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Autonomous diode laser
weeding mobile robot in cotton
field using deep learning, visual
servoing and finite state machine
Canicius Mwitta1*, Glen C. Rains2* and Eric P. Prostko3

1College of Engineering, University of Georgia, Athens, GA, United States, 2Department of
Entomology, University of Georgia, Tifton, GA, United States, 3Department of Crop and Soil Sciences,
University of Georgia, Tifton, GA, United States
Small autonomous robotic platforms can be utilized in agricultural environments

to target weeds in their early stages of growth and eliminate them. Autonomous

solutions reduce the need for labor, cut costs, and enhance productivity. To

eliminate the need for chemicals in weeding, and other solutions that can

interfere with the crop’s growth, lasers have emerged as a viable alternative.

Lasers can precisely target weed stems, effectively eliminating or stunting their

growth. In this study an autonomous robot that employs a diode laser for weed

elimination was developed and its performance in removing weeds in a cotton

field was evaluated. The robot utilized a combination of visual servoing for

motion control, the Robotic operating system (ROS) finite state machine

implementation (SMACH) to manage its states, actions, and transitions.

Furthermore, the robot utilized deep learning for weed detection, as well as

navigation when combined with GPS and dynamic window approach path

planning algorithm. Employing its 2D cartesian arm, the robot positioned the

laser diode attached to a rotating pan-and-tilt mechanism for precise weed

targeting. In a cotton field, without weed tracking, the robot achieved an overall

weed elimination rate of 47% in a single pass, with a 9.5 second cycle time per

weed treatment when the laser diode was positioned parallel to the ground.

When the diode was placed at a 10°downward angle from the horizontal axis, the

robot achieved a 63% overall elimination rate on a single pass with 8 seconds

cycle time per weed treatment. With the implementation of weed tracking using

DeepSORT tracking algorithm, the robot achieved an overall weed elimination

rate of 72.35% at 8 seconds cycle time per weed treatment. With a strong

potential for generalizing to other crops, these results provide strong evidence of

the feasibility of autonomous weed elimination using low-cost diode lasers and

small robotic platforms.
KEYWORDS

non-chemical weeding, robotic weeding, precision agriculture, weed detection,
autonomous navigation, weed stem laser targeting
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1 Introduction

Weeds can have detrimental effects on crop yield, causing heavy

economic losses (Pimentel et al., 2000; Oerke, 2006; Gharde et al.,

2018), and in most cases, even higher losses than pathogens and

invertebrate pests (Oerke, 2006; Radicetti and Mancinelli, 2021).

Chemical weeding, manual weeding, and mechanical weeding

have been the common practices for weed control in agricultural

fields (Chauvel et al., 2012). Chemical weeding has been the most

effective and most used weed control method (Buhler et al., 2000;

Gianessi and Reigner, 2007; Abbas et al., 2018). However, weeds

have evolved resistance to many chemistries, posing a threat to

productivity (Powles et al., 1996; Shaner, 2014). Moreover, there

are concerns about the negative impacts of the chemicals on the

environment (Colbach et al., 2010; Abbas et al., 2018). Mechanical

weeding approaches are not very efficient and can interfere with

crop activities, potentially causing crop injury (Fogelberg and

Gustavsson, 1999; Abbas et al., 2018), while manual weeding

can be time consuming and is associated with high labor costs

(Schuster et al., 2007; Bastiaans et al., 2008; Young et al., 2014).

Weeding can be labor-intensive, necessitating the hiring and

management of labor. As evidence shows, labor costs in agriculture

are increasing rapidly due to labor shortages (Guthman, 2017;

Richards, 2018; Zahniser et al., 2018). Without alternative

methods that are less labor-reliant, the development of agriculture

will fall short of demand. Thanks to technology, multiple potential

solutions have been investigated and implemented including taking

advantage of autonomous robots to deliver management tools. The

affordability of artificial intelligence, computer processors and

sensors has enabled the automation of various agricultural tasks,

including weeding, planting, and harvesting (Oliveira et al., 2021).

Autonomous weeding in agricultural fields demands high

precision in effectively identifying the weeds, navigating the robot,

and removing the weeds. These tasks are made difficult by the

outdoor nature of the agricultural environment, which is subject to

constant changes in illumination, weather, uneven terrain, and

occlusion. Various techniques have been employed in attempts to

overcome these challenges. For example, McCool et al. (2018)

implemented mechanical and spraying mechanisms in their

autonomous weed management robot, Agbot II, and utilized

color segmentation in their weed detection. Blasco et al. (2002)

used machine vision algorithms to identify weeds and remove them

with an electric discharge. Furthermore, Pérez-Ruıź et al. (2014)

introduced an autonomous mechanical weeding robot to remove

intra-row weeds using movable hoes, utilizing odometry data and

pre-programmed crop planting pattern, while Florance Mary and

Yogaraman (2021) drilled the weeds to the ground with their

autonomous robot that utilized deep learning computer

algorithms for weed detection. Despite their successful

implementations, these studies focused on destructive mechanical

solutions with potential of harming crops.

The limitations of current robotic weeding solutions such as

potential crop damage, environmental concerns, and inefficiency

highlight the critical need for more precise methods of targeting and

removing weeds to ensure efficient weed management. Laser

technology has emerged as a promising alternative. Laser weeding
Frontiers in Agronomy 02
offers a solution for precise, targeted elimination of weeds,

minimizing disruption to the surrounding crop and environment.

