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A novel view of suprathreshold
stochastic resonance and its
applications to financial markets
Gui Citovsky* and Sergio Focardi *

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA

We introduce an original application of Suprathreshold Stochastic Resonance (SSR).

Given a noise-corrupted signal, we induce SSR in effort to filter the effect of the corrupting

noise. This will yield a clearer version of the signal we desire to detect. We propose a

financial application that can help forecast returns generated by big orders. We assume

there exist return signals that correspond to big orders, which are hidden by noise from

small scale traders. We induce SSR in an attempt to reveal these return signals.

Keywords: stochastic resonance, Hidden Markov Models, noise filter, suprathreshold, aperiodic

1. Introduction

Stochastic Resonance (SR) is a phenomenon in which a weak periodic signal in a non-linear system
is amplified and achieves a noise induced maximum [1]. In other words, the addition of white noise
to a sub-threshold periodic signal can actually increase the ability to reveal this signal. Frequencies
in the white noise resonate with those contained in the signal, amplifying the signal. Noise intensity
is progressively increased until the signal-to-noise ratio (SNR) reaches an optimal level. SR was
termed in 1980 by Benzi. Benzi and other groups believed that a SR effect can be used to explain
the almost periodic occurrences of glacial stages [2–5]. Benzi suggested that Earth’s climate falls
in one of two stable states, either glacial or interglacial. Nicolis showed that stochastic fluctuations
in climate can trigger a state switch [5]. These state switches however do not correspond with the
periodicity of glacial periods. Benzi proposed that weak periodic astronomical forcing caused by
variations in Earth’s orbit, coupled with short term stochastic climate variations resonate, and the
coupling of these events result in periodic state switches. Benzi’s generalization of this effect is that
a dynamical system that is subject to both periodic forcing and random perturbation may achieve
a peak in power spectrum when the two resonate [6].

As previously mentioned, Benzi et al. considered stochastic resonance in a bistable system
(interglacial periods and glacial periods). In 1988, McNamara et al. observed that SR occurs in a
bistable ring laser [7]. More generally, consider the following classical example of SR in a bistable
system [8].

dx

dt
= −

dV

dx
+ A0 cos(�t + ρ)+ ξ (t)

Note that V(x) is a double well potential and x(t) is the position of a particle in the well
at time t. A0 cos(�t + ρ) represents a periodic signal we wish to detect and ξ (t) represents
the intensity of noise added to the system at time t. Gammaitoni considers a generic model
in which the double-well potential V(x) = 1

4x
4 − 1

2x
2 and ρ = 0 (see Figure 1). In this

example, the well has a barrier of height 1V = 1
4 . For small A0, a noiseless system will

result in the particle fluctuating around one of the two minima. However, as ξ (t) increases,
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FIGURE 1 | SR in a double well.

the particle is able to hop over the barrier. If ξ (t) is too intense,
the particle will frequently hop between the two minima, with
no specific pattern. At an optimal noise intensity the period of
the signal can be recovered, as it will be synchronized with the
sequence of hops.

SR has been widely studied in neurons/neuronal models [1, 9–
19]. In 1991, Bulsara et al. theorized and simulated the occurrence
of SR in a single, noisy, bistable neuron model [12]. Bistable
neurons are defined by two stable states; resting and tonic
firing. Bulsara et al. consider a system in which stimuli occur
periodically. These stimulating events, coupled with noise, are
responsible for periodic state switching. In 1993, Douglass et al.
showed that SR occurs in crayfish sensory neurons [13].

In 1995, Gingl et al. worked with a much simpler system that
displays stochastic resonance [20]. This system is not required to
be bistable. The system consists of a threshold, a sub-threshold
signal, and noise. Consider that the signal desired to be detected
is periodic, say sinusoidal. Without any noise, the signal can not
be detected as it is below a horizontal threshold. Noise is added
to the system, and locations at which the noisy signal eclipses the
threshold are noted with a narrow pulse. With very little noise
added to the system, the noisy signal is still sub-threshold. If the
added noise intensity is too high, the entire noisy signal will cross
the threshold, giving us a poor representation of the sinusoidal
signal. At the optimal noise intensity (the noise intensity that
maximizes the SNR), the pulses should roughly correspond with
the peaks of the sinusoid, thereby extracting the period of the
signal. More precisely, Gingl et al. calculate the power spectrum
of the series of pulses. They show that the peak of the power
spectrum reaches a noise induced maximum.

