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The aerodynamic forces acting on a baseball are those produced by the contact between

the ball and the air, and are defined by the initial conditions of the pitch. It is well known

that such forces determine the changes from the typical parabolic ballistic trajectory,

either in the direction of the movement of the ball (drag force), or producing a lift or lateral

deflection (Magnus and seam forces). The drag and Magnus effects have been widely

studied and there are many references about their nature and the trajectory they produce,

which is predictable. This has led to most baseball research being related with spinning

pitches. On the other hand, there is the unpredictable motion of a knuckleball, whose

erratic trajectory accompanied by a poor understanding of the forces produced by the

asymmetry of the seams had markedly limited research about it until the beginning of

this century. However, nowadays interest in the knuckleball is resurfacing. Data collected

by wind tunnel experiments and real pitches have motivated researchers to analyze

the phenomenon and build models that try to predict the motion of the ball. In this

work we aim to provide the reader some basic ideas on aerodynamic forces through

a combination of experimental results, phenomenological and dimensional analysis,

with special focus on new advances on the seam effects of a knuckleball pitch. In

addition, we discuss possible ways to extend the existing models about the seam forces.

Finally, we summarize from the literature some methods regarding the reproduction

and reconstruction of baseball trajectories from aerodynamic forces and discuss their

application as well.

Keywords: baseball, knuckleball, seams, drag force, lift force, Magnus force, ball games

1. INTRODUCTION

Aerodynamics and the flight of baseballs are very interesting phenomena from the point of view of
sports, engineering and science. The different types of pitches are denoted by the different initial
configurations that the pitcher gives to the ball by means of his hand. Each initial combination
of velocity and spin produces a way of interaction between the air and the ball which results in
curveballs, fastballs, sliders, and knuckleballs, among others. Moreover, such interaction can be
affected by other factors, such as when the ball is dented or when it has liquid on its surface. This
can cause an erratic movement in the expected trajectory of the ball, and be the difference between
a strike or a home run.
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For engineering, the evolution of a baseball during its flight
means an open door to many possible applications. In turn, for
science it means the study of the process in which a subsonic
flow interacts with a solid rough sphere, having the characteristic
that for zero or lower spin values of the spin the trajectory
is very erratic and becomes unpredictable, whereas for higher
values the trajectories are smooth and predictable. In this way,
the trajectories of a baseball are commonly classified by spinning
pitches and non-spinning pitches.

The predictability of both types of trajectories seems
contradictory at first glance, since one would expect the spinning
balls to have a more complex movement because more forces act
on them. This is not the case, however, and the main cause of
this is the role of the seams of the baseball. When the interaction
between the seams and the air is insignificant, more predictable
and stable trajectories occur, and vice-versa. This last statement
can be better understood by looking at the Reynolds’ transport
theorem, which establishes [1–3]

∂

∂t

∫

V

ρVdV +

∫

S

ρV (V · n) dA =

∫

S

T · ndS +

∫

V

ρbdV (1)

for a fluid-containing volume of space with volume V and surface
S , where V and ρ denote the velocity and density of the fluid,
respectively, and n is a unit normal vector pointing outside S .
In turn, the right-hand side denotes the sum of all forces acting
on the volume of space, which can be classified according to
the intensive properties as body (first term) and surface (second
term) forces, with b and T being the body forces vector per
unit mass and the stress tensor, respectively. Among body force
gravity, Coriolis and centrifugal forces can be found, whereas
the forces generated at the ball-air boundary include pressure,
normal and shear stress, etc.

In spite of gravity, body forces are weak and are commonly
neglected in calculations of ball sports as reported in calculations
by Robinson and Robinson [4] and Aguirre-López et al. [5]. On
the other hand, the surface forces can be classified according
to the direction and nature of their origin: drag, Magnus, lift,
side and other forces [6–8]. Magnus force can be defined as
that caused by the spin of the ball, therefore it is present only
in spinning pitches. In turn, we define lift and side forces as
those caused only by the motion of the baseball through the air
without rotation (non-spinning pitches); then it depends on the
orientation of the ball because of the asymmetry of the seams.
A proposed curve of how lift and Magnus forces behave when
varying the magnitude of the spin is shown in Figure 1. The lift
and side forces produced by the seams decrease with the increase
of the angular velocity (which is expected according to Watts
and Sawyer [11], Mehta [12], and Cross [9]) while by definition,
the Magnus force approaches zero when the angular velocity
vanishes [8]. In this way, the non-spinning window is related to
erratic and unstable trajectories whereas the spinning window is
related to predictable and stable trajectories. Finally, there is a
window between both cases, in which the superposition of forces
is more significant and the ball can continue with the erratic
movements of non-spinning pitches or can draw a smooth, slow

