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Farming practices reliant solely on synthetic agrochemicals face unreliability in

the current era marked by unpredictable climate changes and rapid soil health

deterioration. Consequently, a shift towards sustainable approaches is imperative

to ensure both food security and environmental quality. Molasses and vinasse,

abundant organic liquid by-products from sugar processing and distillery

industries respectively, have historically served as soil conditioners and

biofertilizers. Despite their potential, their effectiveness as organic

amendments remain relatively unknown globally. In response, we conducted a

systematic literature review to unveil the benefits of molasses and vinasse as

organic amendments. Our findings reveal that these by-products consist of both

inorganic and organic compounds that enhance soil and aquatic ecosystem

performance. These compounds include essential plant nutrients as mineral

elements and organic matter, contributing to improved soil physico-chemical

and biological properties. Notably, the application of molasses and vinasse in

crop production has demonstrated superiority over chemical fertilizers,

particularly when combined with other inorganic amendments. Molasses and

vinasse have been reported to significantly increase yield in several crops

including sugarcane (Saccharum officinarum) , tomatoes (Solanum

lycopersicum), soybean (Glycine max), maize (Zea mays) and rice (Oryza

sativa). Strategic utilization of vinasse has the potential to enhance

environmental quality by reducing soil heavy metal loads and mitigating

negative impacts associated with synthetic fertilizers. However, it is crucial to

note that irregular disposal or misuse of these by-products can result in

detrimental effects on the environment and human health. To encourage

sustainable utilization on a global scale, it is essential to establish appropriate

dosages, raise awareness among farmers and stakeholders regarding judicious
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use, and develop effective methods for handling and application of molasses and

vinasse. This approach ensures cost-effective and environmentally friendly

organic amendments, fostering a harmonious balance between agricutural

productivity and ecological well-being.
KEYWORDS

agro-ecological sustainability, environmental conservation, organic amendments,
sweetening sustainability, harnessing underutilized industrial by-product
1 Introduction

Utilizing organic amendments in crop production offers a

promising solution to challenges associated with excessive

agrochemical use (Rahimi et al., 2000; Mohanty et al., 2013;

Delcour et al., 2015). These amendments, defined as organic

substrates applied to soil, aim to enhance soil physical, biological,

and chemical properties, improving plant nutrient uptake

(Garbowski et al., 2023). The benefits extend to soil quality and

environmental performance, encompassing mechanisms such as

carbon sequestration, greenhouse gas emission mitigation, and soil

fertility enhancement (González et al., 2010; Singh et al., 2011;

Mohanty et al., 2013). Organic liquid byproducts, molasses, and

vinasse, remnants from sugar and ethanol processing, possess unique

properties (Bento et al., 2019; Dhote et al., 2021). Molasses, a viscous

black liquid produced through sugar processing, and vinasse, a dark

brown organic effluent from ethanol production, find application in

agriculture as biofertilizers, animal feeds, or soil conditioners (Reyes-

Cabrera et al., 2017; Ratna et al., 2021).

Sugarcane, along with its byproducts molasses and vinasse, is

predominantly produced in developed countries across Asia,

America, and Europe (Bordonal et al., 2018; Vandenberghe et al.,

2022). However, it is important to note that developing nations in

Africa also play a significant role in the production of these

commodities. For instance, according to the latest data from

FAOSTAT (2024), Tanzania’s sugarcane production ranged from

2.8 to 3.6 million metric tons (Mt), while molasses production

varied between approximately 79,000 and 98,000 Mt.

Unfortunately, information regarding vinasse production in the

country is currently unknown, possibly due to its limited utilization.

When appropriately applied, either in their original or modified

forms, alone or in conjunction with other compounds, molasses and

vinasse significantly enhance soil health and environmental quality

(Zikeli et al., 2017; da Silva et al., 2021; Friedrichsen et al., 2021; Jia

et al., 2021). Their contributions include improving soil moisture

and nutrient retention, increasing soil organic carbon content, and

enhancing nutrient availability. Furthermore, they positively impact

soil structure stability, total pore space, and microbial activities

(Hossain et al., 2016; Nathaniel et al., 2020; Garbowski et al., 2023).

Vinasse, in particular, aids in plant nutrient uptake and facilitates

heavy metal mobilization during phytoremediation (Hossain et al.,
02
2016; Awad et al., 2021). For instance, Eissa (2017) reported a

significant decrease in soil bulk density (BD) by 28.57% and an

increase in porosity by 34.78% in response to vinasse application.

On the other hand, Pyakurel et al. (2019) found that the application

of molasses at a rate of 2 L ha-1 resulted in a significant increase in

spinach yield by 65.57% when compared to control-treated plants

under field conditions. These findings collectively demonstrate the

positive impact of vinasse and molasses on soil properties and crop

performance, reinforcing their potential as beneficial additives in

agricultural practices.

However, despite the wealth of knowledge on organic

amendments, a notable knowledge gap exists concerning the

global recognition and utilization of specific organic by-products,

namely molasses and vinasse, in improving soil health. While

studies demonstrate the potential of these by-products in

enhancing soil moisture, nutrient retention, and overall soil

quality (Zikeli et al., 2017; da Silva et al., 2021; Friedrichsen et al.,

2021; Jia et al., 2021), there is insufficient acknowledgment on a

global scale (Oliveira Filho and Pereira, 2020). This lack of

recogni t ion has led to inappropr ia te d ischarge and

underutilization of molasses and vinasse by farmers in crop

production (Dhote et al., 2021), emphasizing the need for a

systematic review to bridge this knowledge gap and highlight the

potential benefits and best practices associated with these organic

by-products.

The existing knowledge gap, as outlined in this background,

revolves around the underrecognition and underutilization of

specific organic by-products, namely molasses and vinasse, on a

global scale in improving soil health. Despite the wealth of

knowledge demonstrating the significant contributions of these

by-products to soil moisture, nutrient retention, and overall soil

quality, there is a notable lack of global acknowledgment. This

deficiency in recognition has resulted in inadequate utilization and

inappropriate discharge of molasses and vinasse by farmers in crop

production, emphasizing the need for a systematic review to address

this knowledge gap. The review aims to consolidate existing

information, raise awareness on a global scale, and provide

insights into the potential benefits and best practices associated

with incorporating these organic by-products into agricultural

practices. Bridging this knowledge gap is crucial for promoting

sustainable and informed agricultural decisions, ensuring that the
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benefits of molasses and vinasse are harnessed effectively to enhance

soil health and contribute to environmental conservation.

Agriculture is undeniably vital for sustaining life on Earth,

providing essential resources like food and fiber (Sayer and

Cassman, 2013). However, agricultural practices can pose

negative impacts on land quality and the environment (Chauvel

et al., 1991; Horrigan et al., 2002; Tilman and Clark, 2015). The use

of chemical fertilizers, though initially beneficial for improving crop

performance, has resulted in excessive application, leading to

environmental pollution, greenhouse gas emissions, and

ecosystem disturbances (Savci, 2012; Zhao et al., 2013; Kihara et

al., 2016; Sellare et al., 2020). In response, sustainable agricultural

practices are advocated to minimize environmental deterioration

while ensuring sustainable food production (González et al., 2010;

Mohanty et al., 2013; Garbowski et al., 2023).

