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The growing rate of urbanization and industrialization has led to an increase in

several types of pollution caused by the release of toxic chemicals to the

environment. This is usually perpetuated by the manufacturing industry (e.g.

detergent and dye), agricultural sectors (e.g. fertilizers and pesticides), mining

industry (e.g. cyanide and sulphuric acid) and construction companies (e.g.

cement and metals). These pollutants have adverse effects on the health of

plants, animals, and humans. They also lead to the destruction of the microbial

population in both aquatic and the terrestrial regions, and hence, have

necessitated the need for remediation. Although different remediation

methods, such as the physical and chemical methods, have been adopted for

years, however, the drawbacks and challenges associated with them have

promoted the use of an alternative which is bioremediation. Bioremediation

involves using biological agents such as plants and microbes to remove or lessen

the effects of environmental pollutants. Of the two, microbes are more utilized

primarily because of their rapid growth and ability to be easily manipulated, thus

enhancing their function as agents of bioremediation. Different groups of

bacteria, fungi and algae have been employed to clean up various

environmental pollutants. This review discusses the types, mechanisms, and

factors affecting microbial bioremediation. It also recommends possible steps

that could be taken to promote the use of microbes as bioremediation agents.

KEYWORDS

microbial bioremediation, bioaugmentation, biostimulation, siderophores, biosorption
1 Introduction

The rise of urbanization and industrialization, has left the environment exposed to

numerous pollutants which are toxic to living things. Pollutants arising from different

industrial processes are major sources of pollution to the soil and aquatic environment.

Different types and quantities of heavy metals are released during the industrial production

process and as effluents after further industrial production. For instance, the wastewater

from dye-producing companies are associated with antimony, chromium and mercury
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fagro.2023.1183691/full
https://www.frontiersin.org/articles/10.3389/fagro.2023.1183691/full
https://www.frontiersin.org/articles/10.3389/fagro.2023.1183691/full
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fagro.2023.1183691&domain=pdf&date_stamp=2023-05-30
mailto:olubukola.babalola@nwu.ac.za
https://doi.org/10.3389/fagro.2023.1183691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://doi.org/10.3389/fagro.2023.1183691
https://www.frontiersin.org/journals/agronomy


Ayilara and Babalola 10.3389/fagro.2023.1183691
(Methneni et al., 2021). The application of fertilizers, pesticides and

herbicides in the agricultural sector generates pollutants that

include aluminium, copper, zinc, nickel, lead and arsenic to the

environment (Ayilara et al., 2020; Prabagar et al., 2021). Similarly,

untreated pollutants from wastewaters of the agri-food industries

disposed into river canals and other waterbodies have harmful

effects on the environment (Siric et al., 2022a; AL-Huqail et al.,

2022). Crude oil also serves as a major environmental pollutant

particularly through pipeline vandalization, transportation leakage,

and/or accidental spillage (Ogunlaja et al., 2019). During mining,

some chemicals such as lead, arsenic, cadmium, and copper which

are toxic to the immediate environment are released (Liu et al.,

2020). Some other environmentally toxic chemicals including but

not limited to cyanide and sulphuric acid are used during the

mining process. (Ayangbenro et al., 2018; Orlovic-Leko et al., 2022).

Equally, other industrial wastes such as those produced in cement-

making industries release zinc, copper and cadmium and can be

found in the top soils (Jafari et al., 2019). Chromium and lead from

pharmaceutical effluents (Kumari and Tripathi, 2020), plastics

containing lead, manganese, iron, copper, chromium, silver,

cadmium, antimony and mercury all pollute water (Zhou et al.,

2019). In addition, copper, arsenic, mercury, chromium, lead,

nickel, cadmium and zinc from the coal industry serve as

environmental pollutant (Sun et al., 2019). These heavy metals

are very toxic to aquatic and terrestrial habitats and their

inhabitants. In humans, mercury, cadmium and lead alters the

central nervous system, especially in infants, while lead results in

liver and kidney dysfunction, cardiovascular diseases,

malfunctioning of the reproductive and immune system (Zwolak

et al., 2019; Fashola et al., 2020a; Fashola et al., 2020b; Ayangbenro

and Babalola, 2020). Cadmium causes cancers, skeletal disorders,

neurotoxic and nefrotoxic complexities, and dysfunction of the

reproductive system (Zwolak et al., 2019; Fashola et al., 2020a;

Fashola et al., 2020b; Ayangbenro and Babalola, 2020). Wastes

containing heavy metals are often improperly disposed into soil and

water environments. When disposed into water bodies, they can

lead to the death of fishes, and other aquatic inhabitants, otherwise,

they are biomagnified and cause chronic diseases in humans and

animals. Therefore, there is need for the remediation of these

pollutants using physical, chemical, or biological methods. The

physical and chemical methods have been used for years but they

come with their drawbacks which include the need for an expert

and special equipment for the chemical bioremediation procedure

while the physical bioremediation procedure is expensive

(Mahmood et al., 2021). This has called for the need for a better

alternative which is the biological remediation (Bioremediation).

Bioremediation is a most efficient, eco-friendly and cost effective

technology for the transformation of contaminants (Sonune, 2021).

Biological remediation can be carried out using both plants and

microorganism, nonetheless, plants take a longer time to grow and

cannot be easily manipulated like the microbes which makes the

microbes more preferable (Hussain et al., 2022). In addition,

microbes mitigates heavy metals and improve soil fertility and

plant development (Chaudhary et al., 2023b). Hence, this review

discusses the types, mechanism, challenges as well as the factors

affecting microbial bioremediation, with recommendation on
Frontiers in Agronomy 02
how to enhance the use of microbes in aquatic and

terrestrial bioremediation.
2 Different pollutants and their toxicity
on living things

Exposure of humans to air pollutants can cause developmental

disorders, respiratory problems, cancers, cardiovascular diseases,

and other health issues (Table 1). For instance, it has been reported

that exposure to particulate matter in the air was associated with an

increased risk of premature death in humans (Pope et al., 2019).