Treating weeds with lasers has proved effective in eliminating them

or stunting their growth (Heisel et al., 2001; Mathiassen et al., 2006;

Marx et al., 2012; Kaierle et al., 2013; Mwitta et al., 2022). Narrow

beams from lasers can remove both inter-row and intra-row with

precision targeting.

The development of autonomous laser weeding robots is still a

relatively new endeavor being studied. For example, Xiong et al.

(2017) developed a prototype of an autonomous laser weeding

robot that utilized color-segmentation for weed identification, fast

path-planning algorithms, and two laser pointers to target weeds in

an indoor environment, achieving a hit rate of 97%. However, there

have been relatively few examples of applications in outdoor

field environments.

In this study, we developed and tested an autonomous laser

weeding Ackerman-steered robot with a 2-degrees of freedom

Cartesian manipulator, stereo vision system, and a diode laser

mounted on a pan-and-tilt mechanism. This research builds upon

our previous studies, Mwitta et al. (2022), which observed that

inexpensive low-powered laser diodes can be used as a weed

control mechanism, leading to portable inexpensive robotic

platforms, Mwitta et al. (2024) which demonstrated that the

deep learning model YOLOv4-tiny can be an ideal solution for

real time robotic application due to its speed of detection and

satisfactory accuracy in weed detection, and (Mwitta and Rains

(2024)) which explored the effectiveness of combining GPS and

visual sensors for autonomous navigation in cotton field. This

current study leverages the insights from these preceding studies

to create a more comprehensive solution for autonomous laser

weeding in cotton fields.

This study is driven by the desire to create an affordable, small-

scale autonomous robotic platform for farmers. This platform

would utilize laser weeding technology for precise and effective

weed elimination, minimizing soil disturbance and environmental

impact. The potential benefits of this approach are numerous.

Autonomous laser weeding offers a more precise and efficient

method of weed control compared to traditional methods,

potentially reducing herbicide use and promoting sustainable

agricultural practices with minimal environmental risks.

Furthermore, autonomous robots can alleviate the need for costly

manual labor in weed control, leading to increased crop yields by

effectively managing weeds and minimizing competition for

resources. Compared to mechanical weeding methods, laser

weeding minimizes soil disturbance, promoting soil health and

structure. An additional benefit is the potential for data-driven

weed management. Autonomous systems can collect valuable data

on weed location, species, and density, facilitating the development

of more targeted weed control strategies. Multiple small robots

working together can address larger fields. However, there are

challenges to address. Autonomous laser weeding technology is

relatively new and requires further development to improve its

effectiveness, speed, and reliability under various field conditions.

The system’s ability to accurately identify and target specific weeds

while avoiding damage to crops needs further refinement. A

thorough evaluation of laser weeding’s potential impact on
frontiersin.org
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beneficial insects and other non-targeted organisms is crucial, as

evident in Andreasen et al. (2023). Finally, safety regulations

governing the use of high-power lasers in agricultural settings

may need to be developed or adapted.

The study contributes to the efforts advancing the field of

precision weeding by successfully developing and testing several

key components in a real-world setting of a cotton field such as:
Fron
• Agricultural Robotic Platform: We designed and built a

functional robotic platform specifically tailored for

agricultural applications.

• Weed Detection with Deep Learning: A weed detection

mechanism was developed utilizing deep learning

technology to accurately identify weeds in the field.

• Weed Tracking: The system incorporates a weed tracking

mechanism to maintain focus on target weeds as the

robot navigates.

• Autonomous Navigation in Cotton Fields: A combined

visual and GPS-based autonomous navigation system was

developed to enable the robot to efficiently navigate within

cotton fields.

• Precision Laser Weeding: A mechanism for precise weed

targeting and elimination using diode lasers was integrated

into the platform.
The remaining sections of the article delve deeper into the

specifics of this research and its findings. The “Materials and

Methods” section provides a detailed account of the development

process. It outlines the robotic platform setup, the weed detection

mechanism using deep learning, the autonomous navigation

system, the real-time weed tracking approach, and the

experiments conducted for laser weeding in the cotton field.

Following this, the “Results” section presents the key findings and

observations from the field experiments. Finally, the “Discussion”

section delves into a broader discussion of the developed platform

including the strengths and weaknesses identified during testing,

potential challenges to consider for future development, and

promising avenues for further research.
2 Materials and methods

2.1 The platform setup

The robot (see Figure 1) used in this study was an electric-

powered 4-wheel Ackerman-steered rover with a 2D cartesian

manipulator mounted on the front. We developed the robot to

navigate between crop rows of 90 cm or more in agricultural fields.

The robot had a length of 123 cm and width of 76 cm (without

peripherals attached).