In contrast to fixed nutrient types from chemical fertilizers,

molasses and vinasse offer a diverse range of essential nutrients in

varying amounts (Fuess et al., 2018; Naveed et al., 2018). When used

alongside inorganic fertilizers, they can mitigate negative impacts

associated with synthetic chemicals and optimize agronomic use

efficiency (Kumar and Chopra, 2014; Eissa, 2017; Sadiq et al., 2021;

Raza et al., 2022). Their varied nutrient profile supports a more

balanced and comprehensive nutrient supply to crops, enhancing

growth and development (Seleem et al., 2022). However, improper

handling of these byproducts may lead to environmental pollution,

emphasizing the need for their careful incorporation into the

agricultural cycle to ensure agronomic utilization while

safeguarding the environment (Dhote et al., 2021). Despite their

potential, further exploration of molasses and vinasse benefits on

crops, soil quality, and the overall environment is warranted

(Kumar and Chopra, 2014; Oliveira Filho and Pereira, 2020;

Zamarreño et al., 2022), prompting this systematic review to

highlight opportunities, gaps, challenges, and a way forward in

utilizing them as organic soil amendments.

The existing knowledge gap highlighted herein revolves around

the need for a more comprehensive understanding of the benefits,

challenges, and environmental implications of using molasses and

vinasse as organic soil amendments. While the negative impacts of

conventional agricultural practices, particularly the excessive use of

chemical fertilizers, are acknowledged, there is a gap in understanding

the full potential of molasses and vinasse as alternatives and how their

integration into agricultural systems can address environmental

concerns. The key knowledge gap areas include: (1) Optimal

utilization: There is a need to explore the optimal and sustainable

incorporation of molasses and vinasse into agricultural practices to

maximize their benefits without causing environmental harm.

Understanding the proper handling and application methods is

crucial to harness their potential while mitigating pollution risks.

(2) Comprehensive impact assessment: While the diverse nutrient

profile of molasses and vinasse is recognized, there is a knowledge gap

in conducting a comprehensive assessment of their impact on crops,

soil quality, and the broader environment. This includes

understanding their influence on plant growth, soil health, and

potential long-term effects on ecosystems. (3) Balancing nutrient

supply: Although it is acknowledged that molasses and vinasse

provide a varied nutrient profile, there is a need for a deeper
Frontiers in Agronomy 03
understanding of how these organic amendments contribute to a

balanced and sustainable nutrient supply to crops. This involves

assessing the specific nutrients supplied, their concentrations, and

their effectiveness in supporting overall crop development. (4)

Environmental safeguards: The discussion emphasizes the potential

for environmental pollution if molasses and vinasse are not handled

properly. Bridging the knowledge gap requires a detailed exploration

of environmentally friendly practices for integrating these byproducts

into agriculture, ensuring their agronomic benefits while minimizing

negative environmental consequences. (5) Systematic exploration:

While some studies have explored the benefits of molasses and

vinasse, this systematic review is proposed to provide a

consolidated understanding of opportunities, gaps, challenges, and

a clear pathway for utilizing these organic amendments in a

sustainable manner. This indicates a broader knowledge gap in

synthesizing existing information and identifying areas for future

research and application. Addressing these knowledge gaps is crucial

for promoting sustainable agricultural practices that balance the need

for food production with environmental conservation, thereby

contributing to a more resilient and eco-friendly agricultural system.
2 Methodology

This study employs the Preferred Reporting Items for

Systematic Reviews and Meta Analyses (PRISMA) framework

(Figure 1) to investigate the potential of vinasse and molasses as

organic amendments, aiming to enhance soil health and crop

performance for environmental conservation amidst the
FIGURE 1

Flow chart describing steps deployed in literature search.
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challenges posed by climate change (Macusi et al., 2022; Tlatlaa

et al., 2023). Comparable methodologies have been utilized by other

researchers in the development of their systematic reviews

(Gurwick et al., 2013; Pahlevan-Sharif et al., 2019). To explore

information on the potential effects of molasses and vinasse on soil

health and crop performance, a comprehensive database search

spanning from 2013 to 2023 was conducted. Data were sourced

from three databases, namely Scopus, WorldWide Science, and

PubMed Central, utilizing search terms like “molasses,” “vinasse,”

“spentwash,” “soil organic carbon,” “soil properties,” “soil

microorganisms,” “crop growth,” and “crop yield.” These terms

were strategically combined using Boolean operators AND/OR to

encompass all relevant literature within the defined scope (Farid

et al., 2016). Initially, all records, including journal articles, research

reports, and review articles published globally in English from 2013

to 2023, were identified through database searches, and subsequent

removal of duplicates preceded the screening process. Articles

underwent screening and data extraction based on abstracts and

full texts, ensuring inclusion only if they met predetermined criteria

and fell within the scope of the review.

This study follows eight assumptions: - (1) The PRISMA

framework is an effective and widely accepted guideline for

systematic reviews and meta-analyses, the study benefits from a

standardized and rigorous approach. (2) The comparable

methodologies used by other researchers, such as Gurwick et al.

(2013) and Pahlevan-Sharif et al. (2019), indicate a level

of consistency and reliability in systematic review processes.

(3) Scopus, WorldWide Science, and PubMed Central are

reputable and comprehensive databases, providing a suitable

range of literature to address the research question. (4) The

selected search terms, including “molasses,” “vinasse,” and related

terms, effectively captures relevant literature on the potential effects

of these organic amendments on soil health and crop performance.

(5) Relevant information is adequately captured by focusing on

articles published globally in English from 2013 to 2023, and that

language bias does not significantly impact the findings. (6) The

predetermined criteria for screening and data extraction based on

abstracts and full texts effectively identify studies that meet the

research objectives. (7) The removal of duplicates during the

screening process is thorough and accurate, minimizing the risk

of redundant information in the final dataset. (8) The

predetermined criteria for inclusion ensure that the selected

studies are relevant to the research question, focusing on the

potential effects of molasses and vinasse on soil health and

crop performance.
3 Molasses and spentwash (vinasse)
production from raw sugarcane

Sugarcane molasses and vinasse, also known as spentwash, are

substantial by-products arising from the sugar and ethanol processing

industries, alongside press mud and bagasse. As illustrated in

Figure 2, in sugar industries, the production of molasses and

vinasse involves a series of intricate processes. The journey begins

with the extraction of sugar from sugarcane, where the juice
Frontiers in Agronomy 04
undergoes fermentation. During this stage, molasses is derived

through the distillation of the fermented sugarcane juice, resulting

in a by-product rich in sugars and other compounds (Cherubin et al.,

2020). Simultaneously, the production of vinasse occurs as a

consequence of ethanol generation, wherein the fermented broth

undergoes distillation, leaving behind the residual liquid known as

vinasse (Raza et al., 2021). These processes are integral to the sugar

industry’s overall operations, contributing to the substantial

quantities of molasses and vinasse generated, albeit presenting

challenges in terms of effective management and utilization (Raza

et al., 2021; Vandenberghe et al., 2022).

The overall production of sugar and molasses in developed

countries greatly surpasses the production levels in developing

nations, particularly in Africa. Brazil and India stand out globally

as the primary contributors to sugar and molasses production,

owing to their expansive sugarcane plantations and advanced

processing facilities (Bordonal et al., 2018; Vandenberghe et al.,

2022). For instance, between 2013 and 2021, Brazil produced

approximately 30 million Mt of sugar, while India registered

around 36 million Mt. In contrast, Tanzania’s sugar production

during the same period was only 340,000 Mt. Similarly, Brazil and

India produced an average of 15 million Mt and 12 million Mt of

molasses, respectively, whereas Tanzania’s molasses production was

a mere 89,000 Mt from 2013 to 2020. These figures clearly

demonstrate a significant production gap between developed and

developing countries, with Africa being particularly affected. This

highlights the urgent need for increased support and focused efforts

in the agricultural sectors of developing nations in order to bridge

this gap and foster sustainable growth. Molasses, a derivative of

fermented sugarcane juice during sugar extraction, is a key output.