FIGURE 1 | Scheme of the maximum value of lift, side and Magnus forces

when varying the angular velocity ω for a given speed V. The y−axis is

scaled according to the maximum drag force for the considered velocity. The

curves for lift, side and Magnus forces are drawn according to experimental

data [8–10]. The missing curve for lift and side forces between spinning and

non-spinning windows is because there are no data reported in such range.

and predictable trajectory. From our understanding, this is the
main reason why pitchers do not throw balls within this range.

The curves in Figure 1 also show the evolution of the study
of the types of pitches at this time. Until the beginning of
this century, spinning pitches covered most baseball research;
therefore, books and compilations of works related to the subject
avoided the phenomena present in non-spinning pitches [7].
Nowadays, the interest in non-spinning pitches is resurfacing
and there is more information available in books of the present
decade, like Cross [6]. However, the new developments and
methods for studying non-spinning and intermediate windows
are very disconnected, so a new compilation of work on the
matter is necessary.

The purpose of this work is to introduce the reader to the
diverse existing methodologies for studying the aerodynamic
forces in the flight of a baseball, and to discuss the possible ways
to complement such studies for future research and applications.
All this is based on a literature review of the subject. Each topic
begins with a brief derivation of the mathematical model of the
respective force; then the model is compared with the results
obtained from experimental measures, and a discussion of this
is achieved. We have special interest in discussing how the seams
affect the aerodynamics of the ball; therefore, the lift force and
non-spinning pitches will get more attention.

This review is structured according to the classification of
pitches mentioned above. In this way, we begin by presenting the
most common mathematical model to describe the movement
of a baseball with a concise review of the spinning pitches in
section 2. Next, section 3 deals fully with the advances on non-
spinning pitches and presents some comments on the boundary
layer and the wake of a baseball in motion. Finally, we present
a compilation of the existing uses regarding the aerodynamics
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of baseballs, and outline the research trends of the subject in
section 4.

2. SPINNING PITCHES

In accordance with Figure 1, we define a spinning pitch as any
throw, excepting knuckleballs, that has an initial velocity in the
range V = [(Vx,Vy,Vz)] ∈ [(−3, 30,−3), (3, 50, 3)] m/s and an
initial spin of |ω| = [100, 310] rad/s, which are the values at
which baseballs are thrown by professional pitchers when fixing
the y−axis in mound-home direction and z−axis perpendicular
to the floor, according to the right-hand rule [13]. In this way,
some examples of spinning pitches are the curveball, slider,
change-up, and the variants of the fastball. The hallmark of this
type of pitches is the Magnus force. We begin by describing the
drag force in section 2.1, which is present in all types of pitches,
with the aim of establishing some basic concepts to introduce the
Magnus force.

2.1. The Drag Force
Drag or friction is the force that resists the movement of an
arbitrary object. The classical way to derive drag force is by
considering that the study of a ball moving through a static
medium is equivalent to the one of a static ball with fluid in
motion; therefore, V corresponds to the velocity of the fluid,
and thus a mathematical formula for the drag of the ball can be
obtained from the momentum conservation equation [2, 14]

∂V

∂t
+ (V · ∇)V = −∇

(

p

ρ

)

+ g , p ≡ pressure, (2)

which, in turn, is computed by considering that the air is a
Newtonian and incompressible fluid in the Reynold’s transport
theorem (1); see Ferziger 1996 [2] for the computing of Equation
(2). The conservation of mass equation also reduces to

∇ · V = 0. (3)

