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Phytosanitary agencies conduct plant biosecurity activities, including early detection of

potential introduction pathways, to improve control and eradication of pest and pathogen

incursions. For such actions, analytical tools based on solid scientific knowledge

regarding plant-pest or pathogen relationships for pest risk assessment are needed.

Recent evidence indicating that closely related species share a higher chance of

becoming infected or attacked by pests has allowed the identification of taxa with

different degrees of vulnerability. Here, we use information readily available online

about pest-host interactions and their geographic distributions, in combination with

host phylogenetic reconstructions, to estimate a pest-host interaction (in some cases

infection) index in geographic space as a more comprehensive, spatially explicit tool

for risk assessment. We demonstrate this protocol using phylogenetic relationships for

20 beetle species and 235 host plant genera: first, we estimate the probability of a

host sharing pests, and second, we project the index in geographic space. Overall,

the predictions allow identification of the pest-host interaction type (e.g., generalist or

specialist), which is largely determined by both host range and phylogenetic constraints.

Furthermore, the results can be valuable in terms of identifying hotspots where pests and

vulnerable hosts interact. This knowledge is useful for anticipating biological invasions

or spreading of disease. We suggest that our understanding of biotic interactions will

improve after combining information from multiple dimensions of biodiversity at multiple

scales (e.g., phylogenetic signal and host-vector-pathogen geographic distribution).

Keywords: ambrosia beetle, biological invasions, biotic interaction, host range, logistic regression, phylogenetic

distance, phytosanitary risk assessment

1. INTRODUCTION

Understanding the geographic distribution and evolutionary ecology of plant pests and pathogens
represents an advance in phytosanitary risk assessment. While pests and pathogens can arrive at
new locations through natural dispersal, or be introduced for the purpose of biological control or
accidentally, or even by hybridization in situ [1], their relationships with specific hosts highlights
their potential to interact with different hosts, which is largely determined by their phylogenetic
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constraints. Typically, phytosanitary agencies provide plant
biosecurity at regional or national levels through eradication
or control of new pests via preventive activities such as
quarantining, detection of illegal introduction through customs,
and other local measures, once the problem is detected. However,
although pest control and phytosanitary risk assessment require
a thorough analysis of the areas of distribution of pests
or pathogens, the environmental conditions in which they
develop, and the hosts with which they are associated, resources
available for carrying out such analyses are normally insufficient.
A more effective alternative for an efficient phytosanitary
response should be based on analytical tools that incorporate
sound scientific knowledge regarding plant-pest relationships
to help identify which pests pose risks [2, 3]. Two of the
most informative sources of information (i.e., dimensions of
biodiversity [4, 5]) for phytosanitary risk assessment include
the geographic distribution of the pests and their associated
hosts and phylogenetic distance among hosts as a surrogate of
vulnerability, given that phylogenetically close species or genera
share a higher probability of being affected by the same pest [6].
It is possible to encode information about phylogenetic distances
among species in such a way that it can be shown geographically
[7], thus providing a spatially explicit risk assessment of the
plant-pest interactions. On this theoretical basis, it is possible to
calculate the probability of infection by a pathogen or attack by
a pest, either through its geographical distribution or by using
statistical methods to estimate the incidence of pests on a series
of hosts of different phylogenetic distances. The combination of
these two sources of information regarding pest/pathogen-host
interactions would provide amore comprehensive and integrated
biogeographic approach to risk analysis.