Approximately 85-100 kg of sugar and 35–45 kg of molasses are

generated for every ton of sugarcane crushed, underscoring the

magnitude of production (Solomon, 2011). Molasses finds extensive

application as a raw material in alcohol production, encompassing

potable spirits, industrial alcohol, and ethanol for fuel blending

(Shivaraj and Devidas, 2017).

The growth of distillery industries in Asia and South America,

particularly fueled by the mandate for ethanol in gasoline, has

elevated the demand for molasses as a crucial feedstock (Manochio

et al., 2017; Oceguera-Contreras et al., 2019). Ethanol, a renewable

energy resource, offers numerous advantages in terms of net energy

value and applications across various sectors. Shelar et al. (2023)

report that ethanol has a net energy value ranging from

approximately 6 to 6.3 MJ L-1. This versatile fuel has found

significant utilization in countries like Brazil, India, China, the

United Kingdom, and Thailand, particularly in the transportation

sector (Mac̨zyńska et al., 2019). Gasohol, a blend of ethanol and

gasoline, has been a notable development in these nations,

providing improved environmental cleanliness (Balat and Balat,

2009; Gopal and Kammen, 2009). Gasohol can be formulated with

different ethanol proportions, such as 5%, 10%, or 20% (Sakthivel

et al., 2018). However, the sustainable adoption of bioethanol as an

energy source in African countries like Tanzania has been hindered

by inadequate policies and limited technological advancements

(Quintero et al., 2012). However, due to its high flammability and

volatility, direct use of ethanol in the distillation process for ethanol
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production is limited, leading to the continued reliance on primary

energy sources like coal, crop residues, and biogas (Nguyen et al.,

2008; Baeyens et al., 2015; Calvin et al., 2022).

Ethanol production from cane molasses presents a

comprehensive solution to address environmental challenges

associated with the irregular dispersal of molasses. By utilizing

molasses as a feedstock for ethanol production, it not only avoids

harmful environmental practices like uncontrolled dumping or

improper disposal but also transforms a waste product into a

valuable resource (Gopal and Kammen, 2009). This sustainable

approach helps to mitigate the negative environmental impacts that

would otherwise arise from the mishandling of molasses. Moreover,

ethanol derived from cane molasses is considered a renewable

energy source due to the renewable nature of sugar cane itself

(Shelar et al. (2023). This quality makes it an attractive alternative to

fossil fuels, reducing dependence on non-renewable resources and

contributing to the mitigation of greenhouse gas emissions.

However, it is important to acknowledge that the process of

ethanol production from cane molasses may have some harmful

effects on the environment. Notably, the production of ethanol

generates significant volumes of vinasse, ranging from 12 to 20 liters

for every liter of ethanol produced (Moraes et al., 2014). Inadequate

management of the substantial amount of vinasse produced can

present environmental concerns. If not handled properly, this waste

material has the potential to cause environmental pollution,

impacting water bodies and soil, and posing a threat to local

ecosystems (Wang et al., 2014). Brazil leads in vinasse

production, with an annual output reaching around 300 billion

liters, followed by India with approximately 40 billion liters and

China contributing about 2.2 million tons annually (Wei and Xu,

2004; Dhote et al., 2021; Carpanez et al., 2022). The past decade has

witnessed a substantial global surge in the production and

consumption of sugar and ethanol, driven by factors such as

population growth, increased demand for renewable energy,
Frontiers in Agronomy 05
government incentives for biofuels, and the depletion of

petroleum reserves (Mikucka and Zielińska, 2020). This growth

has not only expanded the sugar industry but has also propelled the

rapid development of distillery sectors, introducing both

opportunities and challenges in the effective management and

utilization of molasses and vinasse (Wei and Xu, 2004).

The interlinked expansion of these sectors underscores the

imperative for comprehensive policies and practices. These should

ensure the safe and sustainable handling of by-products,

considering their environmental impact and exploring potential

avenues for reuse or dispersal across various sectors (Dhote et al.,

2021). Despite significant strides, there still exists a knowledge gap

in understanding the full extent of the environmental implications

and the optimal utilization of these abundant by-products. Closing

this gap is essential for fostering a more sustainable and

environmentally conscious approach to the management of sugar

and ethanol by-products on a global scale.
4 Composition and properties
of molasses

The composition of molasses and vinasse exhibits significant

variability influenced by diverse factors, including soil type,

management practices, climate, manufacturing processes, crop

maturity stage, and crop variety (De Godoi et al., 2019). Both

substances, characterized by their highly viscous nature, possess a

thick and sticky consistency, with viscosity influenced by factors like

temperature and the concentration of soluble and suspended

materials. Although their density typically falls within the range

of 1.01 to 1.5 g mL-1 (Fuess et al., 2018; Naveed et al., 2018), specific

physico-chemical properties are presented in Tables 1 and 2.

Rich in organic compounds, molasses and vinasse serve as

valuable resources for soil amendment and agricultural
FIGURE 2

Processes involved in the production of molasses and vinasse.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1358076
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Stephen et al. 10.3389/fagro.2024.1358076

Frontiers in Agronomy 06
applications. These compounds include residual sugars such as

glucose, fructose, and sucrose, along with organic acids like acetic,

citric, malic, and lactic acids, originating from microbial activities

during fermentation (Fuess et al., 2018; Naveed et al., 2018; Buller

et al., 2021; Saeed et al., 2021; Lourenço et al., 2022). The high

concentration of organic acids contributes to their acidic nature,

reflected in a pH range from extremely acidic (3.5) to slightly acidic

(6.5) (Naveed et al., 2018; Lourenço et al., 2022).

Additionally, molasses and vinasse contain varying amounts of

mineral elements. Macroelements such as potassium (K), calcium

(Ca), magnesium (Mg), phosphorus (P), and nitrogen (N) are

present in concentrations ranging from 35 to 4600 mg L-1, while

microelements or trace elements like iron (Fe), zinc (Zn),

manganese (Mn), copper (Cu), lead (Pb), and aluminum (Al) are

found in smaller concentrations ranging from 0.1 to 25 mg L-1

(Fuess et al., 2018; Naveed et al., 2018; Lourenço et al., 2022). The

elevated concentration of soluble bases, including K, Ca, Mg, and

Na, contributes to the high electrical conductivity observed in

molasses and vinasse, ranging from 11 to 51 d Sm-1 (Fuess et al.,

2018; Naveed et al., 2018). This comprehensive understanding of

the physico-chemical properties of molasses and vinasse

underscores their potential as versatile and valuable components

in various agricultural and environmental applications.

The existing main knowledge gap in the context of

environmental conservation is the lack of detailed information on

how the variability in the composition of molasses and vinasse,

influenced by diverse factors, may impact environmental outcomes.

While the physico-chemical properties of these substances are

outlined, there is a need for further research to elucidate the

specific environmental implications arising from their variable

composition. Understanding how factors such as soil type,

management practices, climate, and manufacturing processes

influence the composition of molasses and vinasse can provide

valuable insights into their environmental effects, especially in

terms of soil health, water quality, and overall ecosystem impact.

Bridging this knowledge gap would contribute to more informed

and sustainable practices when utilizing molasses and vinasse in

agricultural and environmental applications.
5 The influence of molasses and
vinasse on soil properties

The use of either vinasse or molasses in soil has proven to be

beneficial, positively impacting the total organic carbon content and

showing promise in restoring organic matter levels in highly

degraded soils (Zani et al., 2018; Dos Santos et al., 2020). The

high organic matter content in both molasses and vinasse

contributes to an increase in total soil organic carbon, enhancing

soil fertility, structure, and overall health (Nunes et al., 2021).