The robot had four main controllers (see contextual diagram;

Figure 2) which controlled all the sensors and actuators mounted on

the robot: A master controller for coordination of all robot

activities, a rover controller for navigation, an arm controller for

manipulation, and a laser controller for weed elimination.
tiers in Agronomy 03
2.1.1 Master robot controller
An embedded computer (Nvidia Jetson Xavier AGX) was used

as the central processor of the robot. Equipped with an 8-core ARM

v8.2 64-bit CPU, 32GB of RAM, and a 512-core Volta GPU with

tensor cores, this embedded computer delivered the needed

performance, and enabled creation and deployment of end-to-end

AI robotic applications while not demanding a lot of power (under

30W). The computer was responsible for all the autonomous

operations, such as receiving and interpreting data from sensors

like the stereo cameras, IMUs, and GPS, running deep learning

models for weed detection, path planning and navigation between

rows, and controlling the Arduino microcontrollers which were

directly connected to relays and drivers for sensors and actuators,

by sending commands and receive sensors information. The

information exchange between the computer and other modules

was done using Robotic Operating System (Quigley et al., 2009)

(ROS 1 - Noetic). The computer was powered by a 22000mAh 6-cell

Tunigy LIPO battery.

A single-band EMLID Reach RS+ RTK GNSS receiver was

mounted on the rover and connected to the embedded computer for

robot’s GPS position tracking, field mapping, and navigation. To

track the robot’s orientation, two PhidgetSpatial Precision 3/3/3

high resolution inertia measurement units (IMUs) were mounted

on the robot. The IMUs contained a 3-axis accelerometer, 3-axis

gyroscope, and 3-axis compass for precise estimation of

robot’s orientation.
FIGURE 1

The robot platform for laser weeding.
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Two stereo cameras (Zed 2 and Zed 2i) from Stereo Labs, were

mounted on the robot and connected to the embedded computer.

Each of the stereo cameras featured two image sensors that allowed

for the capture of normal RGB images, depth images, and 3D point

clouds, facilitating 3D pixel depth estimation. Additionally, they

were equipped with internal IMUs capable of tracking

their orientations.

The platform utilized Zed 2 camera for detecting paths between

cotton rows, enabling visual navigation, while the Zed 2i camera

was employed for weed detection in the field and the determination

of their 3D locations relative to the camera. These cameras

published ROS topics for RGB images and point cloud, to which

the embedded computer subscribed. To obtain the 3D location of

detected weed, the Zed ROS coordinate frames (see Figure 3A) were

utilized. The Zed 2i camera publishes a 3D point cloud that

contained (x, y, z) values representing the center of the detected

weed. Since the camera is mounted at an angle q = 250 from the

vertical axis (see Figure 3B), the position values published had been

rotated on camera’s y-axis. To obtain the actual perpendicular

distances, the values needed to be rotated back (rotated − q
degrees by y-axis). The rotation matrix by y is given by:

Ry( − q) =

cos   ( − q) 0 sin   ( − q)

0 1 0

−sin   ( − q) 0 cos   ( − q)

2
664

3
775
Frontiers in Agronomy 04
The distances (X, Y , Z) are given by:

X

Y

Z

2
664

3
775 = Ry( − q)

x

y

z

2
664

3
775

With rover to camera distance (d), camera to end-effector

distance (m), and camera to ground height (H), all known, the

important distances are calculated as follows:

Rover   to  weed   distance = d + Z

End   effector   to  weed   (n) = Y −m

Weed   height   (h) = H − X
2.1.2 Rover controller
An Arduino Mega microcontroller controlled the driving and

steering of the robot. ROS was used to communicate with the

embedded computer. Each of the robot wheels was run by a 250W

Pride Mobility wheelchair motor with the two back wheels

connected to Quadrature rotary encoders (CUI AMT 102), to

provide feedback on wheel rotation. The motors were driven by

two Cytron MDDS30 motor controllers and powered by two

20000mAh 6-cell Tunigy LIPO batteries. A linear servo (HDA8-
FIGURE 2

Contextual block diagram of the autonomous laser weeding robot platform.
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50) was connected to the front wheels for steering. The robot could

also be manually controlled using an IRIS+ RC transmitter which

communicated with an FrSky X8R receiver connected to

the Arduino.

The robot used Ackerman steering geometry (see Figure 4A) to

track its position, orientation, and velocity.

With R, the turning radius of the robot, L the wheelbase, W the

width of the robot, V the linear velocity of the robot, ∝ the

heading, and q ideal front wheel turning angle, the kinematics of the

robot are described as below:

_Xrobot = Vcos ∝ð Þ

_Yrobot = Vsin ∝ð Þ

_∝ =  
V
L
tan (q)

To maintain velocity on uneven agricultural terrain, the robot

employed a PID (Proportional, Integral, and Derivative) controller

(Ang et al., 2005; Wang, 2020). A PID controller continuously

computes the difference between a desired setpoint value and a

measured variable, subsequently applying corrections to the control

value based on three pre-tuned gains: proportional, integral, and

derivative. The PID controller was also used to move the robot to a

specific position. For instance, when the position of the detected

weed relative to the robot’s end-effector was determined, the robot

had to move a certain distance to align the end-effector with the

weed for elimination. The PID controller made sure the robot didn’t

overshoot or undershoot the desired position. The feedback

(measured value) was obtained from the fused wheel encoders.
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The PID system calculates the motor command required by the

robot to reach the desired target, whether it is velocity or position,

using three gains: proportional gain Kp, integral gain Ki, and

derivative gain Kd . Given the error e(t) as the difference between

the current value and the target value, the motor command u(t) was

calculated as follows:

u(t) =  Kpe(t) + Ki

Z t

0
e(t)dt + Kd

de(t)
dt

The PID controller was tuned to find the values of the three

gains (Kp, Ki, Kd) by iteratively adjusting the gains while monitoring

the step response of the rover to achieve desired performance.