Nitrogen oxides produced by combustion processes, are significant

air pollutants. They irritate the respiratory system, cause cough,

shortness of breath, and exacerbate asthma (Zhao et al., 2020).

Equally, Sulfur dioxide, produced by burning fossil fuels, can

cause respiratory and cardiovascular diseases, including

bronchoconstriction, shortness of breath, and coughing. A recent

study found that exposure to sulfur dioxide was associated with

increased mortality from respiratory diseases in China (Luo et al.,

2015). Volatile organic compounds (VOCs), emitted by various

sources, including paints, cleaning products, and vehicle emissions,

can cause eye, nose, and throat irritation, headaches, nausea, and

dizziness. Some VOCs (such as benzene) are also carcinogenic, and

are associated with an increased risk of leukemia (Bala et al., 2021).

Water pollutants which include pesticides, heavy metals, and

organic compounds are sometimes ingested by humans either

directly or indirectly (through the consumption of aquatic

animals). These pollutants can cause various health problems,

including cancer, neurological disorders, and reproductive issues.

It has been reported that exposure to heavy metals result in a higher

risk of hypertension and kidney damage in humans (Wu et al., 2018;

Rai et al., 2019).

Similarly, different animal diseases are caused by pollutants.

Exposure to particulate matter (PM) can cause inflammation and

damage to the respiratory system of animals, leading to respiratory

diseases such as chronic obstructive pulmonary disease (COPD)

and asthma (Manisalidis et al., 2020). When animals consume water

contaminated with heavy metals, pesticides, and pharmaceuticals, it

leads to reproductive disorders, liver damage, and cancer (Hitt et al.,

2023). Nitrogen dioxide when present in the environment, reduces

the growth of plants and the yield of crops while sulfur dioxide

causes acid rain and acidification (Manisalidis et al., 2020). An

impairment in the photosynthetic rhythm and metabolism is

observed in plants exposed to ozone (Zuhara and Isaifan, 2018).

In the aquatic environment, eutrophication occurs when there is a

high concentration of nitrogen availability. This leads to algal

bloom and cause death and disequilibration in the diversity of

fish (Zuhara and Isaifan, 2018).
2.1 Types of remediation

There are different types of remediation, namely the physical,

chemical and biological techniques. The physical remediation

involves the use of skimmers, sorbent materials and booms.
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Boom is a physical barrier made of materials that absorbs oil

pollutants and prevents it from spreading before a further

remediation procedure is carried out (Vocciante et al., 2019)

(Figure 1). Skimmers and sorbents are methods that are further

used to absorb and adsorb pollutants after booms (Kumari et al.,
Frontiers in Agronomy 03
2019). The major challenge associated with the use of bloom

remediation technique is that it is dependent on the buoyancy

and roll response. When the boom is buoyant, it floats and remains

longer on the water surface. The roll response refers to the torque

required to rotate the bloom from its vertical position. That is, an
TABLE 1 Effect of pollutants on living things.

Pollutants Sources Organism
affected

Effect on the organism References

Mercury Mining and
industrial
production

Humans Central Nervous System injury, hepatotoxicity and
renal dysfunction

(Zhang et al.,
2020)

Aluminium Weathering,
mining and
industrial activities

Plants Retardation of cell division, loosening of cell wall,
destruction of plasma membrane, and the alteration
of calcium homeostasis

(Rehman et al.,
2021)

Pesticides (containing deltamethrin, fenthion,
spinosyn, etc.) and heavy metals such as
aluminum, copper and zinc

Agricultural and
mining activities

Animals
(bats)

DNA damage and morphology hepatocytes (de Souza et al.,
2020)

Cadmium Agricultural
amendments

Plants Chlorosis, retarded growth, and alteration in water
balance

(Rehman et al.,
2021)

Chromium and lead Industry and
mining

Plants Declined growth, reduced photosynthesis and root
growth

(Zeng et al., 2012)

Lead Industrial
activities

Humans Lung dysfunction, liver damage, central nervous
system injury and cardiovascular dysfunction

(Balali-Mood et al.,
2021)

Chromium Industrial
activities

Humans Kidney disease, skin diseases and cancers (Deng et al., 2019;
Pavesi and
Moreira, 2020)

Cadmium Smoking and
industrial activities

Humans Liver damage, lung diseases, cancer and bone
degeneration

(Fay et al., 2018;
Wang Y. et al.,
2018)

Arsenic Industrial activity Humans CNS injury, skin and hair infection, cardiovascular
dysfunction and liver damage

(Balali-Mood et al.,
2021)

Chloride Industrial
activities

Animals
(rats)

Kidney destruction and central nervous system injury (Aragao et al.,
2018)
FIGURE 1

Types of bioremediations.
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increased roll response results in a higher remediation process

(Dhaka and Chattopadhyay, 2021).

Chemical remediation is the process of adding chemicals such

as clay minerals, phosphate, biochar, aluminum salts, silicocalcium

materials, and sulfide to stabilize and remove heavy metals from the

environment. The mechanism behind the use of these chemicals

include adsorption, reduction, oxidation, complexation,

precipitation and ion exchange (Xu et al., 2022). Chemical

remediation technique is an easy, simple, and rapid technique;

however, the chemical used can also serve as a source of

environmental pollution (Xu et al., 2022) (Figure 1).

Bioremediation is another method of pollution treatment, it is a

sustainable, affordable and safe remediation technique (Kumar A.

et al., 2021; Kumar G. et al., 2021; Patel A. K. et al., 2022). The

technology involves the use of organics such as plants and microbes.

