi.org/10.1023/A:1022627411411
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Gupta et al.

Task-Optimized Word Embeddings

28.

29.

30.

31.
32.

33.

34.

35.

36.

Information Retrieval, SIGIR ’15. New York, NY: ACM (2015). p. 43-
52. Available online at: http://doi.acm.org/10.1145/2766462.27\penalty-
\@M67755

He R, McAuley J. Ups and downs: modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: Proceedings of the 25th
International Conference on World Wide Web. WWW ’16. Republic and
Canton of Geneva: International World Wide Web Conferences Steering
Committee (2016). p. 507-17. Available online at: https://doi.org/10.1145/
2872427.2883037

Greene D, Cunningham P. Practical solutions to the problem of diagonal
dominance in kernel document clustering. In: Proc. 23rd International
Conference on Machine learning (ICML06). Pittsburgh, PA: ACM Press (2006).
p. 377-84.

Mukherjee A, Liu B. Improving gender classification of blog authors. In:
Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, EMNLP ’10. Stroudsburg, PA: Association for Computational
Linguistics (2010). p. 207-17. Available online at: http://dl.acm.org/citation.
cfm?id=1870658.1870679

DBPedia. DBPedia (2018). Available online at: http://wiki.dbpedia.org/
Lehmann J, Isele R, Jakob M, Jentzsch A, Kontokostas D, Mendes PN,
et al. DBpedia - A large-scale, multilingual knowledge base extracted from
wikipedia. Semant Web J. (2015) 6:167-95. doi: 10.3233/SW-140134

Zhang X, Zhao], LeCun Y. Character-level convolutional networks for text
classification. In: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15. Cambridge, MA: MIT
Press (2015). p. 649-57. Available online at: http://dl.acm.org/citation.cfm?id=
2969239.2969312

Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C. Learning word
vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies.
Portland, OR: Association for Computational Linguistics (2011). p. 142-50.
Available online at: http://www.aclweb.org/anthology/P11-1015

Lichman M. UCI Machine Learning Repository. Irvine, CA (2013). Available
online at: http://archive.ics.uci.edu/ml

Socher R, Perelygin A, Wu], Chuang J, Manning CD, Ng AY, et al. Parsing
With compositional vector grammars. In: EMNLP (2013).

37.

38.

39.
40.

41.

42.

43.

Yelp. Yelp Dataset Challenge (2018). Available online at: https://www.yelp.
com/dataset/challenge

Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors
with subword information. arXiv preprint arXiv:160704606. (2016).
doi: 10.1162/tacl_a_00051

Facebook. FastText (2018). Available online at: https://fasttext.cc/

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed
representations of words and phrases and their compositionality. In:
Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2. NIPS’13. Curran Associates Inc. (2013).
p. 3111-9. Available online at: http://dl.acm.org/citation.cfm?id=2999792.
2999959

Google. Word2Vec (2018). Available online at: https://code.google.com/
archive/p/word2vec/

Rehtitek R, Sojka P. Software framework for topic modelling with large
corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks. Valletta : ELRA (2010). p. 45-50. Available online at: http://
is.muni.cz/publication/884893/en

Fung G, Stoeckel J. SVM feature
SPECT images of Alzheimer’s
Knowl Inform Syst. (2007)
0043-5

selection for classification of
disease using spatial information.
11:243-58. doi: 10.1007/s10115-006-

Conflict of Interest: Authors were employed by the company American Family
Insurance. The authors declare that this study received funding from American
Family Insurance. The funder was not involved in the study design, collection,
analysis, interpretation of data, the writing of this article or the decision to submit
it for publication.

Copyright © 2020 Gupta, Kanchinadam, Conathan and Fung. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org

10

January 2020 | Volume 5 | Article 67

http://doi.acm.org/10.1145/2766462.27penalty -@M {}67755
http://doi.acm.org/10.1145/2766462.27penalty -@M {}67755
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
http://dl.acm.org/citation.cfm?id=1870658.1870679
http://dl.acm.org/citation.cfm?id=1870658.1870679
http://wiki.dbpedia.org/
https://doi.org/10.3233/SW-140134
http://dl.acm.org/citation.cfm?id=2969239.2969312
http://dl.acm.org/citation.cfm?id=2969239.2969312
http://www.aclweb.org/anthology/P11-1015
http://archive.ics.uci.edu/ml
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
https://doi.org/10.1162/tacl_a_00051
https://fasttext.cc/
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.1007/s10115-006-0043-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Task-Optimized Word Embeddings for Text Classification Representations
	1. Introduction
	2. Related Work
	3. Optimal Word Embeddings
	4. Experiments
	4.1. Datasets
	4.2. Word Embeddings
	4.3. Text Processing
	4.4. Results
	4.5. Text Representation

	5. Conclusions And Future Work
	Data Availability Statement
	Author Contributions
	References

