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The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria,

viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal

sinuses is at the very forefront of the battles between the host and the invading

pathogens. Recent studies have revealed that the epithelium not only constitutes a

physical barrier but also takes an essential role in the activation of the immune system.

One of the mechanisms equipped in the epithelium to fight against microorganisms is

the Toll-like receptor (TLR) response. TLRs recognize common structural components

of microorganisms and activate the innate immune system, resulting in the production

of a plethora of cytokines and chemokines in the response against microbes. As the

epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory

conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis

(CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be

utilized as therapeutic targets for these diseases. There are several differences in the TLR

response between nasal and bronchial epithelial cells, and knowledge of the TLR signals

in the upper airway is sparse compared to that in the lower airway. In this review, we

provide recent evidence on TLR signaling in the upper airway, focusing on the expression,

regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also

discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible

therapeutic targeting, for CRS and AR.

Keywords: chronic rhinosinusitis, allergic rhinitis, NFκB, Poly(I:C), nasal epithelial cells, intracellular zinc, nasal

polyps

INTRODUCTION

The respiratory tract is always at risk of being invaded by microorganisms such as viruses,
bacteria and fungi, responsible for various infectious conditions. The airway tract is equipped
with several defense mechanisms against these potentially harmful pathogens. These include
physical mucosal barriers (consisting of mucin, beating cilia and an epithelial layer) and the
innate and adaptive immune responses. Pharyngeal reflexes such as coughing and swallowing
also contribute to the removal of invading microorganisms. These mechanisms exclude microbes
from the airway, physically, immunologically, and neurophysiologically, to sustain the homeostasis
of the respiratory tract. In particular, the immune response takes a pivotal role in preventing
microorganisms from entering our body.
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To initiate the immune response, pattern recognition
receptors (PRRs) act by detecting the invading microorganisms.
PRRs recognize structurally conserved molecules derived from
microbes and activate downstream signals, resulting in the
promotion of expression of many genes. Toll-like receptors
(TLRs) are examples of PRRs. There are 10 types of TLRs in
humans which share common mechanisms of action. TLRs are
expressed in many cell types including monocytes, macrophages,
dendritic cells, neutrophils, fibroblasts, endothelial cells, and
epithelial cells (1). The expression and responsiveness of each
TLR differs depending on the cell type (2). Despite many
similarities between the upper and lower airways (the so-called
united airway), there are significant differences in the TLR
response between nasal and bronchial epithelial cells (2–5).
Although the TLR response in the lower airway has been well-
documented (1, 6), literature on TLR signaling in the upper
airway is relatively sparse.

In this review, we provide recent evidence on TLR signaling
in the upper airway, focusing on the expression, regulation, and
responsiveness of TLRs in human nasal epithelial cells (HNECs).
We also discuss how TLRs in the epithelium are involved in the
pathogenesis of, and possible therapeutic targeting, for chronic
rhinosinusitis (CRS) and allergic rhinitis (AR).

TOLL-LIKE RECEPTORS

TLRs act as a primary sensor for pathogens by recognizing
pathogen-derived compounds, which are structurally
conserved among (7). Each TLR detects a specific ligand
from microorganisms (Table 1). For example, TLR3 explicitly
recognizes double-stranded RNA (dsRNA), which is produced
by viruses when they reproduce. TLR4 is involved in
detecting invading Gram-negative bacteria by recognizing
the lipopolysaccharide (LPS) from their outer membrane. TLRs

TABLE 1 | Characteristics of TLRs.

Ligand Representative

Pathogens

Localization NFκB Activation IFN Activation

TLR1 Triacyl lipopeptide Bacteria Cell membrane + None

TLR2 Diacyl lipopeptide

Zymosan

Bacteria

Fungi

Cell membrane + None

TLR3 dsRNA Viruses, host cells Intracellular organelles/cell

membrane

+ +

TLR4 Lipopolysaccharide

HSP

Bacteria

Host cells

Cell membrane + None

TLR5 Flagellin Bacteria Cell membrane + None

TLR6 Diacyl lipopeptide Mycoplasma Cell membrane + None

TLR7 ssRNA

Imidazoquinolines

Viruses

Small synthetic compound

Intracellular organelles + +

TLR8 ssRNA Viruses Intracellular organelles + +

TLR9 Unmethylated CpG DNA Bacteria

Viruses

Intracellular organelles + +

TLR10 unknown Unknown Cell membrane + None

TLR, Toll-like receptor; IFN, interferon; dsRNA, double-strand RNA; HSP, heat shock protein; ssRNA, single-strand RNA.