The viability of this method depends on the nature, location and

level of pollution (Patel A. K. et al., 2022). Microbes on the other

hand have proved to be efficient in the remediation of

environmental pollutants. They are preferred to plants in

remediation, this is due to their ease of growth, rapid growth

period and easy manipulation. It is therefore necessary to

improve the use of microbes as agent of bioremediation to

promote a sustainable environment.
3 Different microbes used as
bioremediation agents

Microorganisms can convert toxic elements into water, carbon

dioxide, and other less toxic compounds, which are further

degraded by other microbes in a process referred to as

mineralization (Mahmoud, 2021; Kumar G. et al., 2022).

Bioremediation can be carried out using bacteria, fungi, algae, etc.

(Table 2). Microbes are ubiquitous in nature, and they utilize a wide

range of substrates as carbon source; hence, they are found in

unusual environments where they can absorb a wide range of

pollutants (Kour et al., 2022). Also, their ability to survive in odd

environments promote their efficiency. For example the acidophiles

survive in acidic environments, the psychrophiles thrive in cold

climates and the halophiles survive in saline region (Perera and

Hemamali, 2022).
4 Mechanisms of microbial
bioremediation

Microbes can remove pollutants from the environment using

different mechanisms. These mechanisms can be placed into two

broad categories namely immobilization and mobilization

(Ndeddy Aka and Babalola, 2016; Verma and Kuila, 2019).

Mobilization process involves, enzymatic oxidation, bioleaching,

biostimulation, bioaugmentation and enzymatic reduction

procedure. On the other hand, immobilization includes

bioaccumulation, complexation, biosorption, and precipitation

(solidification) (Tak et al., 2012; Ayangbenro et al., 2019).
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During mineralization, microbes help transform pollutants into

end products such as carbon dioxide and water or other

intermediate metabolic substances. Similarly, immobilization is

the conversion of compounds into a form where it will be

unavailable in the environment. For instance, the conversion of

nitrate nitrogen into organic nitrogen (Pratush et al., 2018). The

method is usually utilized for the bioremediation of heavy metals,

especially in highly contaminated environments.

Immobilization can be carried out using the in-situ and the ex-

situ methods (Pratush et al., 2018). The ex-situ process involves the

removal of polluted soils from the site of pollution to another

location where it would undergo a microbial process to immobilize

the metal ions responsible for the contamination (Ayangbenro and

Babalola, 2017). On the other hand, in the in-situ procedure, the

pollution is treated on site (Cao et al., 2020). Microbes such as E.

asburiae and B. cereus have been reported to be involved in

immobilization of heavy metals which pollute the environment

(Fashola et al., 2020a). During microbial bioremediation, microbes

protect themselves from toxic compounds by forming hydrophobic

or solvent efflux pump that protects the outer membrane of the cell

(Verma and Kuila, 2019).
4.1 Enzymatic oxidation

Enzymatic oxidation is the process of oxidizing pollutant

compounds from a higher oxidation state to a lower one, during

which heavy metals lose an electron and become less toxic. This

process utilizes an enzyme (oxidoreductase) released by the

microbes involved. This method is highly effective in the

remediation of dyes, phenols, and other pollutants which are not

easily degraded by bacteria (Unuofin et al., 2019). The oxidative

enzymes form radicals which can be broken down into different

fractions, eventually forming compounds with high molecular

weight (Unuofin et al., 2019). An example of an oxidoreductase

enzyme is laccase, which catalyzes the oxidation of aromatic amines

(Gangola et al., 2018). Other examples are phenols and polyphenols,

which cause the reduction of molecular oxygen to water (Kushwaha

et al., 2018; Sahay, 2021). Laccase production has been reported in

Pycnoporus sp. and Leptosphaerulina sp. where it was outlined to

degrade heavy metals (Copete-Pertuz et al., 2018; Tian et al., 2020).
4.2 Enzymatic reduction

This process is the opposite of enzymatic oxidation, here, the

pollutants are converted to a reduced oxidized state where they

become insoluble. Obligate and facultative anaerobes carry out the

process; this method is effective in the bioremediation of

compounds such as polychlorinated dibenzo-p-dioxins and

dibenzofurans (Zacharia, 2019). Equally, chrome reductase

catalyzes the reduction of hexavalent chromium to trivalent

chromium, and azoreductase reduces the azo compounds by

cleaving to azo bonds (Saxena et al., 2020). Much more research

is needed to unravel other organisms which are capable of

bioremediating pollutants in the environment.
frontiersin.org

https://doi.org/10.3389/fagro.2023.1183691
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Ayilara and Babalola 10.3389/fagro.2023.1183691
TABLE 2 Different microbes used in bioremediation.

Type of
organism

Species Pollutant remediated References

Bacteria

Bacillus licheniformis JUG GS2 (MK106145) and Bacillus sonorensis Naphthalene (Rabani et al., 2022)

Bacillus sp., Rhodopirellula sp., Rhodovibrio sp. and Formosa sp. Hydrocarbon (Machado et al.,
2019)

P. cepacia, B. coagulans, B. cereus, and Serratia ficaria Diesel oil (Miri et al., 2022)

Pseudoalteromonas sp. and Agarivorans sp. Hydrocarbons (Dell’Anno et al.,
2021)

P. aeruginosa and Aeromonas sp. Chromium, uranium, nickel and copper (Gaur et al., 2022)

E.coli Hexavalent chromium (Mohamed et al.,
2020)

Oscillatoria laete-virens, Arthrospira platensis, Pseudochlorococcum
typicum and Spirogyra insignis

Lead (Song et al., 2019)

