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Medicago sativa L. (alfalfa, syn. lucerne) is an important forage crop for livestock, which

is subject to attack from a range of insect pests and susceptible to diseases that can

reduce production and persistence. This review considers the main insect pests affecting

M. sativa in China and New Zealand as well as the wider plant resistance mechanisms

and multitrophic interaction that occur between plants, insect pests, entomopathogens,

endophytes, the environment, and climate change. This is with a view to identifying

new research opportunities applicable to M. sativa that can be applied to improving

production and persistence of this important agricultural crop. These opportunities

include identification and activity of entomopathogens/endophytes (e.g., Bacillus and

Pseudomonas spp., Metarhizium spp.) and plant growth enhancers (Trichoderma), as

well as multitrophic plant-insect-microbial interactions.

Keywords: alfalfa, insect pests, multitrophic interactions, biocontrol, plant resistance mechanisms, endophytes,

rhizosphere, climate–change

INTRODUCTION

Medicago sativa L. (alfalfa, syn. lucerne) is an important perennial leguminous forage worldwide
(Michaud et al., 1988; Huyghe, 2003; Lamb et al., 2006; Veronesi et al., 2010; Annicchiarico et al.,
2015). The widespread use of M. sativa is due to its high adaptability for growth in a range of
environments, particularly under drought conditions (Annicchiarico, 2007; Huang et al., 2018), its
ability to form symbiosis with rhizobium and biologically fix nitrogen (Carlsson and Huss-Danell,
2003), its high protein value (Vance et al., 1979; Ruckle et al., 2017), and forage yield potential,
either under grazing or “cut and carry” cropping regimens (Small, 1996). It can be grown with both
temperate and tropical grasses, or as a standalone crop (Capstaff andMiller, 2018), across a range of
climates. Nitrogen fixation by rhizobia associated with roots not only provides substantial amounts
of nitrogen to plants and soil, but reduces the need for artificial nitrogen fertilizers (Carlsson and
Huss-Danell, 2003). In many cases, there is a positive correlation between nitrogen fixation and
legume dry matter yields (Carlsson and Huss-Danell, 2003).

In November 2019, a bilateral workshop between AgResearch (New Zealand) and the Institute
of Plant Protection-China Academy of Agricultural Science (IPP-CAAS, China), was held to
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discuss opportunities to cooperatively address challenges in
agricultural production common to both countries. Critical
challenges to agriculture and M. sativa in particular, were
the growing impact of abiotic and biotic threats on insect
pests, biocontrol, beneficial microbes (e.g. entomopathogens, soil
microbes), abiotic environmental stresses on M. sativa, and the
current and future state of knowledge around these aspects.
This review examines how these aspects influence plant growth,
persistence, and quality in general with a focus onM. sativawhere
appropriate. In particular, the trophic interactions, that have been
observed inM. sativa and other plants species are discussed with
a view of establishing areas for future research.

In China,M. sativa is grown for livestock and poultry, with the
area sown continuing to expand and demand higher than current
supply. The plant is considered integral to the transformation of
traditional agriculture (Zhang et al., 2018; Xu et al., 2021). It also
provides an important alternative to overgrazing of ecologically
sensitive grassland environments (Zhang et al., 2018; McNeill
et al., 2021). Medicago sativa is seen as an important crop in the
development of animal husbandry, increasing farmers’ income,
and promoting social and economic development in rural areas
(Li, 2019; Xu et al., 2021). The most recently available data
show that in 2017, 4.15 million ha2 of alfalfa was being grown
with a total yield of 29.3M tons (National Animal Husbandry
Service, 2017). In New Zealand,M. sativa has been promoted as a
suitable forage species for New Zealand dryland systems for over
100 years (Moot, 2012). It is considered an important dryland
species for grazing and stored winter forage and is particularly
valuable to farmers in environments where traditional ryegrass-
white clover plant species cannot persist (Avery et al., 2008;
Moot, 2012). It is also grown under irrigation as a forage
grazing crop for dairy cows (Smith, 2015). Medicago sativa in
New Zealand is planted either as a monoculture, destined to
be harvested for stored winter feed and, to a lesser extent, for
feed pellet production, or when utilized for grazing, either as
a monoculture or in combination with a grass species, often
tall fescue, Festuca arundinacea Schreb. (Poales: Poaceae). The
plant is grown across 200,000 ha producing approximately 2.4M
tons annually and additionally fixes 30 kg N2/ton of legume
grown. Animal production from M. sativa yields approximately
700 kg of red meat per ha (D. Moot, Lincoln University, pers.
communication). Primary production areas outside China and
New Zealand include the United States, Canada, Italy, France,
south Russia, Argentina, Chile, South Africa and Australia
(Yuegao et al., 2009).