Then, assuming a steady flow the Bernoulli’s equation results

1

2
V2 +

p

ρ
≡ constant, (4)

where we used 1
2∇V2 = V × (∇ × V) + (V · ∇)V avoiding the

gravitational term [14]. From Bernoulli’s Equation (4) the reader
can observe that the greatest pressure occurs at points where the
velocity equals zero. These points are commonly found on the
surface of solid bodies and are usually called stagnation points.
For the case of a sphere ball, one stagnation point is present on
the front side. The pressure at this point is

pmax = p0 +
1

2
ρV2 (5)

where p0 is the pressure of the fluid at infinity [14, 15]. In this
way, the second term is related to the force opposing the motion
of the ball, the drag force, and thus drag can be calculated by
the difference of pressure between the front and back sides of the

ball [2]. However, there are other phenomena affecting the drag.
At the corresponding Reynolds number (Re) of a typical throw
(104 − 105) the flow is not steady but turbulent [8, 10, 13, 16, 17];
then the point of separation of the boundary layer moves away
from the front of the ball when the ball’s velocity increases,
making the wake smaller and avoiding a momentum in the
reverse direction on the rear of the ball [18, 19].

The approximation of the drag force is done by introducing
the sectional transverse area A and a dimensionless coefficient Cd

into the second term of the right-hand side in the Equation (5),
such that

Fd = −
1

2
ρCdAVV. (6)

where Cd = Cd(V), and then Cd acts in (6) as a fraction of the
area A interacting with the air, or in other words, a measure of
how aerodynamic the ball is [18, 20, 21].

As a consequence, the study of the drag coefficient (Cd)
is so important that it becomes the most effective formula to
approximate the drag; therefore, the drag force (Fd) is commonly
expressed in terms of Cd. There are two ways to explain the
behavior of Cd. On the one hand, there is the drag crisis
phenomenon for smooth spheres mentioned in Landau and
Lifshitz [14], which indicates that a crisis in the value of Cd

can occur at Re∼ 105 (at velocities of 30–40 m/s for a typical
baseball). Data shown in Frohlich [22] and Cross [23] fit to such
model. On the other hand, from the famous curve of Adair [7] to
the recent data obtained by Naito [24], most of the experimental
measures suggest a model without drag crisis [6, 17, 25, 26]. This
predominance maintains for other sphere balls [23, 27–29] and
gives rise to most of the used models to compute the drag force
without including the drag crisis phenomenon. There are two
models of special interest: the model by Cross [6], from which
the drag coefficient can be obtained if the instantaneous ball’s
velocity at a fixed time is known, and the curve of Adair [7],
which approaches to

Cd(V) = 0.29+ 0.22
[

1+ e(V−32.37)/5.2
]−1

, (7)

according to Aguirre-López etal. [5]; see Figure 2.
Finally, it is important to mention that the drag has an

oscillating dependence on the orientation of the seams.
However, for spinning pitches such oscillations average to
zero and so they are not considered here. The dependence
of Cd on the seams’ orientation will be discussed in
section 3.1.

2.2. The Magnus Force
Magnus force is the essential characteristic of a spinning pitch, as
we mentioned before. The Magnus effect is observed as smooth
deflections in the trajectory of a ball. All of us have a clear
empirical knowledge of the Magnus effect: large deflections are
reached by increasing the spin frequency of the ball. Although
this statement is true, the direction of the deflection varies
for different configurations of linear velocity V, the angular
velocity ω and the ball properties. In fact, for any viewer, the
expected direction of the ball’s deflection goes on (ω × V),
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FIGURE 2 | Model of drag and Magnus coefficients. Adair’s drag model [7] and

the approximation of Aguirre-López et al. [5] showing the sigmoidal decreasing

of drag when increasing the velocity of the ball. In turn, the Magnus model (10)

presented in Robinson [8] shows that the Magnus coefficient increases when

the angular velocity increases. Modified from Aguirre-López et al. [5].