In general, information currently available regarding the
interaction of plants with pests or pathogens, or even insects, is
scarce and mainly pertains to a few sites. However, it is possible
to use information about the number of known hosts and the
phylogenetic distance between known hosts and other species
of interest to make inferences regarding plant-taxon interactions
at different taxonomic or phylogenetic levels [6]. Gilbert et al.
[6] used the Global Pest and Disease Database of the Plant
Protection and Quarantine Division of the Animal and Plant
Health Inspection Service of the United States Department of
Agriculture (APHIS-PPQ) database to extract all of the recorded
plant pests from 210 genera of flowering plants, and evaluate
the strength of the phylogenetic signal in terms of host range
for nine major groups of plant pests and pathogens. They found
clear statistical patterns in terms of the likelihood of different
plant genera sharing a common pest. On the other hand, primary
biodiversity data of species distributions for major taxa can be
readily accessed via several online databases, such as the Global
Biodiversity Information Facility (GBIF)1, and can be used
simply as occurrence information with which to conduct spatial
queries or as input data for obtaining potential distributional
ranges from species distribution modeling. As distributional data
from such databases present spatial and taxonomic biases and
gaps, they must therefore be used with some caution [8].

1http://www.gbif.org

Here, we propose an approach by which to: (1) assess the
probability that a source host shares a pest with a target host,
considering the phylogenetic distance between them, and (2) use
this model to project the intensity of the expected likelihood
in geographic space given the distribution of host taxa in
what could be interpreted as a spatial index of interaction
or risk to host plants. This procedure represents an efficient
method for performing a geographical assessment, especially
when interpretation depends on the interactions of the pest or
pathogen with host plants or any other agent (e.g., insects) found
to be associated with the host plants. We apply this protocol
to a set of ambrosia beetles (Scolytinae: Xyleborina) and their
associated hosts to illustrate the efficacy of this assessment and
evaluate its similarity to empirical evidence collected previously
[6, 9].

2. METHODS

2.1. Beetle and Plant Host Incidence Matrix
We derived an incidence matrix I based on information
pertaining to 23 ambrosia beetle species and their associated
host plant species by retrieving information from one of the
most comprehensive databases on bark and ambrosia beetles,
curated by Thomas Atkinson2. These 23 species were selected
because of their phylogenetic relationship to Xyleborus glabratus,
an invasive alien species in North America and vector of the
fungus Raffaelea lauricola, which causes Laurel Wilt Disease and
is a major agent for tree mortality for species of Lauraceae [10]. In
general, these data coincided with recently published information
on the phylogenetic relationships of ambrosia beetles [11]. The
taxonomy of beetle species to X. glabratus was checked using
information validated for GBIF and NCBI with the R package
taxize [12].

Using information from the same database, we found 372
host plant species associated with this set of beetle species. From
this group of host plant species, we summarized information
at the genus level (243 genera), of which we kept only
those genera with phylogenetic information valid for the
Angiosperm Phylogeny Group (APG III; [13] for reconstructing
a phylogenetic hypothesis (235 genera in total; see below). A final
incidence matrix I= aij was then obtained with 20 beetle species
for rows i and 235 host plant genera for columns j, coding it as
1 if the beetle-plant association was reported as present and 0
otherwise. We considered only beetle species with three or more
plant associations, since a lower number of incidences could lead
to unreliable results in the linear regression ([6]; see below).

I =



















aij|aij =

{

1 if host is infected

0 if else

}

(1)

2.2. Plant Host Phylogenetic Distance
Matrix
For the 235 host plant genera, an ultrametric phylogenetic tree
was obtained from Phylomatic through the R package brranching

2http://www.barkbeetles.info/
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[14]. This tree was then imported into Phylomatic, where branch
lengths were estimated using the bladj function [15]. This step
uses information from the APG III supertree [13] and the dated
nodes given by Wikstrom [16]. From this phylogenetic tree, we
then obtained a symmetric real-valued dissimilarity matrix D1 =

[dij] of order n = 235, in which dii = 0 for all 1 ≤ i ≤ n and
dij ≥ 0 for all 1 ≤ i < j ≤ n for each n plant genus with
the R package ape [17] and then transformed the matrix as D
= log10(D1 + 1), following Gilbert et al. [6].