MAJOR INSECT PESTS OF M. SATIVA

Worldwide, a range of insect pests (and plant parasitic nematodes
and diseases) are known to attack M. sativa, resulting in yield
reduction, loss of persistence of stands and plant quality (Leath
et al., 1988; Manglitz and Ratcliffe, 1988; Compendium of Alfalfa
Diseases Pests, 2016). Losses occur both above- and below-
ground and are affected directly through feeding on the foliage
or roots, as the result of insect-mediated virus transmission (e.g.,
aphids) or the ingress of pathogens through wounds caused

by insects (Godfrey et al., 1986). The main pests in China are
aphids and thrips, followed by alfalfa weevil [Hypera postica
(Gyllenhal) (Coleoptera: Curculionidae)]. Aphids and thrips are
the most widespread taxa throughout the regions whereM. sativa
is grown, while H. postica is a significant pest in the Ningxia
and Xinjiang regions. Other pests include Heliothis viriplaca
(Hufnagel) (= Heliothis dipsacea) (Lepidoptera: Noctuidae) (He
et al., 1997) and the beet webworm (Loxostege spp. L.) (Zhang
et al., 2005a). Several species of aphids are damaging toM. sativa,
with Acyrthosiphon kondoi (Shinji et Kondo), Aphis craccivora
(Koch), Acyrthosiphon pisum (Harris) and Therioaphis trifolii
(Monell) being the main pest species. Similarly, several species
of thrips attack the crop with the major pest being Odontothrips
loti (Haliday). Thrips tabaci Lindeman, Frankliniella occidentalis
(Perg.) and Frankliniella intonsa (Trybom) also cause damage.
Aphids and thrips reduce both the yield and nutritional value of
M. sativa (Zhang et al., 2005b, 2017; Wu et al., 2013) and act as
vectors of viral plant diseases. Aphids (Garran and Gibbs, 1982;
Roumagnac et al., 2015) and thrips (Li J. et al., 2021) have been
reported to be carriers of alfalfa mosaic virus and alfalfa leaf curl
virus. As the area of M. sativa cultivation increases, so too does
the incidence and impact of insect pests and viruses (Wang et al.,
2021), seriously restricting further development of the industry.
Based on 2017 data, it was estimated that M. sativa pests cause
at least 20% yield loss, with an average direct economic loss of
9.144B U p.a. (2.03B NZD p.a.; 1.44B USD) (Li et al., 2020).

In New Zealand, insect pests are a persistent and significant
economic cost to grassland and forage production systems
(Zydenbos et al., 2011; Jackson et al., 2012; Ferguson et al.,
2019), with a few key pests having a major impact on production
and longevity of M. sativa. These key species are all exotic (i.e.,
non-native to New Zealand) and comprise Sitona discoideus
Gyllenhal, three aphid species (spotted alfalfa aphid (Therioaphis
maculata (Buckton), blue green aphid (Acyrthosiphon kondoi
Shinji), and A. pisum. Lesser pests are white fringed weevil
[Naupactus leucoloma (Boheman)] and little fringed weevil
[Atrichonotus taeniatulus (Berg)]. Like many Sitona species,
Sitona discoideus causes both above-ground damage from adult
feeding on foliage, and below ground damage to firstly the
nitrogen-fixing root nodules and subsequently the root system
(Goldson et al., 1988), resulting in both short- and long-term
reduction in yields (Goldson et al., 1985; Goldson and Muscroft-
Taylor, 1988). Prior to the introduction of biological control
agents, high populations of aphids caused death of seedlings
and significant yield losses in established stands (Kain and
Trought, 1982; Cameron et al., 1983). The introduction and
establishment of parasitoid biological control agents as part of
classical biocontrol programmes was effective in controlling S.
discoideus (Goldson et al., 1990) and the three aphid species
(Cameron and Walker, 1989), along with the releases of aphid
resistant cultivars (Kain and Trought, 1982).