as illustrated in Figure 3. However, a reverse direction of the
Magnus force has been reported for smooth balls like those
used in soccer [27], and also in smooth spheres simulating
baseballs in experiments by Briggs [30], Cross and Lindsey [31].
This phenomenon is commonly called the “anti-Magnus effect”
and it is possible only for a range of Re and spin when one
side of the smooth ball remains in a laminar flow while the
opposite side becomes turbulent. Then, a low pressure region is
originated in the turbulent side because it is generally farther to
the ball surface than the laminar layer. Thus, the ball moves to
the region with lower pressure by conservation of momentum,
as illustrated in Figure 3. For a detailed explanation of the
causes of the reverse in the direction of Magnus force, the
reader is referred to Cross and Lindsey [31]. For a general
understanding of the phenomenon, the reverse-Magnus occurs
at Re∼ 105 combined with a low speed due to Magnus force
Rω (where R is the radius of the ball) compared with the ball’s
velocity V , such that the spin factor S = Rω/V is in the
range 0–0.6.

However, the baseball is not smooth and there are no reported
studies of an anti-Magnus effect in baseballs. This is because
the seams of the ball give to it some roughness that accelerates
the separation of the boundary layer in both the up and down
sides of the ball. Indeed, the Magnus effect in baseballs’ flight
arises because one side of the ball offers larger friction than its
opposite side, which means that the speed of the main flow of air
is larger on the former and as a consequence the lower-pressure
region locates at the opposite side, according to the anti-Magnus
phenomenon [6–8]; see the schemes in Figure 3. Therefore, the
nature of the Magnus force is similar to that of the drag force,
due to a difference of pressure. For this reason, Magnus force is

commonly written in a similar way as drag force (Equation 6),
namely,

FM =
1

2
ρACMV2, (8)

for an arbitrary direction of motion, with CM being the Magnus
coefficient. Moreover, in the same system of coordinates to drag
force, Equation (8) becomes

FM =
1

2
ρACM sinφV2n̂, (9)

where the unit vector n̂ = ω×V
|ω×V| gives the direction of the

resulting linear momentum, φ is the angle between ω and V

so that (V sinφ) is the component of V that contributes to
the force [6, 8, 10]. It is important to remark that equation
(9) has been widely used to reproduce Magnus force of sport
balls and other areas of aerodynamics [32–34], and it has been
proved experimentally (for sport balls) only for φ = 0, 90 and
180◦ [8, 10].

The Magnus coefficient CM is a function of ω and V for
arbitrary magnitudes of such variables because Equation
(9) depends on both the instantaneous and spin velocities
[6, 10, 31]. However, Nathan [17] has reported that CM

behaves independently of V for ω and V values in the
range at which spinning pitches are thrown. Moreover,
the value of CM in such range is similar to the Magnus
coefficient for other sport balls, and there are some models
to calculate its value [8, 30, 35]. Figure 3 shows the
model (10):

CM(ω) = 3.19× 10−1
[

1− e−2.48×10−3ω
]

, (10)

which has been used to compute the Magnus force in numerical
simulations [5, 8].

2.3. Discussion and Potential Research
Trends
In the following items, we summarize and discuss the highlights
of the spinning pitches, and also sketch out the potential research
trends of the subject:

• Both drag and Magnus forces are commonly expressed in
terms of their coefficients, which have information about the
object taken from experiments.

• The drag coefficient (7) decreases in a sigmoidal way when
the ball’s velocity increases. It maintains a value of around
Cd = 0.5 up to velocities of 20 m/s, then decreases to
Cd = 0.3 in the range of 20–50 m/s (which corresponds
to the range of spinning pitches), and maintains that value
for larger velocities. In this way, the drag coefficient must
be considered as a function of the velocity when computing
baseball trajectories.

• There are different ways to measure drag force or estimate
the drag coefficient that have not been reported, for instance,
by Computational Fluid Dynamics (CFD) or by analyzing
the von Karman vortex trails generated by the ball [2, 15].
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FIGURE 3 | Scheme of the possible ways of causing a Magnus force. (A) The common Magnus force. Modified from Aguirre-López et al. [5]. (B) The reverse Magnus

force.

Both of them could be promising areas of opportunity to
characterize the drag, and the aerodynamics of a baseball, in
a more comprehensive way.

• Model (9) is the most common formula to approximate the
Magnus force. It considers the angular velocity ω as a constant
in time (despite torquing forces). This is acceptable since such
forces are very small, as mentioned in Ward-Alaways [10].