recognize these ligands by their leucine-rich repeats and activate
downstream signals through their Toll-IL-1 receptor (TIR)
domain (8), resulting in promotion of expression of many
genes. Nuclear factor-κB (NFκB) and interferon (IFN) signals
are examples of signals induced by TLR responses. NFκB is a
transcription factor involved in the promotion of expression of
many genes including Interleukin (IL)-6, IL-8, Tumor necrosis
factor α (TNFα), and Matrix metalloproteinase 9 (MMP9).
The transcriptional activity of NFκB is strictly regulated by the
cell, where translocation of NFκB molecules to the nucleus is
restricted. In a steady-state, NFκB is captured by inhibitory κB
(IκBs) and trapped within the cytosol. When TLRs recognize
their respective ligands, the TIR domain and components of
the innate signaling pathway transfer the signal to activate two
kinases, the IκB kinase α (IKKα) and IKKβ. The activated IKKs
phosphorylate IκBs, and the phosphorylated IκBs are degraded
by a ubiquitin-proteasome system. Consequently, NFκB is free
from IκBs and translocate into the nucleus, resulting in the
promotion of many genes’ expression (9) (Figure 1).

As for IFN signals, the ligation of TLRs and the corresponding
ligands pass through several processes involving TIR domain-
containing adaptor inducing interferon-β (TRIF), TRIF-related
adaptor molecule (TRAM), TANK Binding Kinase 1 (TBK), and
Myeloid differentiation primary response 88 (Myd88) proteins,
and finally activate interferon regulatory transcription factor
(IRF) 3 or IRF7. Once IRF3 and IRF7 are activated, expression
from the IFN-β promoter is initiated (10).

TLRs can be separated into two groups according to their
cellular localization. One group consists of TLR1, 2, 4, 5, and 6,
which are responsible for recognition of polysaccharides, lipids,
and proteins from microbes. These TLRs activate NFκB signals
but not IFN signals. The second group includes TLR3, 7, 8, and
9. These TLRs recognize nucleic acids derived from viruses and
activate not only NFκB but also IFN signals (Figure 1).
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FIGURE 1 | Two downstream signals activated by TLR responses. There are

two main downstream signals activated by TLR responses; Nuclear factor-κB

(NFκB) and interferon (IFN) signals. NFκB signals are activated by most TLRs.

When TLRs recognize ligands, the signal is transferred to activate the IκB

kinases (IKKs) by phosphorylation by TGF-β activating kinase (TAK). The

activated IKKs phosphorylate IκBs, and the phosphorylated IκBs are degraded

by a ubiquitin-proteasome system. Consequently, NFκB is free from IκBs and

may translocate into the nucleus, resulting in the promotion of many genes’

expression. To the contrary, IFN signals are only promoted by TLR3, 7, 8, and

9. The ligation of TLRs and the corresponding ligand pass through several

processes and finally phosphorylate and activate interferon regulatory

transcription factor (IRF) 3 or IRF7. Once IRF3 and IRF7 are activated, the

transcription factors drive expression from the IFN-β promoter.

The two groups have different subcellular localizations.
The former group is expressed on cell membranes, while the
latter localizes to intracellular organelles such as endoplasmic
reticulum and endosomes. One exception is TLR3. Depending
on the type of cells, TLR3 is expressed both in intracellular
compartments and on the cell surface (11).