2.3. Beetle-Host Association Probability
Matrix
To obtain the probability of a host plant genus being affected
by, or found in association with, a particular beetle species (or
all of the beetle species), we calculated a logistic regression
relating the host-beetle incidences in matrix I to the host
phylogenetic distances in matrix D, using phylogenetic distance
as the independent variable. To this end, we first constructed
a two-column array between I and D as follows: for each
row in I, we randomly selected one interacting host (known
as the source host), and then selected the remaining host
genera (target hosts) iteratively at random. We repeated this
process for each row in I, adding the information corresponding
to each new row to the two-column array until we had
completed the entire set of beetle species. A matrix of
probabilities P was then obtained by applying the regression
coefficients to the logistic transformation of I (see Section
2.2). In Equation (2), β0 and β1 were obtained by repeating
the previous procedure 1,000 times and selecting both the
mean intercepts (β0) and slope coefficients (β1) of these
regressions.

P =
1

1+ e−β0+β1D
(2)

2.4. Presence-Absence Matrices Of Host
Plants
A presence-absence matrix summarizes information pertaining
to the geographic distribution of every host plant species over
a regular grid for any given region, with presence coded as 1
and absence as 0. We defined M = [mij] in which mij = 1
if the host genera was present and mij = 0 where absent. If
this occurred, we considered two cases with which to show the
host plant genera distribution on a regular grid of 1 degree
spatial resolution: one matrix containing information on host
plant genera, derived from the list of host plant species in
the database of Atkinson (called M1), and a second matrix
corresponding to host plant genera in the phylogenetic tree but
showing occurrences for each genus directly from GBIF using
the R package spocc [18] (called M2). For M1, all 372 host
plant species were used to obtain occurrence data from GBIF,
after which we grouped information at the genus level and
merged it with the genera in the phylogenetic distance matrix
D. This procedure rendered a matrix of m = 232 host plant
genera by n = 62, 640 sites. For M2, the occurrence data
from GBIF rendered a matrix of m = 203 host plant genera

by n = 62, 640 sites. We used both matrices M1 and M2 to
illustrate the fact that the occurrence data could also be biased
or incomplete when using different avenues by which to retrieve
it. This problem is potentially common when handling resources
available on different databases or using different search engines
(e.g., accessing GBIF directly online or through the R package
spocc).

2.5. Interaction or Infection Spatial Index
and Risk Maps
We obtained an interaction or infection matrix G = PM by
multiplying matrix P by matrix M1 or M2. Matrix G contains
information about the probability that a given source host can
share a beetle with other target hosts when they are present
at a given site. We suppose that each interaction or infection
event could occur regardless of which host is the source, an ideal
scenario that simplifies the process of the interaction or infection.
The interaction or infection index per site g =

∑m
j=1[gij] was then

obtained by summing each column inG. Finally, to spatialize this
index vector, we assigned the longitude and latitude of every cell
in the 1 degree grid to build a raster that portrays the index value
over geographic space. This index was normalized and rescaled
with cumulative and generalized logistic transformation using
the R package bossMaps [19], allowing us to compare among
different outputs (e.g., different sets of species or genera); this
index is equivalent to a suitability index. We also converted the
logistic output to a binary map, using a threshold of 0.5 (see
Supplementary Material).

FIGURE 1 | Phylogenetic signal and probability of host plant genera sharing

beetle species. Curves are predicted from logistic regressions using the

coefficients given in Table 1. Four relationships are highlighted: a narrow host

range and phylogenetically constrained species (Xyleborus xylographus), a
wide host range and phylogenetically constrained species (Xyleborus
glabratus), a wide host range and phylogenetically dispersed species

(Xylosandrus crassiusculus), and all beetle species together.
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TABLE 1 | Logistic regression coefficients and confidence intervals.