• The exponential behavior of the Magnus coefficient (10)
denotes the effect of ω in the Magnus force. In addition, the
model does not depend on the velocity V inside the range
of initial conditions for spinning pitches, which simplify the
estimation of the Magnus effect.

• The effects of drag and Magnus forces on a spinning pitch
can be decoupled and studied separately according to Aguirre-
López et al. [5], which could have a lot of applications, such
prediction, reconstruction and clustering of trajectories; see
section 4.

• Other aspects exist that affect a thrown baseball, such as
wind, humidity, etc. However, the study of these effects
is more complex and there are few investigations about
them [6, 8].

3. NON-SPINNING PITCHES

Non-spinning pitches consist of a specific type of throw:
the knuckleball. It contains all combinations for the linear
and angular velocities in the ranges V ∈ [20, 40] m/s and
ω ∈ [0, 50] rad/s, respectively [36]. Knuckleball pitches are the
most interesting throws for aerodynamics because the ball can
no longer be considered a sphere since the effect of the seams
is significant. However, this is more complex to understand and,
therefore, knuckleball studies are fewer than those for spinning
pitches.

In this section we discuss the advances in drag force for
non-spinning pitches (section 3.1). Then, the description of the
models for lift and side forces is presented in section 3.2. An
introduction to the modeling of the seams and the boundary
layer observations is shown in section 3.3. A compilation of the
knuckleball’s research and trends is discussed in section 3.4.

3.1. The Drag Force in Non-spinning
Pitches
Drag force is different in knuckleballs than in spinning pitches.
The drag is approximately constant for a specific velocity in a
spinning ball, however, in a knuckleball it is not. As mentioned in
section 2.1, the Re of a baseball pitch corresponds to an unsteady
flow and then an experimental coefficient must be introduced
in the model for the drag force (6). However, when the ball
does not spin some vortices are shed from the ball and then
the drag oscillates in time. Ferziger and Perić [2] discusses such
an effect for a smooth cylinder simulated by CFD. The drag on
the cylinder oscillates periodically with a frequency according to
the appearance of the vortices such that it has one maximum
and one minimum during the formation and shedding of each
vortex. Such vortex shedding has also been reported for baseballs
in Texier et al. [37], whose effect in lift and side forces will be
discussed in section 3.2.

In addition to the variation in time, the drag changes when
varying the orientation of the ball. Investigations carried out in
the present decade show structured oscillations of drag coefficient
despite the turbulence present in the phenomenon. For example,
the experiment by Higuchi and Kiura [38] with different
configurations of the ball, namely, the four-seam (4S), the two-
seam (2S) and an arbitrary orientation of the ball1. They found
the largest variation in oscillations for the 4S orientation, which
is about twice as large as the case of the 2S orientation and around
four times that of the arbitrary orientation. The shape of the
oscillations in the 4S orientation is maintained for ball velocities
in the range of 16–30 m/s.

Similar average variations for Cd have been reported by
Alam et al. [25] in studies of the drag force for Major League
Baseball (MLB) and National Collegiate Athletic Association
(NCAA) baseballs and softballs. They reported lower variations
in Cd values for NCAA than for MLB baseballs at different ball
orientations, which suggests a dependence on the height of the
seams (1.5 mm for NCAA and 1mm for MLB balls). At first

1A detailed explanation of the typical baseball orientations can be found in Borg

and Morrisey [36].
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glance, the idea seems to be solid because a larger “extra-obstacle”
should cause a corresponding “extra-drag” in the fluid. Even
more, this is supported by the results of Kensrud et al. [39], who
analyzes hit balls with different heights of seams and found that
balls with smaller seams reach larger distances, which indicates a
lower drag.

Finally, it is important to remark that commonly Cd decreases
with increasingV for baseballs, softballs, cricket balls and smooth
spheres. In the case of baseballs, the value of Cd decreases from
∼ 0.6 to∼ 0.4 dimensionless units [25, 32].