Microbacterium sp., Micrococcus sp., Bacillus sp., and Shigella sp. Uranium and Arsenic (Bhakat et al., 2019)

Lysinibacillus sphaericus CBAM5 Lead, cobalt, copper crude oil and chromium (Kharangate-Lad and
D’Souza, 2021)

Pseudomonas aeruginosa Crude oil (Mukjang et al., 2022)

Cyclotella cryptica, Pseudochlorococcum typicum, Spirogyra hyaline and
Chlamydomonas reinhardtii

Mercury (Shah and Jain, 2020)

Dehalococcoides sp. Chloroethenes (Dutta et al., 2022)

Burkholderia sp. and Myceliophthora thermophila N, N-dimethylpphenylenediamine and polycyclic
aromatic hydrocarbons

(Mohapatra and
Phale, 2021)

Bacillus sp. and Staphylococcus sp.and Endosulfans (Liu et al., 2018)

A. versicolor, Cladosporium sp., Paecilomyces sp., A. fumigatus,
Paecilomyces sp., Terichoderma sp. and Cladosporium sp.

Cadmium (Unuofin et al., 2021)

Fusarium sp., Corynebacterium propinquum, P. aeruginosa and
Alcaligenes odorans

Oils (Pande et al., 2020)

C. reinhardtii, Ulothrix tenuissima and Spirulina sp. Chromium (Aregbesola et al.,
2020)

Ralstonia sp., Microbacterium sp., Pseudomonas sp. and Acinetobacter
sp.,

Aromatic hydrocarbons (Basu et al., 2018)

Aerococcus sp., and Rhodopseudomonas palustris Cadmium, lead and chromium (Sravya and
Sangeetha, 2022)

P. aeruginosa, Corynebacterium propinquum, Alcaligenes odorans and B.
subtilis

Phenol (Gaur et al., 2018)

K. oxytoca, B. firmus, B. macerans, and Staphylococcus aureus Vat dyes (Sangkharak et al.,
2020)

Chlorella sp. and Spirulina sp. Lead, nickel and dichromate (Geetha et al., 2021)

Saccharomyces cerevisiae and Cunninghamella elegans Heavy metals and mercury (Duc et al., 2021)

Bacillus licheniformis Dyes (Mousavi et al., 2021)

Bacillus subtilis and Pseudomonas fluorescence Iron and zinc (Siric et al., 2022b)

Pseudomonas sp., Bacillus sp., Escherichia sp., Shewanella sp.,
Enterobacter sp. and Thermus sp.

Chromium (Mousavi et al., 2021)

Fungi

Phanerochaete chrysosporium N-heterocyclic explosives, benzene, xylene,
ethylbenzene, toluene and organochlorines

(Singh et al., 2020)

(Continued)
F
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4.3 Bioaugmentation

Microorganisms are specially added to polluted sites to feed on

toxic pollutants in a process referred to as bioaugmentation. It is a

very effective, rapid and cost-effective method of bioremediation

(Mahmoud, 2021). External microbes are added to polluted sites to

augment the resident microbes. In other cases, it could also involve

the isolation and genetic modification of microbes from the site of

pollution before returning them to the same site for remediation.

Genetic manipulation of resident microbes of polluted sites is

carried out because the organisms may naturally not be capable

of degrading the pollutant present at a site, and hence are modified

to enhance their ability. In some other cases, non-resident microbes

are added to polluted areas to promote the degradation of

pollutants. The effectiveness of these new strains depends on

some factors, which include the ability to compete with the

resident microbes and the ability to adapt to the new

environment (Fashola et al., 2016; Ayangbenro and Babalola,

2017; Goswami et al., 2018; Babalola et al., 2019). Burkholderia

sp. FDS-1 which was added to a polluted site, has been reported to
Frontiers in Agronomy 06
degrade nitrophenolic compound present in pesticides polluted soil

to a less toxic form at a slightly acidic pH and a temperature of

about 30° C (Goswami et al., 2018; Ojuederie et al., 2021) (Table 3).
4.4 Biostimulation

Biostimulation is the addition of nutrients (such as nitrogen,

potassium, phosphorus), metabolites, electron donors, enzymes,

electron acceptors, biosurfactants, etc., which are limiting to the

soil to enhance the activity of the resident microbes and increase the

remediation process (Ojuederie and Babalola, 2017; Ayangbenro

and Babalola, 2018). It is an affordable, environmentally friendly

and efficient process (Goswami et al., 2018). Compared to the

bioaugmentation method, the biostimulation method is preferable

because indigenous microbes are more competitive than the

introduced ones (Sayed et al., 2021), and this method helps to

maintain the natural microbial diversity balance of the

environment. Nivetha et al. (2022) reported the effectiveness of

Bacillus sp., Rhodococcus sp., Staphylococcus sp., Klebsiella sp.,
TABLE 2 Continued

Type of
organism

Species Pollutant remediated References

Phanerochaete chrysosporium 4,4 dibromodiphenyl ether (Sen et al., 2019)

Saccharomyces cerevisiae Arsenic (Verma et al., 2019)

Aspergillus sp. Arsenic (Mohd et al., 2019)

Coprinus comatus 4-Hydroxy-3,5- dichlorobiphenyl (Li et al., 2018)

Aspergillus sp. and Penicillium sp. Aliphatic hydrocarbons, polycyclic aromatic
hydrocarbons and chlorophenols

(Li et al., 2020)

Aspergillus sp. N-hexadecane (Al-Hawash et al.,
2018)

Phomopsis liquidambari Phenanthrene (Fu et al., 2018)

Ganoderma lucidum Pyrene (Agrawal et al., 2018)

Trichoderma sp., Penicillium sp. and Aspergillus sp. Cobalt and copper (Dusengemungu
et al., 2020)