Beetle species β0 2.5% 97.5% β1 2.5% 97.5%

Ambrosiodmus obliquus 2.005 −3.5225 7.5325 −2.1993 −4.3305 −0.0682

Ambrosiodmus rubricollis 5.1398 −4.1651 14.4448 −3.3163 −6.8702 0.2377

Ambrosiodmus tachygraphus 4.6856 −9.1553 18.5264 −3.3991 −8.6864 1.8882

Xyleborus obesus 2.3697 −4.2957 9.0352 −2.5059 −5.0497 0.038

Cnestus mutilatus 3.4716 −2.5458 9.489 −2.4619 −4.7168 −0.207

Coptoborus pseudotenuis 7.7836 −3.7667 19.3338 −4.192 −8.639 0.2551

Euwallacea fornicatus 3.014 −3.2981 9.3261 −1.8585 −4.2341 0.5171

Euwallacea validus 4.7687 −1.7713 11.3087 −2.6016 −5.0338 −0.1695

Sampsonius dampfi 5.8214 −6.8643 18.5071 −3.8804 −8.7952 1.0343

Xyleborinus saxeseni 2.6893 −3.0522 8.4309 −1.8111 −3.9597 0.3375

Xyleborus affinis 2.1088 −2.9366 7.1543 −1.1084 −2.9856 0.7688

Xyleborus ferrugineus 2.6372 −2.3476 7.622 −1.5189 −3.395 0.3571

Xyleborus glabratus 15.941 7.6353 24.2468 −7.1511 −10.3155 −3.9866

Xyleborus posticus 1.7296 −3.4087 6.8678 −1.8582 −3.8101 0.0936

Xyleborus seriatus 2.6659 −3.6384 8.9702 −2.1272 −4.4742 0.2197

Xyleborus xylographus 9.6907 −4.2267 23.6081 −5.5552 −11.0613 −0.0491

Xylosandrus compactus 3.3348 −3.6878 10.3575 −2.0683 −4.6553 0.5188

Xylosandrus crassiusculus 2.9637 −2.7676 8.695 −1.4082 −3.5437 0.7273

Xyleborus germanus 2.319 −2.9065 7.5446 −1.5299 −3.4579 0.3982

Xylosandrus morigerus 3.5355 −2.0179 9.0889 −1.8522 −3.9433 0.2389

FIGURE 2 | Spatial projection of the interaction or infection index summarized at 1-degree spatial resolution for the case with all of the beetles pooled together using

GBIF occurrence information from (A) host plant genera derived from the list of host plant species in the bark beetles database (M1) and (B) host plant genera in the

phylogenetic tree after obtaining the occurrences for each genus directly using the R package spocc (M2).

2.6. Relationship between Host Range,
Host Richness and Interaction or Infection
Spatial Index
To explore the relationship between host range (i.e., the number
of host genera interacting with a beetle species) and the
correlation between host richness (i.e., number of host genera
per cell in the grid) and the interaction or infection index, we
obtained the correlation coefficients rn between the interaction
or infection index for each beetle species gn (n = 20 cases) and
host richness S (rgn,S = corr(gn, S)). These correlation coefficients
were then used to perform a linear regression with a negative
exponential transformation of the host range (Equation 3). Host

richness was estimated by S =
∑j

m=1 aij for mij both for M1 and

M2, respectively. Host range was obtained from H =
∑j

m=1 aij

for aij elements of I. All methods were implemented in the R
package geotax available through GitHub3.

r = α0 + α1e
−H (3)

3. RESULTS

Figure 1 shows the probability of a host plant genus sharing a
beetle interaction determined by the phylogenetic distance from
the source host using the coefficients of the logistic regression
(Table 1). Particular cases are highlighted in the figure, in which
the red dotted line corresponds to the case where all beetles

3https://github.com/alrobles/geotax
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are included in the analysis; three other cases were selected
to show relationships in which the beetle corresponds to (1)
a narrow host range and phylogenetically constrained species
(Xyleborus xylographus), (2) an intermediate host range and
phylogenetically constrained species (Xyleborus glabratus), and
(3) a wide host range and phylogenetically dispersed species
(Xylosandrus crassiusculus).