ENDOPHYTES

Bacterial Endophytes
Bacteria belonging to the ‘root-colonizing rhizosphere-
competent bacteria’ including members of the genera
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Pseudomonas (e.g. P. fluorescens), Azospirillum (e.g. A.
brasilense), and Bacillus are often also found as colonizers
of the internal tissue of plants (Hardoim et al., 2008). Root
nodules of leguminous plants have been found to host large
population of endophytic bacteria of diverse genera and species
which are unrelated to rhizobial symbiotic nitrogen fixing
bacteria (Zakhia et al., 2004; Muresu et al., 2008). Stajković
et al. (2009) found that co-inoculation of non-rhizobial strains
with Sinorhizobium meliloti positively influenced M. sativa
nodule numbers, but significant effects on growth parameters
with respect to inoculation with S. meliloti alone were absent.
However, single inoculation with other non-rhizobial strains
caused significant increase in shoot and root parameters
compared to uninoculated plants, indicating that non-rhizobial
strains possess plant growth promoting potential.

Research in China has identified endophytic fungi
(Rhizoctonia solani, Trichoderma harzianum and T.
atrobrunneum) and bacterial endophytes (Bacillus and
Pseudomonas species) in M. sativa. The bacterial endophytes
have been found to be active against the root rot pathogen
Fusarium oxysporum F. sp. Medicaginis (Chen et al., 2020).
However, there is a paucity of research to demonstrate whether
these fungi have other benefits to M. sativa. Conversely,
endophyte metabolites may also benefit plant pests. For example,
the presence of a Bacillus strain isolated from M. sativa seed
was shown to improve the longevity of the free-living nematode
Caenorhabditis elegans (Maupas) (Zhang et al., 2018).

Knowledge of bacterial endophytes with demonstrated
insecticidal effects is much less developed. Perhaps the most
prominent example is Bacillus thuringensis (Lacey et al., 2015),
one of the few bacterial endophytes deployed as a commercial
biocontrol agent against Lepidoptera. Another example is
Brevibacillus laterosporus (Laubach) Shida et al., 1996, originally
isolated from surface-sterilized cabbage leaves (Ormskirk et al.,
2019). Two Bacillus laterosporus Laubach strains have been
shown to exhibit pathogenicity against selected Lepidoptera,
Coleoptera, Diptera, and nematodes, as well as antimicrobial
activity especially against bacteria and fungi (De Oliveira et al.,
2004; Ruiu, 2013). Of particular interest are two strains isolated
in New Zealand that cause mortality against larvae of the
diamondback moth (Plutella xylostella L.) (van Zijll de Jong
et al., 2016). Although B. laterosporus has not yet been found
in M. sativa, other endophytic bacteria belonging to the genus
Brevibacillus were isolated and exhibited a positive effect on the
number of M. sativa nodules while increasing shoot and root
parameters (Stajković et al., 2009).

Fungal Endophytes
Fungal entomopathogens (Beauveria spp.), often solely
considered as entomopathogens, have been shown to play
additional roles in controlling plant pathogens, plant growth
promotors and beneficial rhizosphere colonizers (Jaber and
Ownley, 2018; Michaud et al., 2018, references therein).
Entomopathogens such as Beauveria bassiana (Balsamo)
Vuillemin (Ascomycota: Hypocreales) and Lecanicillium spp.
(formerly Verticillium lecanii) (Hypocreales: Cordycipitaceae),
have also been shown or implicated in having antagonistic

activity against both insect pests (Lewis and Cossentine, 1986;
Cherry et al., 2004) and plant pathogens (Clark et al., 2006). As
such, these fungi present opportunities for multiple use of in
integrated pest management strategies (Summers, 1998).

INTERACTIONS BETWEEN THE PLANT
AND ITS BIOTIC PARTNERS: M. SATIVA AS
A HOLOBIONT

Plant-Insect Interactions
The relationship between plants and their insect herbivores has a
long evolutionary history (Labandeira, 2013), and one that has
been described as an evolutionary “arms race” between plants
and herbivorous insects. In response to insect attack, plants have
developed physical and chemical defenses to prevent or mitigate
feeding and/or oviposition (Trumble et al., 1993; Schardl et al.,
2013; Meiners, 2015; Zhang and Li, 2019). Physical defenses
include slippery or sticky plants surfaces, trichomes, waxy
cuticles, hardness, and architecture to deter feeding (Small, 1996;
Whitney and Federle, 2013). Plant chemical protection includes
plant secondary defenses that are inducible, and not only protect
the plant from UV-light, desiccation or cold, but also from
insect herbivores, fungi, bacteria, and viruses (Hartmann, 1996).
Medicago sativa possess both biochemical (Agrell et al., 2003;
Julier et al., 2004;Wu et al., 2021) and physical defenses (Lovinger
et al., 2000) against insect pests. However, the relationship is
not often explored beyond the plant-pest level and ignores
the relationship to abiotic (soil fertility, moisture, heat stress)
and biotic (soil microbiome, endophytes) variables. Tritrophic
interactions between plants, insect herbivores, and their natural
enemies provides another level of complexity to plant defenses
and act to mitigate the impacts of insect herbivores, or biocontrol
agents. Herbivore-induced plant volatiles (HIPVs) play a key
role in these interactions, as they can attract insect predators
and parasitoids to herbivore-attacked plants (Turlings and Erb,
2018). This signaling occurs both above and below ground, and
herbivore-damaged roots shown to produce volatiles that attract
entomopathogenic nematodes (Rasmann et al., 2005).