Due to sensor noise, the accurate estimation of the robot’s pose

employs an extended Kalman filter (EKF) (Smith et al., 1962). The

EKF is designed to fuse multiple noisy sensors by tuning the

corresponding sensor variables’ noise covariance matrices,

resulting in a precise estimate of the robot’s pose. The EKF

implementation fused continuous data from encoders, IMUs and

GPS using the ROS package Robot_localization (Moore and Stouch,

2016). Robot_localization package accepts data including position,

linear velocity, angular velocity, linear acceleration, and angular

acceleration from sensors, and then estimates robot’s pose and

velocity. It utilizes two ROS nodes: a state estimation node

EKF_localization_node and a sensor processing node

NavSat_Transform node (see Figure 4B). These nodes work

together to fuse the sensor data and publish an accurate estimate

of the robot’s pose and velocity.

Using ROS, the rover controller published the position and

velocity topics and subscribed to motor command topics from the

master controller.
B

A

FIGURE 3

(A) Zed camera ROS coordinate frames, (B) Camera setup on the rover. q is the camera angle from vertical axis, d is rover to camera distance, m is
camera to end-effector distance, H is camera to ground distance, and h is height of the weed.
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2.1.3 Arm controller
The robotic manipulator was a 2D cartesian system consisting

of two Igus drylin® belt drive cantilever axis rails (ZAW-1040

horizontally oriented, and ZLW-1040 vertically oriented), driven by

two Igus drylin® NEMA 17 stepper motors. These motors were

controlled by two SureStep STP-DRV-6575 stepper drivers and

featured internal rotary encoders to track the position of the rails.

The arm was controlled by an ArduinoMega microcontroller which

communicated with the embedded computer using ROS. The arm

controller published the arm position topic, to which the master

controller subscribed. It also subscribed to the arm control topic

from the master controller, receiving commands to move to a

specific target position.

The manipulator could move left, right, up, and down, with

each axis controlled by its respective PID controller. However, the

manipulator’s movement was constrained by the arm kinematics,

allowing translation in two axes only.

For visual servoing, the robot utilized the inverse kinematics of

both the arm and rover. Solving the inverse kinematics problem for

the robot involved accounting for both the arm movement (X, Y)

and the rover movement (Z). Consequently, given the (xw, yw, zw)

coordinates of the weed obtained from the stereo camera, the robot

had to move a distance of (X, Y, Z) to reach the weed

(see Figure 4C).
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2.1.4 Laser controller
An Arduino Uno was responsible for controlling the release of

laser beam from a diode laser. The diode laser was attached to a

pan-and-tilt unit, which was controlled by two HSB-9380TH

brushless servos, allowing it to rotate to different orientations (see

Figure 5A). The Arduino communicated with the computer

through ROS.

Due to the challenge of precisely targeting the weed stem, the

servos would dither the diode dither back-and-forth at a speed of 10

times per second at an angle of approximately 10°. This motion

increased the cross-section area of the laser beam and maximized

the laser beam’s contact with the weed stem (see Figure 5B). The

beam formed about 1cm cross-section at the weed stem

approximately 3mm above the ground.
2.2 Weed detection using YOLOv4-tiny

We trained YOLOv4-tiny detection model to detect Palmer

Amaranth (Amaranthus palmeri) weed species in the cotton field.

YOLOv4-tiny is a lightweight, compressed version of YOLOv4

(Bochkovskiy et al., 2020), designed with a simpler network

structure and reduced parameters to make it ideal for deployment

on mobile and embedded devices. Since the robot was powered by
B

C

A

FIGURE 4

(A) Ackerman steering robot mechanism kinematic model. (xrobot , yrobot) are the coordinates of the rear axle midpoint, ∝ is the robot orientation, q is
the steering angle, and L is the wheelbase (image source Mwitta and Rains, 2024), (B) Fusing different sensors data with Robot_localization ROS
package, (C) Inverse kinematics of the robot. Z is the rover movement axis, X and Y are vertical and horizontal movement axis for the arm.
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an embedded computer, a lighter network was necessary to ensure

faster inference times. Additionally, performance test on weed

detect ion demonstrated that YOLOv4-t iny was only

approximately 4.7% less precise than YOLOv4. However, it

offered significantly faster inference, achieving 52 frames per

second (fps) on the embedded computer as demonstrated in

Mwitta et al. (2024).

Images from the left lens of Zed 2i stereo camera were passed to

YOLOv4-tiny model for detecting palmer amaranth weeds. The

model performed well in detecting the weeds (see Figure 6A), even

when there were shadows (as shown in Figure 6B). However, the

model faced challenges in direct sunlight, resulting in excessive

reflections and significant shadows (as seen in Figure 6C). This issue

was more prevalent during the afternoons one hour after solar

zenith and approximately 3 hours before sunset.
2.3 Navigation in cotton fields

To navigate between the rows of cotton, we employed a

combination of GPS and visual navigation. We trained a fully

convolutional neural network (FCN) for semantic segmentation

model (Long et al., 2015) to detect paths between cotton rows in the

field. The model achieved a pixel accuracy of 93.5% on the testing
Frontiers in Agronomy 07
dataset. The detected path between the cotton rows was then

mapped from the image domain to the ground plane to obtain

the points on the ground that the robot could traverse

(see Figure 7A).