The geographic expression of the interaction or infection
index in the case of all beetles pooled together derived from both
M1 and M2 shows approximately the same pattern, although
some differences in the pattern distribution are apparent
depending on the particular host plant distribution matrix used
(Figure 2). These maps indicate that the highest probability
of interaction or infection occurs over large areas worldwide,
with the highest intensity of this process occurring in parts
of Neotropical America and the eastern and western coasts of
North America, Central Europe, smaller portions of sub-Saharan
Africa andMadagascar, Southeast Asia, and eastern and northern
portions of Australia. These patterns corresponded in large part
to the distribution of the 235 host genera worldwide. When the

distribution of the index was mapped over the binary map, we
observed a reduction in the distribution of the interaction or
infection index (Figure S1).

The geographic distribution of the interaction or infection
index for the three particular cases of phylogenetic constraint
and host range depicted different regions depending on the
beetle species and host plant genera distributionmatrix, although
these differences were not so marked between M1 and M2

(Figure 3). In the narrow host range and phylogenetically
constrained species (Xyleborus xylographus), the intensity of
the interaction was highest in eastern North America, Central
Europe, and parts of Southeast Asia. For the intermediate
host range and phylogenetically constrained species (Xyleborus
glabratus), highest intensity was in eastern North America, from
the northern limit of the Neotropics through Central America,
and in northern and eastern South America, as well as in
eastern China, Southeast Asia, and eastern Australia. In the wide
host range and phylogenetically dispersed species (Xylosandrus
crassiusculus), the distribution of the interaction index intensity
was similar to X. glabratus.

FIGURE 3 | Spatial interaction or infection index for three cases of host range size and different levels of phylogenetic constraint. Maps in (A,C,E) correspond to the

interaction or infection index for host plant genera from the original host-beetle database (M1), and maps in (B,D,F) correspond to the interaction or infection index for

host plant genera from the phylogenetic tree (M2). The three cases correspond to a narrow host range and phylogenetically constrained species (Xyleborus
xylographus), a wide host range vector and phylogenetically constrained species (Xyleborus glabratus) and a wide host range and phylogenetically dispersed species

(Xylosandrus crassiusculus). Maps summarize information at 1-degree spatial resolution.
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We observed a linear relationship (Equation 3) between the
transformed host range size H and the correlation coefficient
r between the interaction or infection index and host richness.
The values to calculate the relationship are shown in Table 2.
This pattern was constant when the correlation was conducted
for both host plant genera matrices M1 and M2 (Figure 4). This
result showed that, with a small number of interacting hosts,
the model had a lower correlation with host richness; however,
when the host range was large, the correlation with host richness
grew asymptotically to one. It is thus possible to characterize
quantitatively the nature of the interaction (according to host
range and phylogenetic constraint) in relation to a set of pests
or interacting agents and their hosts.

4. DISCUSSION

Prediction of biological interactions and invasions is a challenge.
From a phytosanitary perspective, meeting this challenge
would yield the potential to anticipate the ecological and
evolutionary dynamics of species and the potential for alteration
of native or cultivated ecosystems. Here, we show that
combining information from the ecological and phylogenetic
relationships of pest species and geographic distributions of
known and potential hosts offers an opportunity to map
risk of problems even before a new pest is recognized. This
process could also be used to anticipate the potential for

species invasions [20] or outbreaks of disease related to novel
pathogens [21].

Development of interaction or infection predictions involves
two main steps: The first is to estimate the likelihood of sharing a
pest from simple linear regression models sensu [6]. The second
is to use that likelihood to predict the geographic patterns of
interactions, considering the distribution of known hosts of
the species, or those that could potentially interact with the
species, given their phylogenetic proximity to the interacting
agents (i.e., vectors, pests, etc.). The first step of this process
allows estimation of the probability of sharing a host, considering
different levels of phylogenetic proximity among hosts and host
range size. This result is therefore very informative from an
ecological and evolutionary perspective in terms of evaluation of
patterns of infection [9]. The second step projects the likelihood
of interaction over geographic space, presenting spatially explicit
predictions of the interaction between the agents and their hosts.