Algae

Microcystis aeruginosa Arsenic (Wang Z. et al., 2018)

Chlamydomonas reinhardtii and S. almeriensis Arsenic (Saavedra et al., 2018)

Fucus vesiculosus Zinc (Brinza et al., 2020)

Chlorococcum humicola Iron (Chugh et al., 2022)

Chlorella sp., Isochrysis galbana and Phaeodactylum tricornutum Phenol (Wu et al., 2022)

F. vesiculosus Chromium, nickel, cadmium and lead (Moreira et al., 2019)

Cystoseria indicant Nickel and cadmium (Moreira et al., 2019)

Chlamydomonas reinhardtii Chromium and cadmium (Nowicka et al., 2020)

Microcystis aeruginosa Cadmium (Deng et al., 2020)

Scenedesmus accuminatus, Scenedesmus protuberans and Cyclotella sp. Cadmium (Vo et al., 2020)

Chlorococcum humicola Cobalt (Chugh et al., 2022)
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Pseudomonas sp., and Citrobacter sp. in bioremediation of heavy

metals through the biostimulation technique. Unfortunately, as

effective as this method of bioremediation may be, it could lead to

some other environmental complications, including eutrophication

due to the excess nutrient present in the environment. Also, if the

sources of the nutrients are chemicals (synthetic), they can serve as

a source of pollution to the environment defeating the initial

purpose of bioremediation (Table 3).
4.5 Bioleaching

Bioleaching is the process of utilizing acidophilic microbes to

promote the solubilization of heavy metals which are in a solid state

from the sediment matrix. The process is particularly useful for iron

or sulfur pollutants (Sun et al., 2021; Bhandari et al., 2023).

Therefore, iron- or sulfur-oxidizing bacteria are majorly recruited

for this process; examples of such organisms are A. thiooxidans,

Aspergillus sp., Mucor sp., Penicillium sp., Cladosporium sp. and

Rhizopus sp. (Medfu Tarekegn et al., 2020). These microbes create

an acid environment and solubilize heavy metals in an immobilized

state, into an aqueous solution (Medfu Tarekegn et al., 2020).
4.6 Biosorption

This is the adsorption of heavy metals from pollutants through

proton and ion displacement, complexation, chelation and physical

interaction with electrostatic forces (Mahmoud, 2021). It involves

the removal of contaminants from solutions as a result of the outer

cell shield of bacteria, fungi and algae which are bioremediation

agents. Generally, metals are linked through the active groups of the

compounds which exist at the cells surface layer. This results in the

transfer of ion between metal cations and the negatively charged

active group potentials present at the outer part of the

microorganism structure. Rhodococcus erythropolis, Streptomyces

sp. K11, and Bacillus anthracis have been reported to be capable of
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bioremediation through the biosorption process (Mathew and

Krishnamurthy, 2018; Baltazar et al., 2019; Sedlakova-Kadukova

et al., 2019). Oftentimes, heavy metal pollutants (e.g., gold, zinc and

copper) have some economic importance and are very useful in

industrial processes. Hence, the ability of the compounds to be

recovered through a process called desorption (using the solution of

weak mineral solution or chelating compounds), which is a

reversible step in biosorption makes it a good process (Medfu

Tarekegn et al., 2020).

Complexation involves using ligand to form a complex with

inorganic metals, which are pollutants in the environment,

especially solid wastes (Ayangbenro and Babalola, 2017).

Complexation is carried out mainly through different agents,

namely the high molecular weight ligands, siderophores and toxic

metal-binding compounds as well as the low-molecular weight

organic acids (alcohols, tricarboxylic acids and citric acids)

(Pratush et al., 2018). Complexation occurs when extracellular

polymeric substances, found on the surfaces of microbes interact

with heavy metals which pollute the environment (Xie et al., 2020).

Xiao et al. (2019) reported the removal of copper (II) oxide and

hexavalent chromium from wastewater using biochar in a

mechanism which includes complexation. The organisms that

have been reported to be involved in complexation include

Rhodobacter blasticus (Bai et al., 2019) and B.lichenformisis

(Wang et al., 2019).

When microbes are exposed to a polluted environment where

there is iron-deficiency, they produce siderophores which are iron

chelators. The siderophores have binding groups such as

hydroxamate, catecholate and phenolates that form complexes

with heavy metals and increase their solubility (Khan et al., 2018).

Siderophores are capable of producing reactive oxygen species,

which also enhance their function as bioremediation agents for

organic contaminants (Albelda-Berenguer et al., 2019).

Cyanobacteria have been reported to be effect ive as

bioremediation agents due to the production of siderophores; for

example, they are capable of bioremediating complex compounds

like polythene and are capable of producing different types of
TABLE 3 Mechanism of Bioremediation.

Microorganism Pollutant remediated Mechanism of remediation References

Bacillus sp. Nickel Biosorption (Taran et al., 2019)

Lysinibacillus sphaericus Azo dyes Enzymatic reductase (Lu et al., 2020)

Oudemansiella canarii Congo red dye Enzymatic reduction (Iark et al., 2019)

Pseudomonas aeruginosa and Bacillus cereus Lead and Cadmium Bioaugmentation (Nath et al., 2018)

Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. Aluminium, lead, cadmium, and copper Bioaugmentation (Nanda et al., 2019)

Cupriavidus sp. Cadmium Bioprecipitation (Li et al., 2019)

Pseudomonas sp. Copper and lead Bioattenuation (Nanda et al., 2019)

Bacillus subtilis Lead Bioimmobilization (Qiao et al., 2019)

Desulfovibrio desulfuricans Copper, zinc and cadmium Extracellular sequestration (Thakare et al., 2021)

Pseudomonas aeruginosa Cadmium Biosorption (Chellaiah, 2018)