3.2. The Lift and Side Forces
The main reason for which knuckleball pitches are much more
unpredictable than spinning pitches is because of lift and side
forces2. Similar to the drag and Magnus forces, lift force is
produced by an imbalance in pressure and then it is proportional
in magnitude to the square of the ball velocity [11, 40], so that

FL =
1

2
ρCLAV

2. (11)

However, the behavior of the lift coefficient (CL) is not like Cd or
CM but it varies with the angle of attack θ of the ball. Figure 4
shows how unpredictable a knuckleball can be, even for the most
symmetric ball orientations (4S and 2S). Results of Borg and
Morrisey [36] show four cycles in CL for the 4S orientation,
each one with a period of 90◦, with a semi-sinusoidal behavior
and ringlets at the end of a cycle. This means that a variation
of ∼ 22.5◦ in smooth-angle zones may or may not produce a
maximum/minimum lift; instead, a variation of only ∼ 10◦ in
the zone of ringlets can produce any type of motion. In addition
to such complexity for a strictly non-spinning ball, in practice it
is difficult for a ball to travel without rotating since a little spin
is induced by contact from the air with the seams [12, 37]. As a
consequence, the ball’s trajectory could have an apparent erratic
motion whereas the map of balls passing through the home plate
in a real pitch is seen as random when varying θ [40]. All of
this makes it difficult to compute a model that may accurately
reproduce the trajectory of a knuckleball with any orientation.

It is important to mention that there is controversy in the
causes that originate the lift force. It is evident that the asymmetry
of the seams plays a fundamental role in causing such force.
According to Watts and Sawyer [11] and Mehta [12], there are
two possible ways to produce a lift force on a baseball: for many
years, the classical hypothesis stated that the lift is produced not
only by the seams but by the shedding of vortices that occurs at
the rear side of the ball. All of these interact in a complex way,
as mentioned in Ferziger and Perić [2], Watts and Sawyer [11],
andMehta [12]. On the other hand, and according to Texier et al.
[37], there is the possibility that the lift force may be originated
only by the perturbations at the front side of the ball. This means
that the seams produce the total lift of the ball, especially those
located at the separation or critical points of the boundary layer
at 52, 140, 220, and 310◦ [12, 36]; this will be addressed in detail
in section 3.3. Texier calculated that the force produced by the

2From this point on we will use the term “lift force” for referring to both lift and

side forces because both are equivalent, excluding gravity.

vortices at Strohual numbers (St) of St∼ 0.2 is significantly lower
than the magnitude of the lift measured in experiments, so that it
practically does not contribute to lift. More information about lift
force in ball sports can be found in investigations by Mehta [12],
Hong et al. [42], and Murakami et al. [43].

3.3. The Seams and the Boundary Layer
The manner in which the seams affect the boundary layer is
very sensitive to small changes between seams. As commented by
Borg and Morrisey [36], when a seam is located near the natural
separation angle (the angle of separation of a smooth ball), it
can induce turbulence and consequently provoke a delay in the
separation of the boundary layer; in turn, the seam can force
the separation to occur and cause an advance in the separation
angle. Such effects are seen in the sudden changes in the values
of the lift coefficient for a 4S orientation. For a smooth ball, a
sinusoidal shape of CL would be expected, in a similar way to
the lift coefficient reported for a smooth cylinder by Ferziger and
Perić [2]. However, Figure 4 suggests a quasi-periodic behavior
for CL for 4S balls, with fast changes in magnitude and direction
at 52, 140, 220 and 310◦, as observed by Watts and Sawyer
[11]. This is because the separation point is located around such
degrees and then it advances or delays with a little variation in the
stitch position.

Experiments by Higuchi and Kiura [38] show that a variation
of only one degree (36 to 37◦) in the stitch position causes a
sudden separation. Moreover, they reported that the balls are
more susceptible to hysteresis (including induced rotation) at the
zones of separation. For 4S balls and Re above 1.5×105, the ball
is sensitive to the initial rotation, namely, spins of 5 rad/s become
10.5 rad/s, increasing linearly and having a spin limit of 18.9 rad/s
even for Re above 2×105. In turn, for 2S balls they found that the
oscillation frequency is constant over Re∈ [1.9× 105, 4.6× 105].
As a consequence of the induced rotation, the phenomenon
becomes more unpredictable because the separation point moves
forward or backward at every moment of time. This is the reason
why the throws inside the intermediate window in Figure 1 are
the most difficult to study. We invite the reader to consult the
research of Higuchi and Kiura [38] for detailed observations of
the boundary layer.