While we know of no previous attempt to represent
this combination of factors geographically, some previous
efforts to combine ecological, phylogenetic, and geographic
information have been made. For example, Leibold et al.
[7] coded phylogenetic nodes per site to obtain geographical
patterns of the phylogenetic signal, but without considering the
interaction process. Furthermore, in a recent study Morales-
Castilla et al. [22] summarized different frameworks to infer
biotic interactions from different biodiversity dimensions, one
of which included a combination of phylogenetic information

FIGURE 4 | (A) World host richness. This corresponds to host plant genera in M1. (B) Linear model between host range (negative exponential transformation, also

see Equation 3; a small value implies a larger host range and vice versa) and the correlation coefficients between host richness and the interaction or infection spatial

index. M1 corresponds to host plant genera derived from the list of host plant species in the bark beetles database and M2 to host plant genera in the phylogenetic

tree after obtaining the occurrences for each genera directly using the R package spocc. (C) Binary predictive model for Xylosandrus crassiusculus, a generalist bark

beetle species. (D) Binary predictive model for Xyleborus xylographus, a specialist bark beetle species. Note that cases (C,D) correspond to extremes in (B), and that

(C) has a higher correlation with species host richness than (D).
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and species distributions. However, none of these frameworks
transferred or projected the inferred interactions to geographic
space.We suggest that this step is critical in anticipating potential
interactions; from our analysis, we can conclude that the
potential geographic distribution depends on, or is a consequence
of, the number and type of interactions (i.e., according to host
range and level of phylogenetic constraint; also see [23, 24]).
An extension of this approach could be to improve single
species distribution models [25] by including both the customary
environmental information and species interactions. Moreover,
since this index may be interpreted as a suitability index for
predicting ecological interactions, it could also be interpreted
as summarizing the parts of the realized ecological niche of the
species related to the Eltonian ecological niche [26, 27]. Given the
fact that biotic interactions are difficult to predict and quantify at
geographic scales [28], this information is crucial for predicting
the geographic distributions of species [29, 30].

In our example using ambrosia beetles, we detected at
least three main cases of potential interaction between the
likelihood of sharing an interaction and phylogenetic distance
among hosts. These situations were the narrow host range and
phylogenetically constrained species (Xyleborus xylographus),
narrow to intermediate host range and phylogenetically
constrained species (Xyleborus glabratus) and wide host
range and phylogenetically dispersed species (Xylosandrus
crassiusculus). These cases show a different pattern in terms
of the likelihood of sharing an interaction, which is quantified
from the coefficients of the linear regression (see Figure 1

and Table 1). Moreover, these individual patterns correspond
well with the host range known for these beetle species from

TABLE 2 | Host range for each beetle species and correlation coefficients

between host plant genera richness and the interaction or infection index from M1

and M2.

Host range rM1
rM2

Ambrosiodmus obliquus 6 0.8814 0.9859

Ambrosiodmus rubricollis 7 0.8451 0.9841

Ambrosiodmus tachygraphus 4 0.7278 0.8787

Xyleborus obesus 4 0.6861 0.8758

Cnestus mutillatus 10 0.873 0.997

Coptoborus pseudotenuis 10 0.8897 0.9843

Euwallacea fornicatus 31 0.8952 0.9988

Euwallacea validus 22 0.8836 0.9988

Sampsonius dampfi 4 0.8339 0.9042

Xyleborinus saxeseni 25 0.8876 0.999

Xyleborus affinis 70 0.8918 0.9999

Xyleborus ferrugineus 47 0.8927 0.9995

Xyleborus glabratus 9 0.8163 0.9713

Xyleborus posticus 10 0.8873 0.9945

Xyleborus seriatus 11 0.8714 0.993

Xyleborus xylographus 3 0.5687 0.6785

Xylosandrus compactus 22 0.8882 0.9996

Xylosandrus crassiusculus 73 0.8917 0.9999

Xyleborus germanus 32 0.8859 0.9996

Xylosandrus morigerus 48 0.8939 0.9992

the original database. Prediction of these patterns had been
suggested by Gilbert et al. [6] and other authors have found
similar trends [31]; however, those authors did not show the
geographic pattern of the relationship with actual or potential
hosts.