GPS was employed as a global planner to map the entire field

and acquire pre-recorded coordinates of the path that the robot

should follow (as seen in Figure 7B).

We used a local path planner, the Dynamic Window Approach

(DWA) (Fox et al., 1997), to navigate between the rows and avoid

running over crops based on the path detected by FCN. The DWA

algorithm aims to find the optimal collision-free velocities for the

robot’s navigation, taking the robot’s kinematics into account. The

ground coordinates of the detected path boundaries were sampled

and treated as obstacles in the DWA algorithm (see Figure 7C).

While the DWA algorithm proved to be a suitable choice for path

planning, it came with the potential drawback of increased

computational cost.

In summary, the robot attempted to follow the global GPS map

of pre-recorded GPS coordinates while simultaneously avoiding

obstacles, represented by the path boundaries from FCN model-

detected path, using the DWA algorithm. During field testing, this

approach navigated the robot with an average lateral distance error

of 12.1 cm between the desired path and the robot’s actual path as

demonstrated in Mwitta and Rains (2024).
B

A

FIGURE 5

(A) Laser module attached to the arm using a pan-and-tilt mechanism controlled by two servos, (B) Dithering mechanism of the diode laser. Servos
move the diode laser back and forth.
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2.4 Overall robot control with finite
state machine

To model the order of task execution and the flow of

information between the robot controllers, the master controller

(embedded computer) utilized ROS python library SMACH to

create a Finite State Machine (FSM). FSM is used to model logic

and can be in a specific state from a finite set of possible states at any

given point. Furthermore, it can transition to another state by

accepting input and producing output.

We modeled the autonomous weeding robot tasks into eight

states (actions), with eight transitions from one state to another (see
Frontiers in Agronomy 08
Figure 8). The states were built in a task-level architecture, allowing

the robotic system to transition smoothly from one state to another.

The system begins at the entry state (“get image”), if the system

fails to obtain an image from Zed 2i camera, it exits. Otherwise, the

weed detection model searches for weeds in the image. If no weed is

detected, the system continues navigating between the rows while

attempting to acquire another image and run the weed detection

program. When a weed is detected, the system obtains the 3D

coordinates (x, y, z) of the weed relative to the camera and calculates

the forward distance from the rover to the weed, as well as the

lateral distance of the weed relative to the laser module attached on

the arm. The rover then moves to the weed and orients the arm with
B

C

A

FIGURE 6

(A) Palmer amaranth weed detection in the cotton field, (B) Detecting weeds in presence of shadows during lower sunlight, (C) Sunlight brightness
and shadows hindering weed detection.
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the weed. Subsequently, the arm moves laterally to within 6cm from

the weed. At this point, the system emits a laser beam for a defined

duration while the servos oscillate to increase the contact area with

the weed stem. The arm then returns to its initial position to avoid

colliding with cotton in the rows during movement. Then FSM

transitions back to the beginning state to start all over.

2.5 Real-time tracking of weeds using
DeepSORT algorithm

Relying solely on the PID system to align the robot with the

weed position has the drawback of occasional overshooting or
Frontiers in Agronomy 09
undershooting the desired position. While the dithering of the

pan-and-tilt mechanism mitigates part of this problem by

increasing the cross-section area of the beam, the unevenness of

the agricultural environment can lead the PID system to miss the

target by a greater margin than dithering can compensate for. To

address this issue, tracking the detected weeds across subsequent

frames increases the likelihood of accurately targeting the weed with

a laser beam. This is achieved by using the servos on the pan-and-

tilt mechanism to point the laser in the direction of the closest weed.

Even if the PID system overshoots or undershoots the position,

tracking provides the final position of the target relative to the

diode’s position. The servos then compensate for any error by

directing the diode laser towards the targeted weed.

DeepSORT (Wojke et al., 2018), an evolution of the SORT

(Simple Online and Realtime Tracking) algorithm (Bewley et al.,

2016), enhances object tracking by incorporating a deep learning

metric as an appearance descriptor to extract features from images.

SORT is a multi-object tracking algorithm that links objects from

one frame to another using detections from object detection model,

Kalman Filter (Kalman, 1960) for predicting object movements, a

data association algorithm [Hungarian algorithm (Kuhn, 1955)] for

associating tracks with detected objects, and a distance metric

(Mahalanobis distance) for quantifying the association.

DeepSORT introduces the appearance feature vector, which

accounts for object appearances and offsets some of the Kalman

filter’s limitations in tracking occluded objects or objects viewed

from different viewpoints.

The feature descriptor needs a feature extractor, which is a deep

learning model that can classify and match features of the objects
B C

A

FIGURE 7

(A) Path detected between cotton rows using FCN and mapped to the ground plane, (B) The robot’s movement pattern in the field (C) Sampled path
boundaries treated as obstacles by the DWA path planning algorithm.
FIGURE 8

Finite State Machine of the laser weeding robot showing the
proposed framework.
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that are tracked. In this study, a Siamese neural network (Koch

et al., 2015) was used as a feature extractor. Siamese networks are

renowned for their proficiency in feature matching, by ranking

similarities between inputs using a convolutional architecture. We

trained the Siamese network model on a dataset of palmer amaranth

weed species to learn their features, achieving an accuracy of 89%

when evaluated on testing dataset.