In 1995, Collins et al. showed that the weak input signal
need not be periodic [1, 9, 10]. They show that SR occurs even
in the presence of a weak aperiodic signal. They termed this
phenomenon Aperiodic Stochastic Resonance (ASR) [1]. Collins
et al. studied the dynamics of FitzHugh–Nagumo (FHN) models
in the presence of an aperiodic signal. FHN models can simulate

excitable systems, such as the firings of sensory neurons. They
considered the following system [1]:

ǫ
dv

dt
= v(v− a)(1− v)− w+ A+ S(t)+ ξ (t)

dw

dt
= v− w− b

v(t) is a voltage variable, w(t) is a recovery variable, A is input
current, S(t) is an aperiodic signal, and ξ (t) is Gaussian white
noise. Collins et al. use the following parameters: ǫ = 0.005, a =

0.5, b = 0.15. We have run several tests with a slightly different
parameterization to get a better understanding of this model.
Essentially, there is a threshold at which the FHN model begins
to spike. A + S(t) is sub-threshold, therefore without added
noise, the FHN model will have little to no spiking activity. If
the noise intensity is too high, there will again be little to no
spiking. Between these two extremes exists a level of noise at
which spiking occurs. At the optimal noise intensity, the output
of spikes will most closely resemble the sub-threshold signal.
However, as Collins et al. mention in “Stochastic resonance
without tuning," [9] ASR is not very effective in a single unit
system because the sub-threshold signal changes over time,
requiring the optimal noise intensity to change over time. Collins
et al. offer a clever solution to this dilemma by considering an
N-unit summing network.

Collins et al. designed a summing network with N FHN
models, each governed by the following system of differential
equations [9]:

ǫ
dvi

dt
= vi(vi − a)(1− vi)− wi + A+ S(t)+ ξi(t)

dwi

dt
= vi − wi − b

To better understand this model, we have simulated this
phenomenon as well with slightly different parameters. As can
be observed in the equations and in Figure 2, each unit receives
the same input signal S(t) and independent noise ξi(t) with the
same noise intensity at any given time. Each unit EUi will fire
spike sequence Ri(t). Ri(t) will not be highly correlated with
S(t). However, averaging the spike sequences over all 1 ≤ i ≤

N, R∑(t) is the output of the system, and at an optimal noise
intensity will very well represent the sub-threshold input signal
S(t). Collins et al. show that as the number of units increase,
the coherence between S(t) and R∑(t) increases. They also show
that as the number of units increase, the drop in coherence from
the peak becomes far more gradual. Perhaps the most interesting
finding in the paper by Collins et al., is that this system can even
be used (not as effectively) to detect suprathreshold signals [9].

Though Collins et al. discovered that their summing
network of FHN model neurons can detect suprathreshold
signals, this would serve as a complicated signal processing
technique, as FHN units are fairly complex. In 1999, Stocks
developed a very elegant and generalized system that can detect
aperiodic, suprathreshold signals. This phenomenon was termed
Suprathreshold Stochastic Resonance (SSR) [21]. The system
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FIGURE 2 | Summing network of N FHN units. Figure adapted with permission from Collins et al. [9].

he developed is also a summing network that has since been
heavily studied [22–29]. The key difference between his model
and Collins et al.’s model is that Stocks uses drastically simpler
units.

As can be seen in Figure 3, Stocks uses N threshold units.
Each unit has a tunable threshold θi. Each unit receives the same
input signal x(t), and an independent source of noise ni(t). The
output, yi(t) of each unit is a based on a very simple check. For
unit i, if x(t) + ni(t) > θi, then yi(t) = 1. Otherwise, yi(t) = 0.
The output of the system at time t is y(t) =

∑N
i= 1 yi(t). Using

mutual information gain as a measure, Stocks showed that SSR
occurs in this network and that the effect is maximized when
θi = µx ∀i [23].