Studies have demonstrated significant increases in soil organic

matter with the co-application of vinasse and other organic

amendments, indicating a potential restoration of degraded soil

(Raza et al., 2022). The enrichment of soil with soluble minerals

such as calcium, magnesium, potassium, and phosphorus through

the application of molasses or vinasse further enhances soil fertility
TABLE 2 Various physico-chemical characteristics of vinasse.

Physico-
chemical
properties

Value Unit
of
measure

References

pH 4 – 6.5 Buller et al. (2021);
De Godoi et al.
(2019); Gutiérrez
et al. (2016);
Naveed et al.
(2018); Seleem
et al. (2022)

Colour Dark brown

Bulk
density density

1-1.1 g cm-1

Electrical
conductivity

20 - 42 dS m-1

Phosphorus 0.2 - 1 %

Total nitrogen 2 - 5 %

Exchangeable
bases (calcium,
magnesium,
potassium,
sodium)

300 - 8500 mg L-1

Organic matter 4 - 65 %

Sulfate (SO42-) 2000 - 3000 mg L-1

Trace elements
(nickel, cobalt,
zinc,
manganese, etc.)

0.8 - 370 mg L-1

Organic acids
(lactic, acetic,
butyric,
succinic, etc.)

10 - 5500 Mg L-1
TABLE 1 Various physico-chemical characteristics of molasses.

Physico-
chemical
properties

Value Unit
of
measure

References

pH 4 - 6 Li et al. (2020);
Palmonari et al.
(2020); Jamir et al.
(2021); Mordenti
et al. (2021);
Wright
et al. (2014).

Colour Black

Density 1 - 1.4 kg L-1

Phosphorus 0.5 -2 %

Total nitrogen 2.38 %

Exchangeable bases
(calcium,
magnesium,
potassium, sodium)

0.7 - 51 %

Total
Organic Carbon

1.6 - 36 %

Sulphur and
sulfate (SO42-)

0.3 - 10 %

Trace elements
(nickel, cobalt,
zinc,
manganese, etc.)

0.02 -340 mg Kg-1

Organic acids
(lactic, acetic,
butyric,
succinic, etc.)

0.02 - 13 mg L-1
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(Van Vuuren et al., 2010; Christofoletti et al., 2013; Hoarau et al.,

2018; Feder, 2021; Jayashree et al., 2022).

Vinasse application has been linked to a substantial increase in

soil base saturation and cation exchange capacity (CEC), positively

impacting the availability and exchange of basic cations in the soil

(Eissa, 2017; Fuess et al., 2021). Adequate base saturation and CEC

are crucial indicators of soil fertility, ensuring a sufficient supply of

essential basic cations for plant physiological processes (Aprile and

Lorandi, 2012; Chaganti et al., 2021; Culman et al., 2021). Both

molasses and vinasse contribute to an increase in soil electrical

conductivity, with studies showing no adverse effects on plant

growth within optimal ranges (Corwin and Plant, 2005; Jayashree

et al., 2022; Raza et al., 2022). The impact on soil pH, however, has

been inconsistent, with some studies reporting a decrease and

others an increase. Further research is needed to establish

conclusive findings on the effects of molasses and vinasse on soil

pH (Eissa, 2017; Naveed et al., 2018; Pyakurel et al., 2019; Oak

et al., 2021).

Molasses and vinasse influence soil physical strength by

enhancing soil aggregation directly and indirectly. They act as

cohesive materials, binding soil particles and improving soil

structure, leading to better aeration, water retention, and overall

soil quality (Hossain et al., 2016; Saneiyan et al., 2019; Litardo et al.,

2022). Additionally, the byproducts stimulate microbial-induced

calcium precipitation, promoting the formation of stable soil

aggregates (Nikseresht et al., 2020; Romano et al., 2020;

Behzadipour and Sadrekarimi, 2021; Saneiyan et al., 2021). The

application of vinasse has been associated with increased soil

thermal conductivity, reduced soil bulk density, and increased soil

porosity, all of which contribute to improved soil quality and plant

growth (Place et al., 2008; Gutiérrez et al., 2016; Eissa, 2017).

The application of byproducts such as molasses and vinasse in

crop production serves as a valuable and long-lasting source of

organic carbon and mineral nutrients, which has a positive impact

on soil fauna diversity, abundance, and activities (Franzluebbers,

1999; Do Nascimento et al., 2019). These byproducts play a crucial

role in enhancing soil fertility and promoting sustainable
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agricultural practices. Notably, vinasse application has shown

significant increases in soil fauna and microbial biomass

compared to the use of chemical fertilizers (Behzadipour and

Sadrekarimi, 2021; Chuppa-Tostain et al., 2018; Seleem et al.,

2022). The rich organic content of vinasse provides an ideal

environment for soil organisms, leading to improved soil health

and nutrient cycling. Moreover, when vinasse is co-applied with

inorganic fertilizers, it has been shown to have a more pronounced

effect on increasing soil microbial populations than the use of

inorganic fertilizers alone (Navarrete et al., 2015; Durrer et al.,

2017; Kaziūnienė et al., 2022). This synergistic effect suggests that

combining organic byproducts with inorganic amendments can

maximize the benefits for soil microbial communities. These

findings underscore the potential of utilizing molasses and vinasse

in combination with other inorganic enhancements to promote soil

health, enhance nutrient availability, and ultimately improve crop

productivity. By adopting such practices, farmers can reduce their

reliance on chemical fertilizers while fostering sustainable and

environmentally friendly agricultural systems.

One significant knowledge gap regarding soil properties is the

inconsistent findings regarding the impact of molasses and vinasse

on soil pH. While some studies report a decrease in soil pH

following the application of these byproducts, others indicate an

increase. This inconsistency highlights the need for further research

to establish more definitive conclusions about the effects of molasses

and vinasse on soil pH. Understanding the factors influencing these

variations and conducting additional studies to clarify the specific

conditions under which pH changes occur would contribute to a

more comprehensive understanding of the overall impact of these

byproducts on soil properties.
6 The influence of molasses and
vinasse on crop performance

The use of molasses and vinasse in crop cultivation provides a

conducive environment for plant growth, offering various
FIGURE 3

A depiction showcasing the positive effects of vinasse and molasses on soil characteristics and the performance of wheat as a representative crop.
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advantages (See Figure 3). These include the adjustment of pH

levels, enhanced soil aeration, increased moisture availability, and

the reduction of micronutrient toxicity (Scarpare et al., 2016; Reyes-

Cabrera et al., 2017; de Souza Oliveira Filho et al., 2021; Litardo

et al., 2022). These amendments have demonstrated positive effects

on yield and yield quality in a variety of crops, such as tomatoes

(Solanum lycopersicum), soybean (Glycine max), maize (Zea mays

L.), barley (Hordeum vulgare), rice (Oryza sativa), elephant foot

yam (Amorphophallus paeoniifolius), and sugarcane (Saccharum

officinarum) (Surendran et al., 2016; Dotaniya et al., 2016; Di Gioia

et al., 2017; Naveed et al., 2018; Jayashree et al., 2022; Pinto

et al., 2022).

For example, Seleem et al. (2022) reported a 76.91% increase in

barley’s total grain weight yield in vinasse-treated crops compared

to those treated with chemical fertilizers. Similarly, Naveed et al.