Sulfolobus solfataricus Copper Intracellular sequestration (Thakare et al., 2021)
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siderophores, which include the anachelin, synechobactin and

schizokinen (Arstol and Hohmann-Marriott, 2019; Sarmah and

Rout, 2020) (Table 3).
4.7 Bioaccumulation

Bioaccumulation refers to the process where the rate of

absorption of a compound is more than the rate at which the

compound is lost. This process leads to the (toxic) build-up of

compounds in the intracellular portion of the microbes. (Sharma

et al., 2022a). Heavy metals move across the membrane of microbes

using different mechanisms such as carrier-mediated transport,

protein channel and ion pumps (Mir-Tutusaus et al., 2018). Many

organisms have been reported to be very active in bioaccumulation

of heavy metals. For example, Rhizopus arrhizus, bioremediates

mercury, Pseudomonas putida, bioremediates cadmium and

Aspergillus niger bioremediates thorium (Sharma et al., 2022a).
4.8 Precipitation

This is the conversion of heavy metals or pollutants into

precipitates or crystals, resulting in a reduced toxicity level; this

process can occur during the biogeochemical cycling to form

deposing of metals (iron and manganese), mineralized manganese

and silver as well as microfossils, due to the activity of enzymes and

galactosis of secondary metabolites (Sharma et al., 2022a). For

instance, sulfate-reducing bacteria are capable of converting

organo-phosphate to ortho-phosphate when the pH is alkaline

(i.e. above 7) (Pratush et al., 2018). Similarly, Bacillus subtilis and

Oceanobacillus indicireducens have also been reported to be

associated with the precipitation of heavy metals in the

environment (Maity et al., 2019).
5 Factors affecting microbial
bioremediation

The ability of microbes to bioremediate heavy metals is

determined by different factors, which include the total metal ion

concentration, redox potential, chemical forms of the metals,

competition among microbes, pH, temperature, soil structure,

presence of oxygen, moisture content, nature of the soil and the

solubility of the heavy metal in water (Medfu Tarekegn et al., 2020).

At acidic pH, free ionic species are formed by heavy metals, leading

to the availability of more protons which would saturate the binding

site of the metals. The pH of an environment affects the structure of

the pollutant and also determines the ability of the microbe to

survive in such an environment; the optimum pH that enhances

bioremediation falls between 6.5 and 8.5 (Kharangate-Lad and

D’Souza, 2021).

Microbes compete for carbon which is a limited resource and

serve as an energy source for microbes. Therefore, the inherent

ability of the microbes, which compete better to degrade heavy

metal pollutant, would affect the biodegradation rate. In addition to
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carbon, microbes responsible for biodegradation also require

nitrogen (N) and phosphorus (P), thus it is important to balance

the C:N:P ratio to enhance the rate of biodegradation, in

environment when these essential nutrients are limited. They can

be added to increase microbial activities (Bala et al., 2022). The type

and population of microbes determine the rate and success of a

bioremediation process, for instance in the laboratory, a strain of

organism might successfully bioremediate a particular heavy metal,

which becomes problematic in a field situation where a consortium

of microbes would be needed (Patel A. B. et al., 2022). The

molecular nature, gene and enzyme induction, metabolite

production, growth efficiency and survival rate affect the ability of

individual microbes as bioremediation agents (Kebede et al., 2021).

In addition, the ionization of the cell wall’s chemical moieties, the

configuration of the microbial cell wall and sorption site also affect

the rate of microbial biodegradation (Mahmoud, 2021).

The amount of moisture present in an environment affects the

solubility of the heavy metals in water, as well as their availability,

pH and osmotic pressure (Medfu Tarekegn et al., 2020). At a high

moisture content, the microbial biodegradation rate is very low.

This might be a result of an anaerobic condition that is created,

which prevents the survival of aerobic microbes. Also, at a low

moisture content, microbes might not be able to survive; hence an

optimum moisture content is required for a successful microbial

biodegradation process. In the cold regions where only

psychrophiles can survive, the rate of microbial degradation of

heavy metals is slow. This is because metabolic activities are reduced

as the microbial transport channels is freezed by the sub-zero water;

the degradation of each compound also occurs at different

temperature even though most bioremediation processes are

favored by high temperature (Ren et al., 2018; Bala et al., 2022;

Sharma et al., 2022c). At an increased temperature, the rate of heavy

metal solubility is increased, which consequently increases their rate

of availability as well as the rate of microbial biodegradation

(Mahmoud, 2021).

Similarly, the chemical structure, bioavailability, concentration,

toxicity and stability of the metal or pollutant determines the rate at

which microbial biodegradation takes place (Kebede et al., 2021).

For instance, heavy metals with a simple chemical structure and low

concentration would be easier to be remediated by microbes

compared to those with a complex chemical structure and high

temperature. Cycloalkane compounds that are highly condensed as

well as high molecular weight polymatic hydrocarbons (those

containing four rings and above) are more difficult to degrade

compared to the lighter polyhydrocarbons (anthracene,

naphthalene and phenanthrene) and unbranched alkanes (alkanes

with intermediate length of about C10–C25) (Kebede et al., 2021).