1.1. Our Application: Noise filtering
It seems that until now, SR and SSR have either been used
to detect sub-threshold signals, explain physical phenomena
(periodic occurrence of ice ages, firings of neurons, etc.), or to
mitigate information loss in signal processing (inducing SSR in
ADC circuits [25], improving speech recognition for people with
cochlear implants [26]). We will be using SSR in a fundamentally
different way. Given a signal that is corrupted by noise, we will
build Stocks’ network and feed it the noise-corrupted signal in
order to filter the corrupting noise. It is important to note the
difference in computational efficiency between Collins et al.’s
model and Stocks’ model. Rather than solving a couple of
differential equations at each unit as we would in Collins et al.’s
model, in Stocks’ model we are simply performing an O(1) check
at each threshold unit, per unit time. Therefore, the worst case
running time associated with this procedure is O(length(x) · N).

Consider the following signal: x(t) = S(t)+ξ (t). Here we have
a potentially aperiodic signal S(t) which we wish to detect. This
signal is corrupted by noise ξ (t). We use the phenomenon of SSR
in effort to mitigate the effect of the corrupting noise and achieve
a clearer representation of S(t).

1.1.1. Financial Application

In high frequency data, it is empirically found that there is
a persistent level of high/low returns. We believe that this is
due to large incoming orders that are split into smaller orders
with autocorrelated execution times, that could persist for days,
even months [30]. Our goal is to reveal this autocorrelated
stream of small orders that correspond to large orders. Distorting
our ability to detect these big orders is a certain amount of
background noise caused by smaller scale traders. We attempt to
filter the background noise, enabling us to detect the beginning
of a stream of small orders that correspond to a big order.

2. Methods and Results

Recall our assumption that there exist large orders that are
broken into small orders with autocorrelated execution times.
We consider other trades in the market to be background noise.
Thus, we have a noisy signal that is the combination of a stream
of small orders (the signal we attempt to reveal) and orders from
other traders (noise). First, we show that we can indeed use SSR
to filter noise from a noisy signal. We assume that we have the
noisy signal x(t) = S(t)+ ξ (t). S(t) is the signal we wish to detect
and ξ (t) is noise. We apply SSR to x(t) and show that the result,
x∗(t), is a clearer representation of S(t) than x(t).

2.1. SSR on Returns
Let’s consider an example showing a very simplified version of
our application. Suppose at any given point in time, returns
portray a big buy order (resulting in a stream of small buy orders)
or a big sell order (resulting in a stream of small sell orders). Let us
suppose these events are mutually exclusive and occur over 1000
time units. Figure 4A portrays two states; a stream of buy orders
with positive unit returns or a stream of sell orders with negative
unit returns. Suppose that noise from smaller scale traders that
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FIGURE 3 | Summing network of N threshold units. Figure adapted with permission from Collins et al. [21]. Copyrighted by the American Physical Society.

FIGURE 4 | Binary big order return series before (A) and after (B) it has been corrupted by noise.

corrupts the return series in Figure 4A follows a standard normal
distribution. The result is shown in Figure 4B.

Our goal is to use SSR to mitigate the effect of the noise
corruption and help us extract the big order signal. We
measure the noise filtering success of SSR by the percentage
increase in correlation coefficient. That is, we compute
corr(x∗(t),S(t))−corr(x(t),S(t))

corr(x(t),S(t))
. Following are results using N =

{1, 10, 100, 1000, 10, 000} threshold units.
Figure 5 shows that SSR was pretty successful, topping out at

a correlation coefficient increase of almost 5% when N = 10,000.
We can observe that as the number of units increase, there is an
increase in the peak of information gain.While the increase in the
peak between plots corresponding toN = 100, 1000, and 10,000 is
very minor, we can observe that as the number of threshold units
increase, the data are more stable and the decline from the peak
is more gradual.

It is also important to note the tradeoff between the length of
the signal used and amount of threshold units used. Reproducing
the signal in Figure 4A nine times, so that the new signal has

length 10,000, we compare the results to a close-up of the result
for N = 10,000 in Figure 5 (close-up is shown in see Figure 6).
We observe that the plot (Figure 7) is much less volatile using a
longer signal.