DeepSORT performed effectively in conjunction with YOLOv4-

tiny as the object detector, assigning ID to every weed detected (see

Figure 9A). It attempted to track and maintain the same ID for each

weed in subsequent frames. When tested with videos collected by the

rover in the field, DeepSORT achieved a Multiple Object Tracking

Accuracy (MOTA) of 69.8%. By observing each frame t in a series of

frames, with FN representing false negatives, FP representing false

positives, IDS denoting ID switches, and GT signifying the ground

truth object count, theMOTA is calculated by the following formula:

MOTA = 1 −otFNt + FPt + IDSt

otGTt

Despite the strong performance of the DeepSORT algorithm,

challenges persisted, including issues with ID switching and missed

detections in the field. To enhance the performance of the weed

detection model and DeepSORT tracking system, the model can

benefit from further training with diverse data encompassing a

wider range of scenarios. Additionally, fine-tuning the detection

and tracking parameters can further improve accuracy.

2.6 Experiments

To evaluate the effectiveness of the autonomous laser weeding

robot, we conducted three main experiments at University of
Frontiers in Agronomy 10
Georgia Tifton campus cotton fields located at (31°28’N 83°

31’W). In the first two experiments, we transplanted around 20

palmer amaranth weeds per plot in five 30-feet plots. For the third

experiment, we transplanted around 10 palmer amaranth weeds per

plot in five 15-feet plots. This reduction in weed density was due to

the experiment being conducted later in the growing season.

The weeds used in the experiments were collected from the

University of Georgia research fields near Ty Ty, GA (31°30’N, 83°

39’W) between one to two weeks after emergence. The weeds were

transplanted and left for a week to stabilize before treatment. The

laser treatments were administered by the robot in 4 plots, while the

fifth plot was left as a control. The autonomous rover navigated

between the cotton rows, attempting to detect weeds in real-time

and treating them with laser beam. After treatments. We observed

the weeds for a week after treatments. A 5W 450nm diode laser

(measured 5cm from the laser lens using a Gentec Pronto-50-W5

portable laser power meter.) was employed for the treatments. The

laser was equipped with a G7 lens and was powered by a 2200mAh

LiPo battery and a constant current source of 4A and a voltage of

12V. The robot positioned the laser diode approximately 6cm

distance from the weed stem before releasing the beam, which

made the beam width of approximately 4mm at the weed stem.

The laser treatment duration was 2 seconds, resulting in a

dosage of 10 Joules (2s*5W). This was selected to maximize the

weed elimination potential based on the results from our previous

study (Mwitta et al., 2022), that showed 100% laser effectiveness at

approximately 10 Joules regardless of the diameter of the weed stem

(at early stages of growth).

To mitigate safety risks associated with lasers, a low-power 5W

diode laser was used, and the beam path was carefully directed only

to the targeted area. Furthermore, all personnel working near the
B

C

A

FIGURE 9

(A) ID assigned to detected weeds by the DeepSORT tracking algorithm, (B) Diode laser setup parallel to the ground, (C) The laser module
attachment at an angle (100 downwards from horizontal axis), and the laser module attached to it.
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robot wore appropriate laser safety glasses with an appropriate

rating suitable for the laser being used, and had comprehensive

training on laser safety principles and potential hazards. Finally, an

emergency stop button readily available to immediately disable the

laser in case of unforeseen circumstances was placed on the robot.

2.6.1 First experiment
In the first experiment, the laser module was attached to the

arm, positioned parallel to the ground (see Figure 9B). However,

due to the distance from bottom of the laser module and the laser

mouth, which was approximately 3cm, the laser module needed to

be in contact with the ground for the beam to hit the weed stem,

unless the weed exceeded a height of about 4cm which was the

minimum height for effective targeting. Consequently, during

navigation, the arm was raised, and it was lowered when treating

the weed to prevent the module from scraping against the ground.

The laser treatment duration for each weed was set at 2 seconds.

The rover moved at a speed of 0.5 mph, and the robot used a PID

controller to reach the target position after detecting the weed.

2.6.2 Second experiment
The second experiment closely resembled the first one, but the

laser module was placed at an angle of 10° downward from the

horizontal axis (see Figure 9C). This adjustment reduced the arm’s

up and down movements, thereby increasing the likelihood of

targeting even shorter weeds effectively and reducing cycle time

between weeds. The laser beam also terminated at the ground,

increasing safety from stray laser.

2.6.3 Third experiment
In the third experiment, we implemented DeepSORT algorithm

to track the weeds as the robot moved towards the target. The laser

configuration remained the same as in the second experiment.

Preliminary experiments were conducted in a controlled indoor

environment using 15 weeds, to check how tracking influenced the

targeting of weeds. Then, the robot was tested in the cotton field.
2.7 Evaluation metrics

We used several metrics to evaluate the effectiveness of the

robot in targeting and killing weeds. The accuracy metrics included:
Frontiers in Agronomy 11
• Total number of detections: All the detections reported by

the model.

• True positives: All the detections that were correct.