(2018) observed enhanced growth and yield parameters in rice,

including increased height, panicle length, and number of tillers,

grain weight, total grain yield, and grain yield per plant with vinasse

application relative to chemical fertilizers. Molasses and/or vinasse

play a significant role in improving plant nutrient availability

through mechanisms such as direct supply of mineral elements to

plants. Molasses contains appreciable amounts of soluble plant

nutrients, readily available to plants (Cardin et al., 2016; Omori et

al., 2016; Rothe et al., 2019; Kumari et al., 2020; Gowd et al., 2022).

Goswami et al. (2023) suggested that the abundant nutrients in

molasses and vinasse could directly support plant growth, even

without relying on nutrient recycling by microorganisms in the soil.

Additionally, co-application of vinasse and poultry manure

significantly increased potassium, phosphorus, and nitrogen

compared to chemical fertilizers (Seleem et al., 2022). Vinasse

also promotes the decomposition of organic matter in the soil,

releasing nutrients previously locked up in plant residues or other

organic materials (Suleiman et al., 2018; Zhu et al., 2020).

Vinasse plays a crucial role in improving the agronomic

efficiency of agricultural inputs, including chemical fertilizers, by

mitigating nutrient loss and extending the nutrient release period.

Combined application of vinasse or vinasse-biochar with urea has

been shown to decrease nitrogen loss through processes like NH3

volatilization, NO3 leaching, and surface run-off (Engström et al.,

2014; Jia et al., 2021; Wester-Larsen et al., 2022). Litardo et al.

(2022) reported that co-application of vinasse and inorganic

fertilizers enhanced plant nutrient uptake by rice crops, indicating

increased efficiency of agricultural inputs. Vinasse has been found

to promote various plant physiological processes, enhancing

photosynthesis rate, stomatal conductance, and respiration rate,

leading to improved CO2 utilization, water regulation, and

macromolecule synthesis and distribution in plants (Naveed et al.,

2018). Furthermore, vinasse contains plant growth-promoting

hormones (PGPHs) such as Gibberellic acid (GA), Indole acetic

acid (IAA), Abscisic acid (ABA), Zeatin (Z), cis-zeatin riboside (c-

ZR), isopentenyladenine (iP), and isopentenyladenosine (iPR),

which contribute to enhanced plant growth and yield (Khan et

al., 2020; Hassan et al., 2021; Zamarreño et al., 2022).

In recent studies, vinasse has been explored as an organic

substrate in controlling soil-borne pathogens through anaerobic soil

disinfestation (ASD). Lee et al. (2020) observed a significant
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reduction in the density of Fusarium oxysporum L. sp. lycopersici,

a fungal pathogen causing Fusarium wilt in tomatoes, during ASD

with vinasse. This reduction suggests the effectiveness of vinasse, and

possibly molasses, in suppressing soil-borne pests through anaerobic

decomposition that enhances the antagonistic activities of beneficial

microorganisms against pathogens (Shrestha et al., 2016).

While molasses and vinasse have shown several advantages in

soil health and crop production, it is important to consider their

potential drawbacks. One significant demerit is the risk of nutrient

imbalances, mainly due to the varying composition of these

byproducts (Fuess et al., 2018; Jamir et al., 2021). This variability

makes it difficult to establish a single common nutrient content and

ratios, which can lead to over- or under-application of certain

nutrients, negatively impacting plant growth. Additionally, the high

organic matter content of molasses and vinasse can contribute to an

increase in soil acidity, potentially disrupting the pH balance and

nutrient availability (Buller et al., 2021; Dhote et al., 2021).

Moreover, improper application or excessive use of these

byproducts can result in the accumulation of salts and other toxic

substances in the soil, ultimately leading to decreased soil

productivity (Alves et al., 2015; Naveed et al., 2018). Therefore, to

ensure the safe and effective use of molasses and vinasse in crop

production, careful management practices are crucial. These

practices include proper nutrient analysis, monitoring soil pH,

and considering potential contamination risks.

The provided explanation highlights the potential of vinasse

and molasses in improving the agronomic efficiency of agricultural

inputs, including synthetic fertilizers, by mitigating nutrient loss

and extending the nutrient release period. However, a crucial

knowledge gap is the lack of specific information on the

environmental impacts of synthetic fertilizers and how the use of

vinasse and molasses as amendments may contribute to

environmental conservation in comparison to synthetic fertilizers.

While the benefits of vinasse and molasses in nutrient retention and

plant nutrient uptake are emphasized, a comprehensive

understanding of the environmental implications of synthetic

fertilizers, such as their contribution to water pollution, soil

degradation, and greenhouse gas emissions, is missing. To bridge

this gap, further research is needed to assess and compare the

environmental impacts of using vinasse and molasses in

combination with synthetic fertilizers versus the use of synthetic

fertilizers alone. This would help determine the potential of these

organic amendments in promoting sustainable agricultural

practices and minimizing negative environmental effects

associated with synthetic fertilizers.
7 Role of vinasse and molasses in
enhancing environmental remediation

Sodium (Na) plays a crucial role as a beneficial nutrient in

certain crops, enhancing their performance and yield. However,

elevated concentrations of sodium can negatively impact plant

growth and soil properties (Bauder and Brock, 2001; Leogrande

and Vitti, 2019). Sugarcane vinasse application has demonstrated

potential benefits in mitigating sodium toxicity in soil. Gutiérrez
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et al. (2016) found that applying vinasse at 10 L ha-1 significantly

reduced exchangeable sodium percentage (ESP) by 23.58% and

sodium adsorption ratio (SAR) by 65.83% in sodic soils. This effect

is attributed to the enrichment of soil with divalent cations,

primarily calcium (Ca2+), as highlighted by Kopittke (2012), Tobe

et al. (2003), and Rahimi et al., 2000.

Aluminium, another beneficial nutrient, can be toxic to many

crops and soil microorganisms (Aggarwal et al., 2015; Bojó́rquez-

Quintal et al., 2017). It is known for its acidifying effect on soil and

inhibitory impact on plant nutrient availability, root growth, and

development (Rahman et al., 2018). Fortunately, vinasse has shown

significant efficacy in reducing aluminum solubility, hindering its

availability to plants and soil microorganisms (Fuess et al., 2021).

The application of vinasse reduced aluminum saturation by over 20%

without compromising soil fertility status. Although specific

mechanisms are not fully understood, de Souza Oliveira et al. (2009)

and Singh et al. (2021) proposed that the chelating effects of vinasse on

aluminum form a less soluble complex, limiting aluminum reactivity

in soil and plant roots. Vinasse has also been explored for its potential
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in phytoremediation, the use of plants to mitigate environmental

pollution (Abdelkrim et al., 2019). Heavy metals, persistent pollutants

with adverse effects on human health and biodiversity, pose a

significant environmental concern (Ashraf et al., 2019). Vinasse

application has demonstrated notable removal of lead (Pb) and

increased solubility of cadmium (Cd) in various studies (Eissa, 2017;

Awad et al., 2021). The efficiency of metal removal by plants, such as

Amaranthus tricolor, and quail bush (Atriplex lentiformis), increased

significantly with vinasse, showcasing its potential in

phytoremediation efforts.

The use of sugarcane vinasse and molasses in crop production

has shown promising effects in reducing reliance on chemical

fertilizers, which are often associated with environmental

pollution and soil disturbances (Ogbodo, 2013; Prashar and Shah,

2016). Vinasse alone contributes a substantial amount of available

nutrients, with Cui et al. (2021) highlighting its contribution to

about 2.3% of the total nitrogen biomass reservoir in China. Co-

applying vinasse with poultry manure has shown notable

improvements in plant nutrient availability compared to chemical
TABLE 3 Exploring literature discussing the impact of molasses or vinasse application on soil properties and crop performance across various
soil conditions.