We conclude from these single-species relationships that, to
obtain a statistically significant linear regression model or a
relationship with less uncertainty, it is necessary to have several
observed interactions with different hosts or use quantitative
impact data [32]. In our single-species examples, we excluded
cases in which the beetles had two or fewer host plant species. In
addition, the relationship pattern observed with all beetles pooled
together was frequently different from that of single-species
cases, thus suggesting that useful information exists at the single-
species level that differs from that of the whole set of species.
Interestingly, when we project the interaction or infection index
for the single-species cases, it is clear that potential interaction
with hosts depends largely on their geographic distribution and
also that the differences in the predictions for the individual cases
are not particularly marked. This outcome could be due to the
fact that these beetle species are phylogenetically related and,
in some cases, share host genera that have similar geographic
distributions. However, we would expect this result to change for
different taxonomic groups or sets of species.

Overall, the geographic distribution patterns of the interaction
or infection index coincide with the distributions of host genera
in both the native and invaded areas of the beetles. The most
recently invaded areas for some of these species in North America
(i.e., Xyleborus glabratus and Euwallacea sp.) coincide with a
pattern of invasion with high intensity values for the interaction
or infection index. Areas that are not yet invaded but where the
plant host genera are present show high invasive potential, as
predicted by other studies. For example, the vector of the fungus
Raffaelea lauricola, Xyleborus glabratus which causes the Laurel
Wilt Disease, has shown relatively fast expansion in easternNorth
America following its introduction from Asia in 2002 [33]. The
interaction or infection index for this species predicted not only
its native range in Asia, but also its currently invaded range in the
United States. This species has advanced from Georgia to Texas
in a period of 15 years, affecting species from the Lauraceae family
and impacting native and cultivated plantations4. However, its
invasive potential expands southwards to regions in Mexico,
Central, and South America, where Lauraceae species are diverse
and abundant, and where cultivated plantations of avocado
(Persea americana) are also an economically important crop.
Hence, the interaction or infection index appears to predict what
is known about the current distribution for these species and can
be a valuable tool for anticipating host ranges and areas with
potential for invasion.

The fact that we observed a linear relationship between the
host range size and the correlation between the interaction or
infection index and host richness suggests that host range size
and host diversities are important drivers of ecological and
evolutionary interactions. Overall, there is a higher intensity
of the interaction or infection index between beetles and hosts

4https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd523011.pdf
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in more host-diverse regions. This pattern can be useful for
interpretation and regionalization of the expected distribution
of interactions, considering the diversity of hosts. However,
an important difference exists in the results depending on the
amount of information used (e.g., whether plant host genera are
derived fromM1 orM2).We suggest that host richness alone does
not provide sufficiently good prediction and that converting the
index to a binary map allows for improved delimitation of the
areas at higher risk (e.g., Figure 4). This interaction or infection
index projected in geographic space provides a manner by which
to re-scale the process of infection using both host richness
and phylogenetic distance. It is also important to consider that
while there is currently more primary biodiversity information
(i.e., information on species occurrences) available from which
to address new questions from the perspective of biodiversity
informatics, variation in both the availability and quality of data
remains an important problem to be resolved [34].

In summary, the combination of different biodiversity
dimensions is a necessary avenue by which to understand
patterns and processes in biodiversity [4, 34–36]. While
further theoretical background is still necessary to understand
the extent and limitations of combining phylogenetic and
distributional information for anticipating biotic interactions,
empirical evidence indicates that this tool is promising for
confirming actual and vulnerable hosts. Implementation of this
relationship in easy-to-use algorithms, such as we present here,
represents a step forward toward evaluating risk in phytosanitary
and biological invasion assessment, and in particular to project
potential host-pest interactions over geographic space. This
approach, however, would benefit from further fieldwork
to test these models empirically [37]. We also expect that
these implementations will be important for more quantitative
approaches toward understanding ecological and evolutionary
patterns and processes.
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