• False positives: All the detections reported by the model as

the targeted weed but were not the targeted weed.

• Laser beam hits: The total number of weeds that the robot

attempted to hit and succeeded in hitting them with the

laser beam.

• Laser beam misses: The total number of weeds that the

robot attempted to hit with the laser beam but missed.

• Hit and killed: The number of weeds which were hit by the

laser beam and killed.

• Hit and survived: The number of weeds which were hit by

the laser beam but survived after one week on monitoring.

• Percentage killed after hit: The percentage of the weeds

killed out of all that were hit by the laser beam.

• Percentage of weeds killed in the plot: The percentage of

weeds killed out of all the weeds in the plot.
The speed of operation was measured by the total treatment

cycle, which was the total time per single treatment in the worst-

case scenario.
3 Results

3.1 Experiment 1

Table 1 shows the results for the first experiment in the field.

The biggest challenge was aiming on target (see Figures 10A, B on

laser aiming), about 34% of all laser treatments were a miss because

of either the weed being shorter than the minimum height (about

38% of the misses), or rover overshooting/undershooting the

position due to imperfect sensors (camera, wheel encoders), or a

combination of both (The hit rate was 66%). The detection model

had a precision of 84%, most of the false positives were due to some

other plants in the row looking like palmer amaranth, and the

detection misses were due to inconsistencies of illumination in the

outside environment, this was minimized by performing the

experiments in the morning hours before solar zenith. The laser

treatment performed well when the weed was hit, with 87% of the

treated weeds killed, but the overall kill rate on a single pass was

reduced to 47% due to misses in detection and aiming.
TABLE 1 Treatment results for the first experiment.

Plot
No.

Number
of

weeds

Total
number

of
detections

True
Positives

False
positives

Laser
beam
hits

Laser
beam
misses

Hit
and
killed

Hit
and

survived

Percentage
Killed after

hit (%)

Percentage
of weeds

killed in the
plot (%)

1 21 23 18 5 12 6 10 2 83.33 47.6

2 20 19 16 3 9 5 9 0 100 45

3 23 21 20 1 13 7 10 3 76.92 43.47

4 25 25 20 5 15 5 13 2 86.66 52
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The robot achieved a total treatment cycle time of 9.5 seconds

per weed treatment. The time distribution per task is shown on

Table 2. All the weeds in the control plots survived

during observation.
3.2 Experiment 2

From Table 3, the detection precision was increased to 91% due

to retraining the model with additional images from the first

experiment. Only about 19% of detected weeds were missed by

the laser with an 81% hit rate. The kill percentage for the treated

weeds was about the same (88%), but the overall kill rate on a single

pass increased to 63%.

The total treatment cycle time was reduced to 8 seconds due to

reduced arm movements with arm moving to target in 2 seconds

and arm retracting in 1 second. All the weeds in the control plots

survived during observation.
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3.3 Experiment 3

The preliminary experiments in a controlled environment

achieved a 93% hit rate through tracking, and the servos rotating

the diode to point in the direction of the weed (see Figure 11) even

when the PID system overshoot/undershot the position.
TABLE 2 Time distribution per task for the first experiment.

Action Maximum time spent (s)

Weed detection Real-time

Rover moves to target 3

Arm moves to target 3

Laser treatment 2

Arm retract 1.5

Total treatment cycle 9.5
B

A

FIGURE 10

(A) Laser beam turned on and slightly misses the weed stem due to weed being too short, (B) Top view of laser module targeting a weed.
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In the cotton field, as shown in Table 4, the hit rate was

increased through tracking to 83.7%, and the overall kill rate for a

single pass was significantly increased to 72.35%. The treatment

cycle time remained the same as in experiment 2. All the weeds in

the control plots survived during observation.

The were still more than 20% ID switching which proved to be a

challenge for the tracking algorithm. In future studies, the model

will need to be trained more on the field data obtained from the

experiments in addition to tuning of parameters to reduce the ID

switching problem.
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4 Discussion

In this study, an autonomous diode laser weeding robot was

developed and tested in a cotton field. The robot used was an

Ackerman-steering ground rover with a 2D cartesian arm that

carried a diode laser attached to a pan-and-tilt mechanism to target

palmer amaranth weed stems for elimination. Real-time weed

detection using YOLOv4-tiny model was employed to detect

weeds. The position of the detected weed was determined by the

point cloud from Zed 2i stereo camera. The robot used GPS, FCN
FIGURE 11

Servos rotate the diode laser to compensate the robot overshooting weed position. The direction of diode laser follows the tracked weed.
TABLE 3 Treatment results for second experiment.

Plot
No.

Number
of

weeds

Total
number

of
detections

True
Positives

False
positives

Laser
beam
hits

Laser
beam
miss

Hit
and
killed

Hit
and

survived

Percentage
Killed

after hit

Percentage
of weeds
killed in
the plot

1 23 22 21 1 18 3 16 2 88.88 69.57

2 22 22 19 3 14 5 12 2 85.71 54.54

3 26 24 22 2 17 5 14 3 82.35 53.80

4 19 19 17 2 15 2 14 1 93.33 73.68
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for semantic segmentation and DWA path planning algorithm to

navigate between cotton rows.