Molasses/vinasse
as treatment

Dose
tested

Effect on soil properties Effects on plants References

Molasses applied on spinach 2 L ha-1 • Decreased soil pH and phosphorus
• Increased soil organic carbon, total nitrogen, and potassium

Increase yield Pyakurel
et al. (2019)

Vinasse applied on sodic soil
under field conditions

10 L ha-1 • Improved microbial activities
• Decreased total soil pore space
• Increased calcium content
• Increased thermal conductivity
• Reduced soil salinity and sodicity

Not measured Gutiérrez
et al. (2016)

Vinasse applied on barley 6.30 g
kg−1 soil

• Improved fauna abundance
• Improved microbial biomass
• Improved organic matter, potassium, phosphorus,
and nitrogen

Improved grain weight Seleem
et al. (2022)

Vinasse applied on sorghum 1.33 mL
kg-1 soil

• Increased soil NO3
- and PO4

3- Improved root and shoot
biomass and NO3

- and PO4
3-

Goswami
et al. (2023)

Vinasse applied on maize
and barley

5% • Increased pH
• Increased electrical conductivity
• Improved nitrogen, organic matter, calcium, magnesium, iron,
and zinc

Improved plant growth, yield
and yield parameters

Naveed
et al. (2018)

Vinasse applied on rice 10 t ha-1 Not measured Enhanced plant growth, yield
and yield parameters

Litardo
et al. (2022)

Vinasse applied on soybean 60 m3

ha-1
• Increased pH and electrical conductivity
• Improved zinc, iron, and manganese

Improved growth, pods
formation, total biomass,
grain yield

Oak
et al. (2021)

Vinasse applied on quail bush 16 mL
kg-1

Reduced soil pH and bulk density, electrical conductivity, cation
exchange capacity, organic carbon, and porosity

Improved growth shoot and
root lengths

Eissa (2017)

Vinasse applied on rice 1.25 t ha-1 • Improved nitrogen, available phosphorus, zinc, potassium, and
organic matter
• Decreased pH and electrical conductivity

Improved grain yield, zinc and
nitrogen concentrations

Raza
et al. (2022)

Vinasse applied on
Amaranths tricolor

1:2 water
(v/v)

Not measured • Improved plant fresh and
dry weights
• Enhanced heavy metal
uptake (i.e., zinc, copper, lead)

Awad
et al. (2021)

Biomethanated vinasse applied
on Elephant foot yam

250 mL
kg-1 soil

• Increased soil electrical conductivity
• Improved organic carbon, potassium, calcium, and magnesium

Improved growth, dry matter
yield and nutritional quality

Jayashree
et al. (2022)
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fertilizers, with increases in potassium, phosphorus, and nitrogen

(Seleem et al., 2022). Moreover, vinasse serves as a sustainable and

enduring source of nutrients in agriculture, potentially reducing the

need for inorganic fertilizers in crop production (See Table 3). Bi

et al. (2023) evaluated various nitrogen fertilizer pathways and

emphasized the intricate environmental implications of synthetic

nitrogenous fertilizers, underscoring the need for sustainable

agricultural practices to mitigate nitrogen-related environmental

impacts (See Figure 4). Additionally, Tlatlaa et al. (2023) pointed

out that the emission of nitrous oxide (N2O) resulting from

nitrogenous fertilizers may contribute significantly to atmospheric

warming, emphasizing the environmental implications of nitrogen

use in agriculture.

The explanation provided highlights several positive aspects of

using sugarcane vinasse in agriculture, particularly in addressing

issues related to sodium toxicity, aluminum solubility, and heavy

metal removal in soils. However, there are notable knowledge gaps

that remain and need further exploration for a more comprehensive

understanding of the environmental conservation implications.

While the studies acknowledge the positive effects of vinasse, the

specific mechanisms by which it mitigates sodium toxicity, reduces

aluminum solubility, and enhances heavy metal removal are not

fully understood. Further research is needed to delve into the

underlying biochemical and physiological processes involved in

these interactions. The presented information focuses on short-

term effects of vinasse application. Long-term studies are crucial to

assess the sustainability and persistence of the positive impacts, as

well as any potential unintended consequences or accumulative

effects on soil health and ecosystem dynamics. Although vinasse

shows promise in phytoremediation efforts, the efficiency and

reliability of this method across different environmental

conditions and plant species need more investigation.

Understanding the specific mechanisms by which vinasse

enhances metal removal and solubility is essential for optimizing

its use in diverse phytoremediation scenarios. The potential

environmental impacts of the constituents of vinasse, such as

organic matter and other compounds, need thorough

examination. This includes studying their breakdown, leaching
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potential, and effects on water quality, ensuring that the use of

vinasse aligns with broader environmental conservation goals. Most

studies cited herein are likely conducted under controlled

conditions. Large-scale field studies are necessary to validate the

efficacy of vinasse in real-world agricultural settings and to assess its

broader environmental implications on a landscape scale. While

vinasse shows promise as an alternative to chemical fertilizers, more

research is needed to explore integrated approaches that combine

vinasse with other sustainable practices. This includes studying the

synergistic effects of vinasse with cover cropping, agroforestry, or

other conservation practices to develop holistic and effective

environmental conservation strategies. Therefore, addressing these

knowledge gaps will contribute to a more nuanced understanding of

the environmental impact of using sugarcane vinasse in agriculture,

guiding sustainable practices and policies for environmental

conservation in the long run.

While vinasse and molasses hold promise as potential solutions

for environmental restoration, it is crucial to recognize that their

irregular use can contribute significantly to environmental pollution.

The high organic and inorganic load present in molasses and vinasse

poses a significant challenge in terms of managing contamination of

underground water (Pires et al., 2016). Excessive application of these

byproducts can lead to the pollution of water bodies, thereby affecting

both underground and aquatic environments. Research conducted by

Goswami et al. (2023) and Ortegón et al. (2016) emphasizes the

potential for these byproducts to significantly contaminate

underground water sources. In addition, irregular use of these

byproducts have been linked to greenhouse gasses emission.

Although there is limited researches conducted on this subject

particularly in agriculture, but available evidence suggests that their

sporadic application can result in substantial emissions of greenhouse

gasses including carbon dioxide (CO2), methane (CH4), and nitrous

oxide (N2O) as indicated by De Figueiredo et al. (2010). For instance,

in their study, De Figueiredo et al. (2010) revealed that vinasse, along

with other agricultural residues, could emit N2O that is around

50,000 tons of CO2 equivalents, surpassing emissions from fossil

fuel consumption (about 12, 000 tons of CO2 equivalents). These

findings underscore the importance of carefully managing the

utilization of vinasse and molasses to minimize their potential

environmental impact and ensure the adoption of sustainable

agricultural practices.
8 Institutional guidelines governing
the production and utilization of
molasses and vinasse

The global concern over environmental pollution stemming

from molasses and vinasse in both terrestrial and aquatic

ecosystems has prompted the establishment of policies to regulate

their production and application. These byproducts, rich in organic

matter, nutrients, and pollutants, pose environmental risks if not

managed effectively (Raza et al., 2021; Goswami et al., 2023).

Despite efforts to address these concerns, the majority of

regulations have been formulated and effectively enforced in

developed countries, such as Europe, the United States of
FIGURE 4

Mapping out the routes of nitrogenous fertilizers in practice. Visual
representation reproduced from Figure 6 of 'Fate of fertilizer
nitrogen and residual nitrogen in paddy soil in Northeast China' by Bi
et al. (2023) under CC BY-NC-ND 4.0 DEED.
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America, India, and Brazil, leaving a notable gap in policies for

many developing nations (Moraes et al., 2014; Wang et al., 2014).