TLR expression and responsiveness to TLR ligands varies
with cell type (1). In the case of airway epithelial cells, TLR
expression in the lower airway has been well-documented (1, 6).
Although all TLRs from TLR1 to 10 are expressed in bronchial
epithelial cells (12, 13), the most significant activation in those
cell types is achieved by TLR3 agonists, Poly (I:C) (12). Besides,
lipopolysaccharide (LPS, TLR4 agonist), Zymosan A (TLR2
agonist), peptidoglycans (PGN, TLR2 agonist) and Flagellin
(TLR5 agonist) can activate TLRs in airways and promote
expression of many genes (12, 14). The molecular expression
of TLRs themselves in the lower airway is also induced by TLR
ligands. Poly (I:C) induced expression of TLR2, 3, 6, and 10 (12).
TLR3 expression is also promoted with TLR4 stimulation by LPS
(12). However, the expression of TLRs does not always correlate
with their responsiveness to ligands (13, 15).

TLRs IN THE UPPER AIRWAY

Literature involving upper airway epithelial cells is more sparce
than on the lower airway. Several differences in TLR signals

have been reported between the upper and lower airway (2–5).
Unlike the lower airway, from which cell lines available such
as Nuli-1, BEAS-2B, and NCI-H292, no cell lines have been
established from the upper airway. Primary cells harvested from
the nasal epithelium are often used for research, but these cells
have slower growth speed than cell lines. Human nasal epithelial
cells (HNECs) only retain their properties up to passage four after
which they go into senescence (16). Therefore, the cells are not
applicable for experiments involving knockdown, which is one
of the basic methods to investigate the molecular mechanisms
within cells. These limitations have made the molecular- and
cellular- biological research on the upper airway more difficult
than the lower airway.

TLR Expression in HNECs
Several studies have investigated TLR expression in HNECs. Van
Tongeren, et al. reported that TLR1-6 and TLR9 were expressed
in HNECs but they failed to confirm the expression of TLR7, 8,
and 10 (15). Cooksley et al. demonstrated that TLR1, 2, 3, 4, 8,
9, and 10 were expressed in HNECs (2). Tengroth et al. reported
TLR3, 7 and 9 expressions in HNECs (17). Despite these apparent
discrepancies, these reports indicate that all known TLRs from
TLR1 to TLR10 are expressed in HNECs (13). However, this does
not imply that all TLR ligands activate innate immune signals in
those cells in the same way or to a similar extent. TLR expression
can correlate with various TLR-induced cytokines’ release (15).

TLR Signaling in HNECs
So far, several articles have reported the activation of TLR
signals in HNECs. Among the TLR ligands, dsRNA, the
ligand for TLR3, demonstrates the most significant effect on
promotion of gene expression in HNECs, including TNF-α
(18), IL-6 (2, 19), IL-8 (18), Thymic stromal lymphopoietin
(TSLP) (20), Matrix metalloproteinases (MMPs) and Tissue
inhibitor of metalloproteinase (TIMP-1) (21), and Angiotensin-
Converting Enzyme 2 (ACE2) and Transmembrane protease,
serine 2 (TMPRSS2) (22, 23). The dsRNA-specific-responsiveness
in HNECs may be an adaptation of those cells to the frequent
exposure to viruses (15, 21). TLR3 specifically recognizes
dsRNA, which most viruses synthesize in their life-cycles (24).
Considering acute and chronic rhinosinusitis often develop after
a viral infection, such as influenza virus, parainfluenza virus,
rhinovirus, and respiratory syncytial virus, it would make sense
for HNECs lining the nasal cavity to have high sensitivity against
dsRNA to activate an early innate immune response against the
invading viral infection.

dsRNA is recognized not only by TLR3 but also by Retinoic
acid inducible gene-I (RIG-I), another PRR. RIG-I, as well as
TLR3, are also expressed in HNECs (17, 21). The length of
the dsRNA is thought to determine which receptors recognize
it (25, 26). Therefore, different types of viruses are recognized
by different PRRs, depending on the length of dsRNA that
the virus synthesizes. For example, paramyxoviruses, influenza
virus and Japanese encephalitis virus are recognized by RIG-I
(27), while rhinovirus and respiratory syncytial viruses activate
the innate immune signal through TLR3 (28). However, the
contribution of activation through RIG-I of Poly (I:C)-dependent
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signaling in HNECs may be limited. Indeed, RIG-I-specific
agonists, 5’-ppp-dsRNA, failed to promote expression of MMP9,
one of the target genes of NFκB. To the contrary, TLR3-
specific agonists, polyadenylic acid-polyuridylic acid (Poly A:U),
successfully promoted gene expression, similar to Poly(I:C) (21).
This result indicates that TLR3, rather than RIG-I, may mediate
Poly(I:C) dependent innate immune signaling in HNECs.