2.2. SSR on Prices
As an alternative to attempting to yield a clearer return series,
we try to yield a clearer price signal. Again, let’s assume that we
are either in a stream of big buy orders or big sell orders, each
order affecting the price signal with an amount having the same
magnitude (either 0.005 or –0.005). Let us suppose this signal
is corrupted by Gaussian distributed noise [N(0, 1)] from small
scale traders (Figure 8).

As can be seen in Figure 9, there is some information gained
about the signal after SSR. Specifically, there is a noise induced
maximum in increase of correlation coefficient of about 1%.
The structure created in the price model is more complex than
that of the return signal in Figure 4A, explaining the worse
results.
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FIGURE 5 | Post-SSR increase in correlation coefficient using N = {1,10,100,1000,10,000} threshold units, over 1000 time units.

FIGURE 6 | Close-up of post-SSR increase in correlation coefficient using N = 10,000 threshold units, over 1000 time units.

2.3. Which Method?
In this paper we will discuss scenarios in which SSR on returns
is favored over SSR on prices, and vice versa. First, it is

important to note that the preferred method is dependent upon
the level of noise of small scale traders. Consider the signal
in Figures 8A,B. Here we assume that the corrupting noise is
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FIGURE 7 | Post-SSR increase in correlation coefficient using 10,000 threshold units, over 10,000 time units.

FIGURE 8 | (A) Prices. (B) Prices after noise from small scale traders.

sampled from a standard normal distribution—this is intense
relative to the signal. McDonnell et al. show that a maximum in
mutual information must occur at a noise intensity of at most
unity ( σn

σx
≤ 1). Additionally, they qualitatively show that as

N increases, the added noise intensity at which a maximum in
mutual information occurs increases [22] (pp. 90–91). As our
approach is different than Stocks’, this is not necessarily true for
our model. When σn = σx, the correlation coefficient between
the price signal and the noisy price signal is 0.8212, and the
correlation coefficient between the price signal and the output
of SSR is 0.8315. Now, if we take the log returns of the pure

signal, and of the noise-corrupted signal, we have the signals in
Figure 10.

After computing log returns, the signal we wish to detect
becomes roughly 1000 times smaller than the magnitude
of the noisy signal. Extracting this signal seems futile.
At an added noise intensity of unity, the correlation
coefficient between the return signal and the noisy return
signal is 0.0039 and the correlation coefficient between
the return signal and the output of SSR is 0.0031—
very low numbers compared to the analysis on the price
signal.
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FIGURE 9 | Post-SSR increase in correlation coefficient using 10,000 threshold units, over 10,000 time units.

FIGURE 10 | Return signal corresponding to the price signal in Figure 8A before and after noise. (A) Before noise. (B) After noise.

Now, let us suppose the corrupting noise intensity is much
smaller. For example, suppose the noise is sampled from a
N(0, 0.0032) distribution.

With the views provided, it is difficult to distinguish between
the signals in Figures 11A,B as the noise intensity corrupting
the signal is very low. The correlation coefficient between the
price signal and the noisy price signal is one. Clearly applying
SSR to this signal will not improve the clarity of the signal.
Adding noise to a clear signal is futile as it can only yield a
distorted signal. However, these relatively small disturbances in

the price signal can manifest into highly volatile log returns
as seen in Figure 12B. In this situation, we are better served
to use SSR on the returns, attempting to extract the signal in
Figure 12A from the noisy signal in Figure 12B. As can be seen
in Figure 13, the gain in correlation coefficient tops out at a
very significant amount of about 6%. At an added noise intensity
of 0.5, the correlation coefficient between the noise-corrupted
return signal and the pure return signal is 0.7644, while the
correlation coefficient between the output of SSR and the pure
return signal is 0.8114.
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FIGURE 11 | Prices before and after N(0,0.0032) noise from small scale traders. (A) Before noise. (B) After noise.

FIGURE 12 | (A) Returns corresponding to the price signal in Figure 11A. (B) Returns corresponding to the price signal in Figure 11B.

Now we consider a signal that is a bit more realistic as it
pertains to our financial application. We suppose broken down
big orders, each of the same magnitude, are executed every
25 time units (Figure 14A), resulting in either an increase or
decrease in price every 25 time units (of course this part is not
too realistic). We first use heavy noise (Figure 14B).