The absence of comprehensive policies in developing countries,

particularly in Africa, presents a significant challenge to the

sustainable management of molasses and vinasse. Without proper

regulations, there is an elevated risk of improper disposal and

inadequate treatment, leading to soil, water, and ecosystem

pollution with far-reaching consequences (Wang et al., 2014;

Ogemdi and Gold, 2018; Iloms et al., 2020). While some African

countries, including Nigeria, Namibia, South Africa, Kenya, and

Tunisia, have implemented plans and legislations for environmental

protection, these are often general and lack specificity for molasses

and vinasse (Wang et al., 2014; Ferronato and Torretta, 2019; Onu

et al., 2023).

The policies addressing molasses and vinasse aim to establish a

framework ensuring their safe reuse or dispersal within the

environment. A significant focus lies on the mandatory treatment

of these byproducts, aiming to eliminate or reduce organic materials

and heavy metals, which can lead to significant environmental

pollution (Moran-Salazar et al., 2016; Dhote et al., 2021). These

guidelines set standard values for treated molasses and vinasse,

ensuring thorough treatment and minimizing potential risks, thus

protecting the environment from pollution (Companhia Ambiental

do Estado de São Paulo (CETESB), 2006; United States

Environmental Protection Agency, 2004). The ultimate goal is the

responsible management of these byproducts, mitigating

environmental risks associated with their disposal or utilization.

Moreover, these policies advocate for sustainable practices within

industries managing molasses and vinasse. This may involve

promoting advanced treatment technologies, efficient waste

management systems, or innovative methods for the beneficial

reuse of these byproducts. By incorporating sustainability

principles, governments aim to foster a circular economy, where

molasses and vinasse are considered valuable resources rather than

mere waste products (Christodoulou and Stamatelatou, 2016).

Beyond treatment and reuse, the policies also address proper

storage, transportation, and disposal practices. Adequate storage

facilities and protocols prevent leaks or spills, safeguarding soil and

water sources. Similarly, stringent regulations on transportation

ensure the safe conveyance of these byproducts without posing

harm to the environment or public health (Buller et al., 2021).

While the provided explanation comprehensively addresses the

policies and challenges related to the environmental impact of

molasses and vinasse, a notable knowledge gap pertains to the

effectiveness and enforcement of these policies. Specifically, there is

a need for in-depth research on the implementation and

compliance levels of the established regulations in different

regions, both in developed and developing countries.

Understanding how well the policies are implemented on the

ground is crucial. Research should investigate the extent to which

industries adhere to the prescribed guidelines for the treatment,

storage, transportation, and disposal of molasses and vinasse.

Assessing the effectiveness of regulatory mechanisms in ensuring

compliance is essential for evaluating the actual impact of these

policies on environmental conservation. This review highlights that
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many comprehensive policies are developed and enforced in

developed countries, leaving a gap in developing nations. Further

research should delve into the reasons behind these regional

disparities, considering factors such as economic capacities,

infrastructure, and institutional capabilities. Addressing this gap

will aid in formulating targeted strategies for enhancing

environmental conservation practices in developing regions.

Research should explore the existence and efficiency of

monitoring and reporting systems associated with molasses and

vinasse management. Assessing the availability of data on

compliance, environmental impact assessments, and incidents

related to these byproducts will contribute to a more nuanced

understanding of the current state of environmental

conservation efforts.

Investigating the level of stakeholder involvement, including

industries, local communities, and regulatory bodies, is crucial.

Additionally, assessing the awareness levels among these

stakeholders regarding the environmental consequences of

molasses and vinasse and their understanding of implemented

policies will shed light on the potential gaps in knowledge and

cooperation. Given the dynamic nature of environmental

challenges, there is a need to explore the adaptability of existing

policies to changing circumstances. Research should investigate the

incorporation of innovative technologies and practices in the

treatment, reuse, and disposal of molasses and vinasse, ensuring

that policies evolve to address emerging environmental concerns.

By addressing these knowledge gaps, future research can contribute

to a more holistic understanding of the efficacy of existing policies

and provide insights for refining and tailoring environmental

conservation measures related to molasses and vinasse on a

global scale.

This study sheds light on the future scope of the discipline. In

developing countries, particularly in Africa, ensuring the

sustainable management of molasses and vinasse requires

institutions to commit to comprehensive policies. These policies

should address the specific requirements and regulatory

frameworks for the safe reuse, treatment, storage, transportation,

and disposal of these byproducts. Future research should focus on

exploring the unique challenges and opportunities in African

contexts to establish effective guidelines and strategies. By doing

so, institutions can contribute to sustainable development and

economic growth while promoting environmental protection and

resource conservation. This holistic approach will help to manage

molasses and vinasse responsibly, benefiting both the countries and

the environment.

Future research can play a crucial role in evaluating the

effectiveness and enforcement levels of existing policies across

different regions, encompassing both developed and developing

countries. Such research can focus on assessing industry adherence

to prescribed guidelines while also evaluating the impact of

regulatory mechanisms on environmental conservation efforts. By

understanding the barriers and facilitating factors that affect policy

compliance, strategies can be developed to enhance implementation

and enforcement. Additionally, it is essential to investigate the

reasons for regional disparities in policy development and
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enforcement, considering factors such as economic capacities,

infrastructure, and institutional capabilities. This comprehensive

analysis can contribute to the formulation of targeted strategies

aimed at improving environmental conservation practices in

developing regions and bridging the policy gap between

developed and developing nations.

In addition to the aforementioned areas of research, it is crucial

for future studies to emphasize the role of innovative technologies

and practices in the development of policies. Recognizing the ever-

changing nature of environmental challenges, research should delve

into the integration of innovative technologies and practices in the

treatment, reuse, and disposal of molasses and vinasse. This entails

exploring emerging technologies that facilitate efficient waste

management, advanced treatment methods, and sustainable reuse

options. By incorporating these advancements into policies, it

becomes possible to address emerging environmental concerns

effectively and promote the widespread adoption of sustainable

practices. This proactive approach enables the establishment of a

more efficient and adaptable regulatory framework that can keep

pace with evolving environmental demand.
9 Conclusion and perspectives

Molasses and vinasse have been utilized as biofertilizers and soil

conditioners for numerous years, showcasing their potential to

enhance soil health and environmental quality. Both substances

contribute to the improvement of soil organic carbon, elevate plant

nutrient availability, regulate plant growth and physiologies, and

enhance the agronomic use efficiency of fertilizers. Additionally,

they play a role in alleviating heavy metals and sodium toxicity in

soils, further promoting overall soil health.

Despite their positive attributes, it is crucial to highlight that

improper use of molasses or vinasse can lead to adverse effects,

including salinization, the accumulation of potential toxic elements,

and aquatic eutrophication. In the current scenario where

agricultural soil productivity is on a decline and inorganic

fertilizers exhibit limited effectiveness, molasses and vinasse

emerge as cost-effective and environmentally friendly solutions to

bolster soil health and environmental quality.