In contrast with TLR3-dependent signaling, the role of
TLR4 seems limited in HNECs. Although TLR4 is expressed
together with key co-stimulatory molecules such as myeloid
differentiation factor 2 (MD-2) and CD14 (2, 15), many studies
have reported little or no upregulation of gene expression with
LPS, a TLR4 agonist (2, 15, 19, 21, 22, 29). Considering that
abundant bacteria are localized within the nasal cavity, even at
a steady state, the hypo-responsivity to LPS in HNECs might be
beneficial to prevent exaggerated inflammation against normal
flora in the nasal cavity (15).

Studies show that agonists for TLR1 (22), TLR2 (18, 22), TLR5
(2, 21, 22), TLR6 (2, 21, 22), TLR8 (20), and TLR9 (18, 22,
30) promote signaling in HNECs. However, their influence is
relatively limited compared to those that act on TLR3.

As for TLR10, whose ligands have not yet been defined
(31), it has not yet been investigated if and how TLR10
regulates downstream pathways and gene expression in HNECs.
Different from other TLRs, TLR10 is considered to exhibit anti-
inflammatory properties (31). TLR10 reportedly binds to dsRNA
and negatively regulates TLR3 signaling by competing with TLR3
for dsRNA ligation (32). Similar suppressive regulation might
exist in HNECs.

REGULATORS OF TLR SIGNALING IN
HNECs

To date, several regulators of TLRs and their downstream
pathways have been found. These include glucocorticoids (33,
34), epigenetic regulation (21, 35), intracellular zinc levels (36,
37), and the activated TLR signal itself (4, 19).

Glucocorticoids
Glucocorticoids (GC) suppress TLR-induced gene activation.
GCs activate glucocorticoid receptors and suppress intracellular
signaling pathways such as NFκB and IFN signals, exerting
a suppressive effect on the expression of many genes. The
mechanisms of the suppression of gene expression by GC
include the following: (1) binding to specific recognition
sequences, namely glucocorticoid response elements (GREs) on
the DNA (38), (2) promotion of anti-inflammatory proteins
such as IκBs (39), (3) interference with the binding of other
transcriptional factors to promoter regions (33, 34), and (4)
epigenetic modification by recruitment of Histone deacetylases
(HDAC) (40) to the transcriptional regions (41, 42) (Figure 2).

The regulatory effect of GC on transcription varies depending
on the cell type and the downstream pathways (42–44). For
example, GC suppressed the expression of IFN-target genes in
macrophages, but not in fibroblasts (45). In the case of HNECs,
GC suppressed NFκB transcriptional activity and NFκB target

genes such as TNF-α and IL-6 (22, 46). In contrast, the significant
suppression of IFN-β itself or IFN-stimulated genes by GC have
not been identified (22). The suppressive effect of GC on IFN
signaling pathway might be limited in HNECs.

Nowadays, glucocorticoids are widely used for the treatment
of inflammatory diseases of the nasal cavity and paranasal
sinuses such as CRS and AR. Glucocorticoids are applied not
only systemically but also locally as intranasal corticoids spray.
Especially the intranasal administration is one of the first choices
of conservative treatments of CRS and AR due to its confirmed
efficacy and safety (47–49).

Epigenetic Regulation of TLR Signals in
HNEC
Gene transcription is also modified by epigenetic modifications,
such as DNA methylation and histone modification, which affect
the chromatin structure within the nucleus and subsequently
gene expression. For example, Sirtuin-1 (SIRT1), a Nicotinamide
adenine dinucleotide-dependent deacetylase, modifies core
histones in chromatin with its HDAC activity, subsequently
winding DNA and resulting in general transcriptional repression
(35). In the context of TLR signaling in HNECs, our group
reported that SIRT1 suppressed Poly(I:C)-induced MMP9
expression (21). SIRT1 inhibitors significantly increased
Poly(I:C)-induced MMP9 expression and activity, while SIRT1
activators decreased them. In addition, MMP9 expression was
inversely correlated to SIRT1 expression in nasal mucosa (21).
Considering MMP9 expression is regulated by NFκB signals,
the suppressive effect of SIRT1 is thought to depend at least in
part on the reduction of nuclear translocation and increased
deacetylation of NFκB (50–53).