The sign of each order in the signal in Figure 14A was
determined by aMarkov chain, with probability of 0.95 of staying
within a state. Again, we achieve a gain in information after SSR
(Figure 15).

Next we lower the corrupting noise enough so that the
correlation coefficient between a noisy price signal and the clear
price signal is nearly 1, and the correlation coefficient between
the corresponding noisy return signal and clear return signal is
relatively high (say, between 0.7 and 0.9; see Figure 16).

Using increase in correlation coefficient as a measure of
information gain, we in fact achieve none (see Figure 17).
Another interesting point is that the closest we are to achieving
information gain occurs at an added noise intensity of around 10,
as opposed to an amount less than unity. We also have examples

in which there is indeed information gain, and the peak occurs at
a noise intensity greater than unity.

2.4. Preprocessing for HMM
A Hidden Markov Model (HMM) is a Markov Process where the
states of the model are unknown (hidden). Based on the output
of the model, it is possible to deduce information about the states,
such as the probability of being in a state. We use a two state
HMM in an attempt to capture high and low levels of returns.

2.4.1. Approach

In our simulations, we always constructed our noisy signal to
be x(t) = S(t) + ξ (t) where S(t) is the clear signal we wish to
detect and ξ (t) is noise. Therefore, we were able to measure the
coherence between S(t) and the output of SSR. Of course with
real data, we are only given x(t), and we hope to extract a good
representation of S(t). The output of SSR should allow us to more
clearly detect whether we are in the midst of a stream of big buy
orders, or a stream of big sell orders. Thus, if we define two states
to represent a stream of buy orders or a stream of sell orders,
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FIGURE 13 | Increase in correlation coefficient as a function of added noise intensity to signal in Figure 12B (using 10,000 units).

FIGURE 14 | Prices before and after noise from small scale traders. (A) Before noise. (B) After noise.

applying SSR to real data should provide a greater separation
between these two states.

Here, we will present results of SSR using 15,000 threshold
units applied to 10,000 min worth of AAPL data. We desired
minute–minute data and chose AAPL arbitrarily. This data was
taken from February 15, 2013 to March 25, 2013. Note that there
exist 1000min in between any two consecutive time stamps in the
following figures.We will compare the ability of a HMM to detect
states without SSR with the ability to do so after preprocessing
with SSR. We hope to achieve a better separation of states in the
HMM after preprocessing with SSR.

2.4.2. Approach #1

One approach is to apply SSR to prices, then feed the log returns
of the output of SSR to a HMM. We should achieve good results
if the noise corrupting the price signal is relatively high. In
Figure 18A we plot AAPL prices and in Figure 18B we plot the
output of SSR as applied to AAPL prices.
First, we fit a two-state fixed transition HMM to the unaltered
AAPL returns and achieve the following results:

Transition matrix:

[

0.9805 0.0195
0.0711 0.9289

]
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FIGURE 15 | Post-SSR increase in correlation coefficient using 10,000 threshold units, over 3000 time units.

FIGURE 16 | Returns before and after noise from small scale traders. (A) Before noise. (B) After noise.

Expected duration spent in regime #1: 51.40 min
Expected duration spent in regime #2: 14.07 min

Figure 19 shows the state probabilities over time.
We then preprocess our data with SSR at a noise intensity of
unity. Then we feed the log returns of the output to a HMM.
Following are the results:

Transition matrix:

[

0.9893 0.0107
0.0116 0.9884

]

Expected duration spent in regime #1: 93.36 min

Expected duration spent in regime #2: 85.89 min

Figure 20 shows the state probabilities over time.
The results using a noise intensity of 1 were very exciting. It
seemed like SSR really helped define/separate two regimes. Let
us again consider the signal in Figures 8A,B.
Below are the results of fitting a HMM to the log returns of the
noise-corrupted price signal in Figure 8B:

Transition matrix:

[

0.8088 0.1912
0.1055 0.8945

]
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FIGURE 17 | Post-SSR increase in correlation coefficient using 10,000 threshold units, over 3000 time units.

FIGURE 18 | (A) AAPL prices. (B) Output of SSR applied to AAPL prices.

Expected duration spent in regime #1: 5.23 min
Expected duration spent in regime #2: 9.48 min

Figure 21 shows the state probabilities over time.
Recall that for the signal in Figures 8A,B, a near maximum

in correlation coefficient increase occurred at noise intensity 1.