Based on this review, the following recommendations can be

made: (i) Establishing the optimal dosage of molasses or vinasse

tailored to the agroecological system, specific crops, or soil types. (ii)

Raising awareness among farmers and other stakeholders, such as

government entities, organizations, and sugar industries, regarding

the potential benefits of using molasses and vinasse for soil health

and crop performance. (iii) Conducting research on the potential

effects of molasses and vinasse on crop yield and nutritional quality,

encompassing various crops and soil types. (iv) Investigating

appropriate application methods and developing suitable forms of

vinasse or molasses to optimize their utilization. (v) Exploring the

effectiveness of different mechanisms involved in plant growth

promotion and phytoremediation associated with molasses and

vinasse. (vi) Formulating or updating specific policies to enforce

the safe handling and use of molasses and vinasse, ensuring

sustainable environmental quality practices are adhered to.
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To ensure responsible and sustainable utilization of molasses

and vinasse, future research should prioritize the exploration of

appropriate dosage levels that minimize negative impacts on the

environment, including soil and aquatic ecosystems, while

simultaneously enhancing crop growth and nutritional quality.

Understanding the optimal application rates of these byproducts

is crucial to prevent potential risks such as nutrient imbalance, soil

degradation, and water pollution. Research can focus on

determining the ideal quantities that provide sufficient benefits

to crops without causing ecological harm. This includes

studying the effects of different dosages on soil fertility,

water quality, and the overall health of aquatic organisms.

By uncovering the appropriate dosage thresholds, researchers

can contribute to the development of guidelines and

recommendations that support sustainable agricultural practices

while safeguarding the environment.

It is also essential to investigate appropriate application

methods and develop suitable forms of these byproducts. Future

research can focus on exploring innovative techniques that enable

efficient and targeted application, such as the use of controlled-

release formulations or precision agriculture approaches. By

developing advanced application methods, researchers can ensure

that the byproducts are distributed in a manner that maximizes

their benefits while minimizing potential negative impacts on the

environment. Overall, these future researches can contribute to

the development of sustainable agricultural practices that enhance

the effectiveness and environmental compatibility of vinasse and

molasses utilization.

Further exploration of the mechanisms underlying plant growth

promotion and phytoremediation associated with molasses and

vinasse can yield valuable insights into their mode of action and

potential applications. This knowledge is crucial for optimizing

their utilization in specific crops, varying soil conditions, and

targeted environmental remediation efforts. It can guide the

development of tailored application strategies and formulations,

ensuring the maximum efficacy of molasses and vinasse in

promoting plant growth and facilitating phytoremediation

processes. Moreover, understanding the mechanisms involved

can shed light on potential synergistic effects when these

byproducts are used in combination with other agricultural

inputs or remediation techniques. Overall, this research

holds significant promise for harnessing the full potential

of molasses and vinasse in sustainable agriculture and

environmental management.
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T., Pereira, W., et al. (2020). Fire lead to disturbance on organic carbon under
sugarcane cultivation but is recovered by amendment with vinasse. Sci. Total
Environ. 739, 140063. doi: 10.1016/j.scitotenv.2020.140063

Dotaniya, M. L., Datta, S. C., Biswas, D. R., Dotaniya, C. K., Meena, B. L., Rajendiran,
S., et al. (2016). Use of sugarcane industrial by-products for improving sugarcane
productivity and soil health. Int. J. Recycling Organic Waste Agric. 5, 185–194.
doi: 10.1007/s40093-016-0132-8

Durrer, A., Gumiere, T., Taketani, R. G., da Costa, D. P., e Silva, M. D. C. P., and
Andreote, F. D. (2017). The drivers underlying biogeographical patterns of bacterial
communities in soils under sugarcane cultivation. Appl. Soil Ecol. 110, 12–20.
doi: 10.1016/j.apsoil.2016.11.005

Eissa, M. A. (2017). Phytoextraction mechanism of Cd by Atriplex lentiformis using
some mobilizing agents. Ecol. Eng. 108, 220–226. doi: 10.1016/j.ecoleng.2017.08.025

Engström, L., Stenberg, M., Wallenhammar, A. C., Ståhl, P., and Gruvaeus, I. (2014).
Organic winter oilseed rape response to N fertilisation and preceding agroecosystem.
Field Crops Res. 167, 94–101. doi: 10.1016/j.fcr.2014.07.011

FAOSTAT (2024)United Nation data. Available online at: https://data.un.org/Data.
aspx?d=FAOandf=itemCode%3A75 (Accessed 4th February 2024).

Farid, H., Hakimian, F., Nair, V., Nair, P. K., and Ismail, N. (2016). Trend of research
on sustainable tourism and climate change in 21st century. Worldwide Hospitality
Tourism Themes 8 (5), 516-533. doi: 10.1108/WHATT-06-2016-0032

Feder, F. (2021). Effects of fertilisation using organic waste products with mineral
complementation on sugarcane yields and soil properties in a 4 year field experiment.
Agriculture 11, 985. doi: 10.3390/agriculture11100985

Ferronato, N., and Torretta, V. (2019). Waste mismanagement in developing
countries: A review of global issues. Int. J. Environ. Res. Public Health 16, 1060.
doi: 10.3390/ijerph16061060

Franzluebbers, A. J. (1999). Microbial activity in response to water-filled pore space
of variably eroded southern Piedmont soils. Appl. Soil Ecol. 11, 91–101. doi: 10.1016/
S0929-1393(98)00128-0

Friedrichsen, C. N., Hagen-Zakarison, S., Friesen, M. L., McFarland, C. R., Tao, H.,
and Wulfhorst, J. D. (2021). Soil health and well-being: redefining soil health based
upon a plurality of values. Soil Secur. 2, 100004. doi: 10.1016/j.soisec.2021.100004
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Optimizing the growth conditions of the selected plant-growth-promoting
Rhizobacteria Paenibacillus sp. MVY-024 for industrial scale production. Biology 11,
745. doi: 10.3390/biology11050745

Khan, N., Bano, A. M., and Babar, A. (2020). Impacts of plant growth promoters and
plant growth regulators on rainfed agriculture. PloS One 15, e0231426. doi: 10.1371/
journal.pone.0231426

Kihara, J., Nziguheba, G., Zingore, S., Coulibaly, A., Esilaba, A., Kabambe, V., et al.
(2016). Understanding variability in crop response to fertilizer and amendments in
sub-Saharan Africa. Agriculture Ecosyst. Environ. 229, 1–12. doi: 10.1016/
j.agee.2016.05.012

Kopittke, P. M. (2012). Interactions between Ca, Mg, Na and K: alleviation of toxicity
in saline solutions. Plant Soil 352, 353–362. doi: 10.1007/s11104-011-1001-x

Kumar, V., and Chopra, A. K. (2014). Ferti-irrigational impact of sugar mill effluent
on agronomical characteristics of Phaseolus vulgaris (L.) in two seasons. Environ.
Monit. Assess. 186, 7877–7892. doi: 10.1007/s10661-014-3974-4

Kumari, S., Jose, S., Tyagi, M., and Jagadevan, S. (2020). A holistic and sustainable
approach for recovery of phosphorus via struvite crystallization from synthetic
distillery wastewater. J. Cleaner Production 254, 120037. doi: 10.1016/
j.jclepro.2020.120037

Lee, C. G., Kunitomo, E., Iida, T., Nakaho, K., and Ohkuma, M. (2020). Soil
prokaryotes are associated with decreasing Fusarium oxysporum density during
anaerobic soil disinfestation in the tomato field. Appl. Soil Ecol. 155, 103632.
doi: 10.1016/j.apsoil.2020.103632

Leogrande, R., and Vitti, C. (2019). Use of organic amendments to reclaim saline and
sodic soils: a review. Arid Land Res. Manage. 33, 1–21. doi: 10.1080/
15324982.2018.1498038

Li, S., Zhao, X., Ye, X., Zhang, L., Shi, L., Xu, F., et al. (2020). The effects of condensed
molasses soluble on the growth and development of rapeseed through seed
germination, hydroponics and field trials. Agriculture 10, 260. doi: 10.3390/
agriculture10070260
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