The suppressive effect of MMP9 expression by SIRT1 has
also been reported in other types of cells and is considered a
common mechanism across different cell types (54–56). Given
that SIRT1 is involved in the regulation of the NFκB signaling
pathway, apart from MMP9, many NFκB target genes could
also be regulated by SIRT1 in HNECs. Indeed, our group found
that a SIRT1 activator also suppressed Poly(I:C)-induced IL-6
and TNF-α mRNA (unpublished data). SIRT1 could therefore
be a therapeutic target by regulating inflammation and cytokine
expression in nasal mucosa, as these target genes are involved
in the pathophysiology of inflammatory conditions of the nasal
cavity. Interestingly, SIRT1 regulation of MMP9 was not found
in the non-inflammatory state, such as HNECs without Poly(I:C)
stimulation or nasal mucosa from healthy controls. However,
SIRT1 regulation was observed in inflammatory conditions such
as HNECs treated with Poly(I:C) or nasal mucosa from CRS
(21). This indicated that SIRT1 did not alter the signaling
activity in the steady state but did suppress gene expression
in inflammatory conditions, which would be preferable for
therapeutic application.

Intracellular Zinc
Another possible factor affecting the TLR signaling
is intracellular zinc levels (36, 37). In TLR-induced
downstream pathways, signal transduction largely depends
on posttranslational modifications of proteins including
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FIGURE 2 | The suppressive effect of Glucocorticoids on TLR-induced gene activation. Glucocorticoids suppress gene transcription by several mechanisms including

(1) binding to specific recognition sequences, namely glucocorticoid response elements (GREs) on the DNA, (2) promotion of anti-inflammatory proteins such as IκBs,

(3) interference with the translocation of NFκB, and (4) epigenetic modification by recruitment of Histone deacetylases (HDAC) to the transcriptional region.

phosphorylation, dephosphorylation and ubiquitination (57–
59). The activity of protein kinases (60), and phosphatases
(61–63) is influenced by zinc levels. Furthermore, SIRT1 is
dependent on zinc for its molecular structure and, therefore,
enzymatic activity (64, 65). Thus, altered zinc homeostasis could
influence cytokine production as a result of TLR stimulation
(66). Indeed, Poly(I:C)-induced IL-6 and IL-8 were significantly
upregulated in HNECs that were incubated in zinc-depleted
medium as opposed to those in normal medium (67). This
finding supports the notion that impaired zinc homeostasis in
HNECs causes enhanced pro-inflammatory cytokine release
promoted by activated TLR signals.

In general, intracellular homeostasis of zinc is maintained
by zinc transporters (Zinc Iron and Protein; ZIP and Zinc
transporter protein; ZnT) and chelators (metallothioneins, MTs).
Interestingly, it was recently reported that tissue zinc level is
reduced in nasal mucosa from CRS (68). Intracellular zinc
depletion was associated with impairment of epithelial barrier
structure and function and promoted pro-inflammatory cytokine
expression (67, 68). As the vulnerability of epithelial barrier
function and the promotion of pro-inflammatory cytokines in
nasal mucosa are hallmarks of CRS, impaired zinc homeostasis
might be involved in the pathogenesis of CRS (66, 68).

Other TLR Stimulation
The TLR-induced innate immune signal affects the expression
of TLR molecules themselves. In HNECs, Poly(I:C) stimulation
increased the expression of TLR1, 2 and 3, while TLR5 expression
was decreased (4).