Following are the results of fitting a HMM to the log returns
of the output of SSR applied to the signal in Figure 8B, using a

noise intensity of 1.

Transition matrix:

[

0.9593 0.0407
0.0323 0.9677

]

Expected duration spent in regime #1: 24.58 min
Expected duration spent in regime #2: 30.94 min

Figure 22 shows the state probabilities over time.
These results again seem awfully promising. It seems like there

is clearly a better separation of states after SSR. The issue is the
location in which the state switching occurs. We would expect a
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FIGURE 19 | State probabilities over time.

FIGURE 20 | State probabilities over time with noise intensity of unity.

FIGURE 21 | HMM on log returns of noise-corrupted signal in Figure 8B. State probabilities over time.
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FIGURE 22 | HMM on log returns of output of SSR on noise-corrupted signal in Figure 8B. State probabilities over time with noise intensity of unity.

FIGURE 23 | Plot of log returns of output of SSR applied to the noise-corrupted signal in Figure 8B.

state switch to occur at time multiples of 1000. This is not the
case—instead, state switches occur at time points x + 500 where
x is a non-negative multiple of 1000. Figure 23 is the plot of the
log returns of the output of SSR.

In Figure 23 we observe high volatility corresponding to low
values in the price signal, and low volatility for high values in the
price signal. Going back to the results on AAPL stock; following
(Figure 24) are plots of the price signal, and of the log returns of
the output of SSR.

Again, we observe the same phenomenon. Suppose X(t) is
the number of units that have exceeded the threshold at time

t. Real data prices won’t vary much between time t and time
t + 1 (suppose we are using minute to minute data), but due
to the stochastic nature of our results, |X(t + 1) − X(t)| could
be large, and cause higher volatility in returns in periods of low
price.

2.4.3. Approach #2

Another reasonable approach is to apply SSR to the returns and
fit the results to a HMM. Figure 25A shows a plot of AAPL log
returns and Figure 25B shows a plot of the output of SSR as
applied to the AAPL log returns.
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FIGURE 24 | (A) AAPL prices. (B) Log returns of output of SSR on AAPL prices.

FIGURE 25 | (A) AAPL returns. (B) Output of SSR applied to AAPL returns.

FIGURE 26 | State probabilities over time with noise intensity of unity.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 October 2015 | Volume 1 | Article 10

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Citovsky and Focardi A novel application of SSR

We preprocess AAPL returns with SSR at a noise intensity of
unity. Following are the results:

Transition matrix:

[

0.9923 0.0077
0.0068 0.9932

]

Expected duration spent in regime #1: 129.89 min
Expected duration spent in regime #2: 147.59 min

Figure 26 shows the state probabilities over time.
We observe that the two regimes are far more separated after

preprocessing with SSR. There are certain data sets for which the
results after SSR show no state switching. It appears that after
SSR, a HMM becomes more susceptible to becoming stuck in a
certain state. Using a three state HMM seems to fix this issue,
however we leave elaboration for future work.

3. Discussion and Conclusion

The effect of stochastic resonance is often characterized as a rapid
increase in information gain as a function of noise intensity.
This is followed by a gradual decline from the peak [18]. Our
many simulations clearly exhibit parallel findings, improving as
the number of threshold units increase. This provides validity

to our noise filtering application of SSR. Empirically, the noise
filtering seems to be most effective when there is low variability in
the underlying signal S(t) between consecutive time points. The
extent of applicability of our model to financial markets remains
to be determined. We plan to refine our results of fitting a HMM
to the output of SSR applied to log returns and see if we can turn
a profit with the knowledge of a potentially clearer signal.

Another subject for future work is threshold tuning. Stocks
shows that the effect of SSR is maximized when all thresholds
are set to the signal mean. Our application of SSR is different
than his, and as such, it is worthwhile to investigate potential
improvements from threshold tuning.

We have shown that fitting a HMM to the log returns of the
output of SSR on prices is not a reasonable approach. SSR on
prices can provide a clearer signal, so this methodology will be
explored further. If the application of SSR to real data can really
filter noise, we can use the results as an input to essentially any
method. This leaves many doors wide open.
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