Hence, in order of ascending degradation, the n-alkanes are more

easily degraded compared to the branched alkanes, low molecular

weight aromatics, high molecular weight hydrocarbons and the

asphaltenes (Imam et al., 2019). Biodegradation is carried out

aerobically and anaerobically. The ability of an organism which

degrades a particular nutrient to survive in such an environment

depends on the nature of the organism (Jacob et al., 2018). For

example, oxygenase associated with organisms that are active in

aerobic regions is only produced in the presence of oxygen.
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Different soil parameters, including the soil region, moisture-

holding capacity texture and particle size, affect the rate of microbial

biodegradation (Alvarez et al., 2020). There is a higher population

and diversity of microbes at the top layer of the soil (0-10cm). This

is due to the increased availability of oxygen and organic matter,

which is the opposite of what happens in sediment soils (Ndeddy

Aka and Babalola, 2017). In soils with fine particles, such as clayey

soils, hydrocarbon retention takes place more at the surface, which

renders the nutrient of the soil and oxygen unavailable. Therefore

the best soil texture that promotes increased microbial

biodegradation is the well-drained soil which supports oxygen

availability and inhabits more soil microbes (Huang et al., 2019).

The presence of salinity has an effect on the hydrocarbonoclastic

activity of the halotolerant and halophilic microbes, and it also

exposes the soil microbes to stress conditions. The osmotic pressure

of microorganisms increases as the saline concentration of an

environment increases. This has a direct negative impact on the

metabolic activities, of the microbes as well as the transportation

system and solubility of the heavy metals (Imron et al., 2020;

Kebede et al., 2021).
6 Microbial enzymes used in
bioremediation

Different microbial enzymes have been reported to be helpful in

the removal of pollutants (especially heavy metals) in the

environment (Verma and Kuila, 2019; Bhatt et al., 2021a;

Chaudhary et al., 2023a) (Table 4). Mechanisms such as

elimination, oxidation, ring-opening and reduction are used by

enzymes in bioremediation (Bhandari et al., 2021). Different factors

which include temperature, contact time, concentration and pH
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affect the potency of microbial enzymes (Bhandari et al., 2021).

Enzyme bioremediation is expensive and time-consuming and

therefore cannot be used when there is an urgent need for

bioremediation (Narayanan et al., 2023). Equally, the stability and

activity of the pollutants, affects the potency of the bioremediation

process. It is difficult to determine and discover multiple sources of

a particular type of enzyme which might make the procedure

unsustainable (Narayanan et al., 2023).
7 Molecular approaches for validating
microbial remediation

Molecular mechanisms help to unravel the microbial

metabolism, genes, nature, diversity and dynamics of microbes

involved in microbial remediation. Diverse molecular

mechanisms are utilized in the study of microbes used in

bioremediation. Metabolic and protein profiling, sequencing as

well as the use of advanced bioinformatics resources are

particularly used to unravel the different groups of microbes and

the factors affecting them in bioremediation process (Sharma et al.,

2022b). On the other hand, conventional and culture-dependent

molecular methods are also used in the monitoring of microbial

communities during bioremediation. These methods include the

use of terminal-restriction fragment (T-RF) length polymorphism,

amplified ribosomal DNA restriction analysis, temperature gradient

gel electrophoresis, randomly amplified polymorphic DNA

analysis, length heterogeneity polymerase chain reaction,

amplified fragment length polymorphisms, denaturing gradient

gel electrophoresis, length heterogeneity polymerase chain

reaction, automated ribosomal intergenic spacer analysis and

single strand conformation polymorphism (Bharagava et al., 2019).
TABLE 4 Enzymes used in Microbial Bioremediation.

Enzyme Microbial sources Pollutant remediated References

Hydrolases T. fusca
Pseudomonas sp.,
Burkholderia sp.,
Ralstonia sp.,
Achromobacter sp.,
Sphingomonas sp. and Comamonas sp.

Polyester plastics
Hydrocarbons

(Gricajeva et al., 2022)
(Dave and Das, 2021)

Oxidoreductase Bacillus safenis Xenobiotics (Malakar et al., 2020)

Phosphotriesterase Brevundimonas diminuta Pesticides (Thakur et al., 2019)

Lipase Bacillus pumilus Oil containing industrial wastewater (Saranya et al., 2019)

Laccase Pseudomonas putida Synthetic dyes (Bhandari et al., 2021)

Lignin peroxidase Escherichia coli and Bacillus sp. F31 Synthetic dyes (Dave and Das, 2021)

Dehydrogenase E. coli
S. rhizophila

Steroids
Polyvinyl alcohol

(Ye et al., 2019)
(Wei et al., 2018)

Protease Bacillus subtilis Casein and feather (Bhandari et al., 2021)

Amylase Bacillus cereus Waste water pollutants (Sonune and Garode, 2018)

Oxygenase Pseudomonas sp. Pesticides (Malakar et al., 2020)

Lipase Bacillus pumilus Palm oil (Saranya et al., 2019)
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Moreover, omics approaches such as transcriptomics,

proteomics and metagenomics have greatly contributed in this

field. Metagenomics involve the extraction of genomic DNA from

all forms of life residing in a sample. Thereafter, the DNA will be

fragmented, cloned, transformed and screened in the metagenome

library (Bharagava et al., 2019). The approaches to metagenomics

include metabolomics, metatranscriptomics, fluxomics and

metabolomics. Metatranscriptomics involve the use of

metagenomic mRNA which unravel the function and expression

of microbes present in a sample (Mukherjee and Reddy, 2020).

Metaproteomics involved the assessment of all the protein samples

that comes from environmental samples (Bargiela et al., 2015).

Metabolomics is the identification and quantification of all the

metabolites released into an environment (Liu et al., 2022).