TLR stimulation also alters the responsiveness of TLRs
to subsequent signals. Ramezanpour et al. investigated the
influence of priming with Poly(I:C) on TLR-agonist-induced
IL-6 production. In the experiment, HNEC-Air-liquid Interface
(ALI) cultures were primed with Poly(I:C) and after 24 h, the

cells were stimulated with Heat Killed Listeria Monocytogenes
(HKLM), LPS, or Poly(I:C). The results showed that IL-6 was
significantly decreased in primed HNECs compared to those
without pretreatment (19).

van Tongeren et al. showed the synergistic effect of PGN and
Poly(I:C) on IL-6 production in HNECs and bronchial epithelial
cells. First, the cells were stimulated with Poly(I:C) and then
PGN was added to the cells. Twenty-four h later, the supernatant
was collected and subjected to ELISA to quantify IL-6. The IL-
6 production in the cells treated with both of Poly(I:C) and
PGN was significantly higher than the sum of IL-6 from the cells
treated with PGN or cells treated with Poly(I:C) alone (4).

Together, these findings support the notion of crosstalk
between TLR3 and various TLRs in HNECs and indicates that
activation of TLR3 can affect the expression and potential for
activation of not only that same TLR3 over time, but also the
responsiveness of other TLRs thereby affecting overall immune
activation pathways.

TLRs IN UPPER AIRWAY INFLAMMATORY
DISEASES

TLR signals are deeply involved in inflammatory diseases of the
nasal cavity and paranasal sinuses, such as Chronic rhinosinusitis
(CRS) and allergic rhinitis.

Chronic Rhinosinusitis
CRS is a chronic inflammatory condition of the mucosal linings
of the nasal cavity and paranasal sinuses. CRS is often divided
into two subtypes: chronic rhinosinusitis with nasal polyps
(CRSwNP) and without nasal polyps (CRSsNP) (69). Recent
evidence showed type 2 inflammatory condition with infiltration
of eosinophils is strongly associated with recurrence of nasal
polyps after surgery (70, 71). A new classification for CRS has
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recently been proposed, focusing more on the involvement of
the type 2 inflammatory response, dividing CRS into subgroups
depending on the presence or absence of type 2 inflammation
(47). The type 2 inflammatory response involves induction by
type 2 innate lymphoid cells (ILC2) and Th2 cells, which are
triggered by several cytokines released from the nasal epithelium
as a result of activation of innate immune responses (72). This
implicates the nasal epithelium as a critical mediator of immune
activation with potential involvement in the pathogenesis of CRS.

TLR Expression in CRS
Altered expression of TLRs was reported in nasal mucosa from
CRS patients despite some discrepancy between results (73, 74).
TLR2 expression was shown to be decreased in both CRSwNP
and CRSsNP compared to control (74, 75), although another
study showed increased TLR2 expression in both CRSwNP and
CRSsNP patients compared to control (76). Interestingly, TLR2
ligand-induced IL-8 promotion was decreased in HNECs from
CRS patients compared to those from healthy mucosa (77).
Besides TLR2, TLR9 is also well-documented in the inflammatory
response in CRS. Decreased TLR9 expression were reported in
CRSwNP compared to control (78, 79). The low expression
level of TLR2 and TLR9 is also associated with the recurrence
of CRSwNP after surgery (75). TLR9 expression in HNECs
is increased by IFN-γ, Th1 cytokines, and decreased by Th2
cytokines, IL-4 or IL-13 (78). Not only the TLR expression but
also NFκB expression was increased in CRSwNP compared to
healthy control (80).

The Epithelial Cell-Derived Cytokines Are Induced by

TLR Stimulation
In HNECs, TLR activation promotes the production of many
cytokines including TSLP, IL-33, and IL-25. These cytokines are
known as epithelial-derived cytokines and have been a focus
of interest, due to their ability to activate ILC2 and Th2 cells,
resulting in type 2 inflammation.

TSLP is a cytokine belonging to the IL-7 cytokine family.
Originally, TSLP was proposed as a regulator to promote
differentiation into Th2 cells by activating dendritic cells. Recent
studies have suggested that TSLP also plays an essential role
in the activation of ILC2, resulting in promotion of type 2
inflammation. Many studies reported increased TSLP expression
in CRSwNP compared to control and CRSsNP (81–87).