To end the collection of the advances on knuckleballs, it is
important to mention the phenomenological model proposed by
Aguirre-López et al. [41] for computing the lift coefficient. It
consists of computing a super-imposition of the forces produced
by the vortex shedding and each stitch, so that

CL(θ) = a0 sin(4θ − π)+ a1

n
∑

i=1

[

sin

(

||si − p||π

2d
+ π/2

)

·

sgn
(

p∗ − s∗i
)]

, (12)

where CL = CL(θ) is now a function of the angle of attack
of the ball, the first term in the right-hand side is the force
caused by the vortex shedding and the term

∑

(·) is the sum
of forces produced by the seams, p is the stagnation point, si is
the position of the i-th stitch, s∗i and p∗ are the z−components
of si and p, respectively, and a0 and a1 are weight coefficients.
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FIGURE 4 | Experimental data [36] and model [41] of CL as a function of the attack angle θ for 4S (A) 2S (B) balls. Modified from Aguirre-López et al. [41].

Therefore, each stitch in model (12) produces a force whose
magnitude decreases smoothly when the stitch moves away from
the stagnation point and takes into account the symmetry on the
z-axis by introducing the sign function sgn(·). Thus, despite the
fact that model (12) does not consider effects of hysteresis and
high sensitivity to perturbations at the separation point, it fits
the experimental data of Borg and Morrisey [36] for 4S and 2S
orientations, as shown in Figure 4. Model (12) opens the door to
future research on how the seams and the vortex shedding affect
the lift force.

3.4. Discussion and Potential Research
Trends
Here we summarize and discuss the highlights of the non-
spinning pitches and outline potential research trends of
knuckleballs pitches as follows:

• The structure of the oscillations of the drag coefficient depends
on the orientation of the ball, whereas the height of the seams
increases the magnitude of the drag.

• The value of CD decreases from 0.6 to 0.4 units when
increasing V .

• The lift coefficient oscillates every 90◦, with a quasi-periodic
behavior for 4S balls, which is related to the effect of the seams.
In fact, values of CL for 2S balls oscillate every 180◦, with an
inversion every cycle [36, 38].

• The origin of lift force is not well understood. On the one hand,
seams could cause the total lift, and on the other hand, a sum
of both the seams and the vortex shedding could be the source
of it [11, 36, 37].

• Observations on the boundary layer suggest that the lift force is
more susceptible to perturbations at some angles, including 52,
140, 220, and 310◦ for 4S balls. Hysteresis is partly responsible
for this [38].

• We consider that simulations using CFD techniques could
disentangle the causes that produce the lift force.

• In addition to the last point, CFD simulations could help
to improve the model (12) or propose a variation of it that
involves the susceptible zones of the separation point, and
extend the model to arbitrary orientations.

4. APPLICATIONS

As the reader may suppose, there are many ways to make useful
the information compiled in sections 2 and 3. And, indeed,
baseball studies have been the basis of numerous technologies
on the matter, specifically those ones about spinning pitches. We
finalize this work with a brief summary of the main applications
of the aerodynamic forces on baseballs. Section 4.1 is focused on
the studies related to baseball’s trajectories. In turn, section 4.2
talks about the complementary applications including the best
known of them: the PITCHf/x algorithm.

4.1. Prediction and Reconstruction of
Trajectories
4.1.1. The Simulation Problem

The most simple use of aerodynamic forces is the simulation
or prediction of trajectories. A simulation of a baseball pitch is
frequently carried out by using the Equations (6) and (9) along
with gravity to compute a model of forces as:

mV̇ = Fd + FM +mg, (13)

which can be solved numerically by Runge-Kutta-4 or other
integration methods, whereas drag and Magnus coefficients
can be computed by Equations (7) and (10) or similar
approximations [6, 44]. The simulations could become more
realistic by including eventual forces in the model (13). An
example of this is themodel of Robinson and Robinson [8], which
adds a constant in wind to the ball velocity so that V′ is redefined
as (V′ = V+W), whereW is the wind velocity.