Fluxomics refers to the different approaches used to study the

rate of metabolic activities in a biological sample (Kumar V. et al.,

2022). More recently, the use of Next-Generation sequencing which

is viewed as the most powerful technology for gene sequencing has

become more popular (Eisenhofer et al., 2019).
8 Other bioremediation metabolites
produced by microbes

Microbes produce metabolites such as organic acids,

biosurfactants and polymeric substances which are also used in

bioremediation. Organic acids improve the bioavailability, mobility

and solubility of metals; examples of organic acids include citric

acids, malate and acetic acids (Saha et al., 2021). Polymeric

substances are beneficial in bioremediation by enhancing the

phytostabilization of metals (through mobility), examples of

polymeric substances include polyesters, polysaccharides and

polyphosphates. Equally, biosurfactants which include viscosin,

polymixin, glycoprotein and gramicidin help to solubilise,

mobilise and increase the bioavailability of hydrophobic

substrates (Ojuederie and Babalola, 2017; Saha et al., 2021).
9 Recent advancements in
microbial bioremediate

Lately, many improvements have been observed with the use of

microbes as agents of bioremediation. Microbial glycoconjugates

help to reduce the surface tension, increase the bioavailability, and

create a solvent interface of organic pollutants. This helps to

enhance the removal of the pollutants in the environment (Bhatt

et al., 2021b). Atakpa et al. (2022) reported the use of microbial

glycoconjugates from Scedosporium sp. and Acinetobacter sp. in the

biodegradation of petroleum hydocarbons.

Microbial biofilms which consist of polysaccharides,

extracellular DNAs and proteins are also lately used in the

bioremediation of organic pollutants (Sonawane et al., 2022).

They are particularly used in the remediation of recalcitrant

pollutants. The technology is presently being made better by

improving on the quorum sensing, environmental factors and
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surface of adhesion (Sonawane et al., 2022). In a research carried

out by Andreasen et al. (2018), it was revealed that Exiguobacterium

profundum was able to significantly reduce the concentration of

arsenic in synthetic wastewater after 48 hours of incubation.

Bioelectrochemical system is another emerging technology

which combines the use of biological and electrochemical

methods in the control of pollutants (Ambaye et al., 2023). This

technology helps to majorly remediate petroleum hydrocarbon

pollutants and its efficiency depends mainly on the syntrophic

and cooperative interactions between the members of the

microbial groups involved (Ambaye et al., 2023). Sharma et al.

(2020) stated that Pseudomonas sp., Ralstonia sp., Rhodococcus sp.,

and Thauera sp. are capable of remediating phenanthrene from

petroleum hydrocarbon polluted soils.

Nanotechnology is a thriving method of pollution control

globally. Nanomaterials can be sourced from different sources

wh i ch inc l ude th e phy s i c a l and chemi c a l s ou r c e s

(Shanmuganathan et al., 2019). The efficiency of nanoparticles as

bioremediation agents is dependent on different factors such as the

size, chemical nature, surface coating and shape of the nanoparticles

(Tan et al., 2018). Other factors such as the nature of the pollutants,

type of media, temperature and the environmental pH affect the

potency of nanoparticles in the bioremediation process (Tan et al.,

2018). For instance, carbon dots nanoparticles have recently gained

attention in the remediation of environmental pollutants owing to

their abundance, low toxicity and unique optical properties (Long

et al., 2021). It is therefore necessary to carry out further research to

unravel technologies and mechanisms to improve the efficiency of

the bioremediation process.
10 Future perspectives
and conclusions

A number of research endeavours have been carried out on the

use of microbial enzymes for bioremediation of waste materials;

however, it is very important to improve the process to ensure a

safer and more sustainable environment. It is imperative to

intensify research to unravel novel microbes that can effectively

and rapidly bioremediate different pollutants, especially from

industrial sources. Perhaps the novel microbes and their enzymes

may have the inherent ability to bioremediate pollutants better than

the presently used ones. It is also very important to carry out more

studies to innovate rapid detection methods to reveal the progress

or help to confirm total biodegradation of pollutants in the

environment . S imi lar ly , microbes present ly used in

bioremediation can be genetically modified to produce more

enzymes which will enhance their biodegrading ability. A

combination of different microbial consortium other than a single

microbial consortium would be a better approach to

bioremediation, as this would bring about the presence of

different organisms which util izes different substrate,

consequently increasing the rate of microbial biodegradation.

Often, microbes are majorly used to degrade organic substrates,

leaving out the persistent inorganic pollutants. Hence, research
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should be intensified to discover microbes that are capable of

degrading inorganic (synthetic) pollutants. In recent years, nuclear

wastes generated from the research sectors, hospitals, fuel processing

plants and nuclear reactors have remained a global source of

pollution. Therefore, the use of microbes and microbial enzymes in

the bioremediation of nuclear wastes should be seriously taken into

consideration. Occasionally, microbes themselves serve as a source of

pollution instead of remediating pollutants. An example of such can

be found when microbial biostimulation which results in algal bloom

is carried out Consequently, methods to prevent this should be

devised to ensure a sustainable environment.

Furthermore, in nature (outside the laboratory), the

degradation of different compounds occurs at a different

temperature, while the survival of microbes in nature are also

environment-specific (temperature). It is therefore essential to

carry out more field research to determine the optimum

temperature for the degradation of different compounds in

nature. In addition, it is also essential to find a balance between

the environmental temperature and the temperature for the survival

of different microbes in the environment. This would help to

prevent bioremediation failure when external microbes are to be

recruited or introduced to an environment. As positive and effective

microbes might be recruited in the bioremediation of pollutants, it

is important to carry out follow-up research to understand their

effects on the environment after bioremediation, as some organisms

which are introduced to an environment might later constitute

pollution to the environment through mutation and other means.

Hence, there should be regulatory bodies which would monitor the

potential risk associated with microbes in specific environments.

Finally, if enzymes or microbes are directly applied to the soil,

they might die or lose their potency before the remediation process

begins; therefore, their combination with other agents, such as the

nanoparticle could enhance their activity. More awareness is needed

on the adoption of microbial degradation, and this will help
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policymakers as well as the populace to utilize this method. Many

people unaware of this procedure might use the available

conventional method, which might not be as safe and effective as

the microbial biodegradation.
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