In HNECs, TSLP expression is induced by TLR stimulation
with ligands such as P3CSK4 (TLR2/1) (88) and Poly(I:C) (20,
89). Interestingly, the Poly(I:C)-induced TSLP upregulation in
HNECs varies with the inflammatory condition of the donor.
Golebski et al. reported that TLR3 stimulation promoted TSLP
expression much more in HNECs from CRSwNP than in those
from healthy donors (20). Moorehead et al. also demonstrated
that Poly(I:C)-induced TSLP induction was higher in HNECs
from asthma patients than in those from healthy controls
(89). These reports indicate that the microenvironment and
inflammatory condition alters the responsiveness of HNEC TLRs
with changes in TSLP expression.

IL-33 is one of the cytokines classified into the IL-1 family.
Similar to other IL-1 family cytokines, IL-33 also activates NFκB

signals and promotes many target proteins. Suppression of
tumorigenicity 2 (ST2) is a receptor for IL-33 and is expressed
in ILC2. IL-33 promotes ILC2 to release IL-4 and IL-13,
resulting in an enhancement of type 2 inflammation. In CRSwNP,
several reports have demonstrated increased expression of IL-
33 compared to control subjects and CRSsNP (81, 83, 85, 90,
91), while others failed to do so (92–97). This discrepancy
might be due to the existence of cleaved or splice variants
of IL-33 and different methods used to detect them (98).
TLR8 (20) and TLR9 (30) agonists have been shown to
induce IL-33 expression in HNECs. In HNECs from CRSwNP,
Aspergillus fumigatus induced IL-33 expression more than in
cells from CRSsNP (94), again indicating that the existence
of higher levels of inflammation affects the responsiveness of
HNEC TLRs resulting in an increased production of various
epithelial-derived cytokines.

IL-25 is another cytokine of the IL-17 family which is also
known as IL-17E (99). IL-25 activates NFκB and enhances type
2 inflammation by activating ILC2 and Th2 cells, producing IL-
4, IL-5, and IL-13 (99). In HNECs, IL-25 levels, as with other
cytokines, were significantly induced by Poly(I:C) application
(100). Pam3CysSerLys4 (Pam3CSK4), a ligand for TLR2/1, also
upregulated IL-25 although LPS did not (100).

Conflicting results have been reported with regard to IL-
25 expression in nasal polyps. Increased IL-25 expression in
nasal polyps compared to control and CRSsNP was reported
in CRS patients from Asian countries such as China, Japan
and Korea (81, 83, 85, 91, 92, 101, 102), while no significant
upregulation was reported in CRS patients from the United States
and Australia (96, 98). As the inflammatory pattern of nasal
polyps is reportedly different between the East and West, these
conflicting findings on IL-25 expression in nasal polyps may be
due to regional differences (98).

Since these epithelial-derived cytokines are upregulated
with TLR stimulation in HNECs, this might well-explain the
temporary exacerbation of CRSwNP often found after acute
viral infection. In addition, considering that these cytokines
are regulated by TLR activation and the downstream signaling
cascade, the regulators mentioned above might be possible
therapeutic targets for CRSwNP, type 2 inflammatory diseases in
the nasal cavity and paranasal sinuses.

Allergic Rhinitis
Allergic rhinitis (AR) is an IgE-mediated allergic inflammatory
condition of the nasal mucosa, characterized by clinical
symptoms including sneezing, serous rhinorrhea and nasal
obstruction (103). AR is not a life-threatening condition by
itself but is a great burden for patients and society through
impaired quality of life and socioeconomic impact due to its
high prevalence.

TLR Expression in Nasal Mucosa From Patients With

AR
Recent studies showed that cytokines from epithelial cells are
deeply involved in the pathogenesis of AR. As in CRSwNP,
the altered expression of TLRs has been reported in nasal
mucosa from AR patients. Expression of TLR4, TLR5, and
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TLR9 was decreased in nasal mucosa from AR patients
compared to non-atopic donors (104). The expression of TLRs
reportedly changed with exposure to pollen extract. Pollen
exposure decreased the expression of TLR1 and TLR6 (105) and
increased TLR2, 3, 4, and 8 (105, 106). Besides, pollen-seasonal
specific-increased TLR3 expression is reported in AR patients
(106). Thus, atopic status appears to affect TLR expression
in HNECs (104).