Without weed tracking in the field, the robot achieved a hit rate

of 66% and 47% overall weed kill rate on a single pass at 9.5 second

cycle time per weed treatment when the laser diode was positioned

parallel to the ground. A hit rate of 81% with 63% overall kill rate on

a single pass at 8 seconds cycle time per weed treatment was

achieved when the diode was placed at a 10° downward angle.

Using DeepSORT weed tracking tracking algorithm, a preliminary

investigation in a controlled environment showed a hit rate of 93%,

however, when tested in the field, the robot achieved a hit rate of

83.7% with an overall kill rate of 72.35% at 8 seconds cycle time per

weed treatment.

Research into autonomous laser weeding is relatively new; there

haven’t been many fully implemented solutions. One study similar

to ours (Xiong et al., 2017), achieved a 97% hit rate; however, the

experiment was conducted indoors in a controlled environment.

The study identified several key challenges that impacted the

results, primarily stemming from the inherent complexities of real-

world agricultural environments. Factors like sudden changes in

illumination, weather variations, shadows, and unforeseen weed

emergence significantly affected the robot’s ability to detect, track,

and navigate visually. While training the deep learning model with

more data helped mitigate some of these effects, the system

occasionally encountered unexpected scenarios that led to errors.

Real-time operation of the robot was hindered by limitations in

computational power. This challenge was exacerbated by the

simultaneous execution of multiple deep learning algorithms: the

detection model, visual navigation system, and DeepSORT weed

tracking. The high computational demands of these algorithms

resulted in delayed system responses, which in turn contributed to

operational errors in the field. Furthermore, the rough terrain of the

agricultural field presented difficulties in precisely controlling the

rover’s velocity and positioning, leading to occasional weed

targeting errors. Additionally, the low-powered diode laser used

required extended treatment times for effective weed elimination.

Future research will explore several promising avenues for

improvement. To enhance the robustness of the deep learning

models, we will incorporate a wider range of data encompassing

diverse field conditions into the training process. This will allow the

models to better handle variations in illumination, weather, and

weed appearances encountered in real-world settings. Additionally,

exploring the use of 3D point cloud data for path detection and

obstacle avoidance holds promise for improved navigation.
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By providing a clearer understanding of the environment, 3D

perception can lead to more accurate robot movement, especially

in challenging terrain. Advanced and adaptable speed control

mechanisms, such as Model Predictive Control (MPC), will also

be investigated to improve the rover’s ability to navigate rough

terrain precisely. Finally, optimizing laser weeding efficiency will be

a key focus. Investigating strategies like multiple passes of the robot

in the field can ensure more effective weed elimination, however, it

is crucial to optimize this approach to minimize treatment time and

avoid crop damage. Furthermore, as the cost of diode lasers per watt

decreases, exploring the use of more powerful lasers can potentially

reduce treatment time required for complete weed removal. These

future studies hold promise for significantly enhancing the

capabilities and overall effectiveness of the autonomous laser

weeding platform.

The aim of the study was to develop an affordable system that

can be deployed in the field multiple times throughout the season

and target weeds at early stages of growth without using chemicals

and invasive methods. Despite some minor shortcomings, this

platform proves the viability of the concept.
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TABLE 4 Treatment results for third experiment.

Plot
No.

Number
of

weeds

Total
number

of
detections

True
Positives

False
positives

Laser
beam
hits

Laser
beam
miss

Hit
and
killed

Hit
and

survived

Percentage
Killed

after hit

Percentage
of weeds
killed in
the plot

1 11 12 10 1 8 2 8 0 100 72.7

2 9 8 8 0 7 1 6 1 85.71 66.7

3 10 12 10 2 9 1 8 1 88.9 80.0

4 10 13 9 3 7 2 7 0 100 70.0
frontiersin.org

https://doi.org/10.3389/fagro.2024.1388452
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Mwitta et al. 10.3389/fagro.2024.1388452
Acknowledgments

This study is part of a PhD thesis at the University of Georgia

titled ‘Development of the autonomous diode laser diode’ (Mwitta,

2023) which has been made available online via ProQuest.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Agronomy 15
The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Abbas, T., Zahir, Z. A., Naveed, M., and Kremer, R. J. (2018). Limitations of existing
weed control practices necessitate development of alternative techniques based on
biological approaches. Adv. Agro. 147, 239–280. doi: 10.1016/bs.agron.2017.10.005

Andreasen, C., Vlassi, E., Johannsen, K. S., and Jensen, S. M. (2023). Side-effects of
laser weeding: quantifying off-target risks to earthworms (Enchytraeids) and insects
(Tenebrio molitor and Adalia bipunctata). Front. Agron. 5. doi: 10.3389/
fagro.2023.1198840

Ang, K. H., Chong, G., and Li, Y. (2005). PID control system analysis, design, and
technology. IEEE Trans. Control Syst. Technol. 13, 559–576. doi: 10.1109/
TCST.2005.847331

Bastiaans, L., Paolini, R., and Baumann, D. T. (2008). Focus on ecological weed
management: What is hindering adoption? Weed Res. 48 (6), 481–491. doi: 10.1111/
j.1365-3180.2008.00662.x

Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016). “Simple online and
realtime tracking,” in 2016 IEEE international conference on image processing (ICIP).
(Phoenix, AZ, USA: IEEE), 3464–3468.

Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G., and Moltó, E. (2002). AE—
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