In turn, simulations of baseball trajectories are commonly
applied to some sport and technology areas such as in
video games [45], baseball machines [10] as well as for
instruction for baseball players. The last one is the main
reason for which research on knuckleballs is a topic of special
interest.

4.1.2. The Reconstruction Problem

The counterpart of simulation is the reconstruction of
trajectories. In these works, there is no possibility to give
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the initial conditions of a pitch and obtain the trajectory but
the trajectory must be extracted, tracking or reconstructed
only by a set of 3D or 4D (space plus time) points belonging
to the trajectory. Such data points are commonly recorded
by baseball broadcast videos and/or images of real games;
therefore, the trajectory obtained is used for the replay in
television.

Various methodologies have been reported for extracting
or tracking the trajectory. Most of them use types of diverse
filters like color, position, size and shape [46–48], and others
[49, 50] select possible trajectories. Then the chosen trajectories
are compared with the model (13) so that, if the resulting
trajectory does not agree with the model, then it is discarded
and a new one is needed. Takahashi et al.’s investigation [47]
also deals with classifying the type of pitch by relating a
total of 36 features, including the shape and speed calculated
from the ball trajectory data and the ball speed from the
screen display. They report an accuracy of ∼ 89% with their
methodology.

The methodologies that deal with a “direct” reconstruction
are based on the use of the equations of motion. Shum and
Komura [51] and Miyata et al. [52] use color filtering for
detecting 2D candidate trajectories. Then, Shum and Komura
estimate the depth of the ball in the scene by introducing a
model (13). In turn, Miyata et al. [52] chose one candidate
by fitting a uniformly accelerated motion model [similar to
model (13)] and finally, they use multiple cameras calibrated
temporally and geometrically to obtain a 3D trajectory. On the
other hand, Aguirre-López et al. [5] developed an algorithm
that directly solves the model (13) in two interrelated parts by
decoupling the Magnus force from the equations of motion,
using the Newton-Raphson method when knowing three points
of the trajectory. They reported absolute error values of ∼ 0.1
mm between simulated and reconstructed trajectories. Finally,
Kagan and Nathan [53] have developed a software called the
trajectory calculator, which is similar in operation to that
of Aguirre-López et al. [5] but with simpler assumptions.
The results are less accurate but it is a good tool to start
in the subject. The trajectory calculator can be downloaded
directly at [54].

4.2. The PITCHf/x Algorithm and Clustering
The second part of the application deals with problems related
to the classification of trajectories, among which the PITCHf/x
algorithm is the most popular and accurate reported method in
research and in the world of baseball. The algorithm (including
new versions and software packages) has been consolidated as a
powerful tool in the area of pitch classifications [55, 56].

The PITCHf/x algorithm consists of two parts. The first
one involves reconstructing trajectories by estimating the
coefficients Cd, CM and the spin axis φ (the angle between
y−axis and ω) using non-linear least-squares fitting with the
Levenberg-Marquardt algorithm. Nathan [55] reports very good
adjustments; indeed, root-mean-square deviations of the fitted
trajectory of around 1 mm in each dimension. The second (and
the main) part of the work deals with the classification of pitches.
The classification is based on (V vs. φ) and (ω vs. φ) graphics. As a
result, the types of pitches are arranged in clusters in polar scatter
plots and scatter plots of the deflection of the ball at home. Pane
[57] carried out an interesting cluster analysis from the results
of Nathan [55] based on PITCHf/x. The research on the topic
continues.

ETHICS STATEMENT

We express our gratitude to Elsevier for the permission to
reuse a modified version of the copyrighted Figures 2, 3a,
4 in the present paper. Order numbers: 4511461494464 and
4511510076028.

AUTHOR CONTRIBUTIONS

GE and OD-H contributed to the design and discussion of
this document. MA-L contributed to the design and writing of
this document. FH-Z contributed to the discussion and writing
of this document. JM-C and F-JA contributed to the discussion
of this document and as advisor.

ACKNOWLEDGMENTS

FH-Z thanks CONACyT, Cátedra 873.

REFERENCES

1. White FM. Fluid Mechanics. New York, NY: McGraw Hill (2003).
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