Altered TLR Responsiveness in Atopic and Allergic

Conditions
Atopic or allergic conditions also affect the responsiveness
of the nasal epithelium (104). Globinska et al. showed
rhinovirus-induced IFN-γ1 upregulation is significantly
less in patients with AR than in healthy individuals
(107). Brandelius et al. demonstrated that in the case of
HNECs from birch-pollen-AR patients, dsRNA stimulation
upregulated IFN-β and IFN-γ1 expression only in pollen
season, but not outside pollen season (108). In addition
to allergic conditions, seasonal pollen exposure might
also affect the responsiveness of TLR ligand-derived
cytokine production.

IL-33 induction is more significant in HNECs from atopic
patients than in those from healthy controls (104). As discussed
above, IL-33 promotes type 2 inflammation, which in turn affects
the production of IL-33 (109). It is possible that positive feedback
loops exist among TLR stimulus, the epithelial-driven cytokines,
and type 2 inflammation in nasal mucosa.

TLR stimulation also affects the allergic condition.
Recently, Matsumoto et al. demonstrated that pollen-
induced IL-10 expression in peripheral blood mononuclear
cells (PBMC) is suppressed by Glucopyranosyl A (GLA), a
synthetic TLR4 agonist (110). As IL-10 is known as an anti-
inflammatory cytokine and downregulates the expression
of type 1 cytokines, TLR stimulation might affect the
allergic condition by modulating the expression of type
1 or 2 cytokines.

TLR Stimulation Is a Possible Adjuvant for Allergen

Immunotherapy
The treatment of AR includes medication, surgery, and allergen
immunotherapy (AIT). Among them, AIT is the only disease-
modifying treatment for AR (111). TLR agonists have been
accepted as possible candidates for adjuvant therapy to increase
the efficacy and shorten the course of the therapy (111). Some,
but not all, TLR agonists might improve the efficacy of AIT
through the promotion of IFNγ-producing Th1 cells and IL-10-
producing Regulatory T cells (Tregs) with reduced epithelium-
derived cytokines (111). However, the adjuvant effect is not
consistent among the TLR agonists but is agonist specific. So
far, several clinical trials have been reported, mainly using TLR4
agonists, with promising results (112–115). However, few studies
compared the group treated with AIT and adjuvant TLR agonists
to those with AIT alone. Further studies are necessary to reveal
the contribution of the TLR agonists as a potential adjuvant
therapy for AR.

Thus, recent evidence has demonstrated that TLRs in
the nasal epithelium are associated with the pathogenesis of
CRS and AR through the regulation of cytokines expression.
However, the clinical implication of aberrant TLR signaling is
still unknown and needs to be studied in detail prior to the
development of TLR-signal-targeted therapies. Further research
will be necessary to reveal how TLRs affect the pathogenesis of
CRS and AR.

CONCLUSION

This review provides recent evidence on TLR expression and
signaling in HNECs, in the context of pathologies of the sinonasal
tract. The epithelium, in addition to providing a physical
barrier against microbes, is deeply involved in inflammation,
particularly in initiating the inflammatory process against
invading microorganisms. The regulatory mechanisms of TLR
signals in the nasal epithelium are essential, as dysregulation
can directly result in vulnerability to pathogens or exaggerate
chronic inflammatory conditions. Indeed, the innate immune
mechanisms are deeply involved in the pathogenesis of CRS
and AR, the main inflammatory diseases of the sinonasal
mucosa with a high prevalence ratio worldwide. In addition,
modification of TLR signals could be developed further as a
possible adjuvant therapy for AIT. So far, the role of TLR
signals in HNECs and in the upper airway is less studied
than those in the lower airway. However, this does not
infer less importance. Rather, TLR signaling in the upper
airway might be vital due to its continuous exposure to
microbes. Continuous research on this topic can pave the
way to elucidating the pathogenesis for these inflammatory
conditions with the potential for the development of new
therapeutic targets.
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