More recently, it has been shown that the soil microbiome
may also play an important role in plant defenses against
above- and below-ground insect herbivory (Howard et al., 2020).
Pineda et al. (2019) demonstrated that the composition of
the soil microbiome reduced pupation of thrips, Frankliniella
occidentalis (Pergande), placed on chrysanthemum leaf cuttings.
Conversely, above ground herbivory has been shown to alter the
soil microbiome, but the effects were conditional on plant type,
soil-microbial community, soil fertility and temporal changes
(French et al., 2021; Sveen et al., 2021).

Insect Response to Secondary Metabolites
In response to plant secondary compounds, insects have evolved
strategies to overcome these defenses including the ability to
suppress or avoid plant stress responses, including suppression
of herbivore induced plant volatiles (HIPVs) (Turlings and Erb,
2018). Endosymbionts, specialized bacteria found in insects–
are important in allowing the insect to utilize otherwise
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unsuitable host plants by enabling digestion of plant polymers,
detoxification of plant-produced toxins, provisioning of essential
nutrients, and providing protection from parasitoids and
pathogens (Frago et al., 2012; Hansen and Moran, 2014; Oliver
and Martinez, 2014). Endosymbionts have also been shown to
protect their insect hosts from abiotic stress (Guo et al., 2017;
Lemoine et al., 2020).

Trichoderma
Trichoderma (Ascomycetes, Hypocreales) spp. are cosmopolitan
free-living fungi found in foliar environments, soil, fungal
material, decaying wood and sediment (Kubicek et al., 2003;
Harman et al., 2004; Jaklitsch and Voglmayr, 2015). Their
value to the host plant is protection from fungal pathogens,
increased plant nutrient uptake, solubilization of soil nutrients,
and induction of systemic resistance (Harman et al., 2004;
Guzmán-Guzmán et al., 2019). Secretion of effector proteins
and secondary metabolites (β-glucanases, harzianolide) by
Trichoderma are understood to mediate the beneficial interaction
between Trichoderma and plants (Guzmán-Guzmán et al.,
2019). Defensive interactions have also been indicated at both
the biochemical and molecular level, the defense response
potentially fluctuating between induced systemic resistance (ISR)
and systemic acquired resistance (SAR), depending on the
Trichoderma strain and plant species, as well as biotic and
abiotic conditions (Nawrocka andMa.olepsza, 2013). A small pot
experiment looking at the effect of Trichoderma harzianum Rifai
on M. sativa growth with and without cutting, found significant
increases in plant shoot and root dry weights of mowed plants
treated with T. harzianum, compared with the control unmown
plants treated with T. harzianum (Zhang et al., 2019). Soil
available nutrients (N, P, K) were also elevated compared to the
control. More recent research has highlighted the presence of
mycovirus in Trichoderma (Lee et al., 2017; Wu et al., 2020).
Mycoviruses have been shown to exhibit greater genetic diversity
and host range than previously thought, with the ability to
move easily between fungal hosts belonging to unrelated (distant)
taxonomic groups (Nerva et al., 2017). Although the role of
mycovirus in Trichoderma remains unclear, it has been shown
that infected Trichoderma can mediate antifungal activity against
plant pathogens (Chun et al., 2020).

Plant-Pathogen Interactions
Plants have also been shown to exhibit defensive priming,
whereby stimuli from pathogens, beneficial microbes or
arthropods, can lead to enhanced activation of induced
defense mechanisms throughout the plant. When the plant is
subsequently challenged, there is a faster and/or stronger reaction
to attack (Maleck and Dietrich, 1999; Mauch-Mani et al., 2017).
This adaptive strategy improves the defensive capacity of plants
and can involve physiological changes, increased transcriptome
and metabolic levels, and epigenetically modulated changes in
gene expression. Upon subsequent challenge, the plant effectively
mounts a faster and/or stronger defense response that results in
increased resistance and/or stress tolerance (Mauch-Mani et al.,
2017). Perhaps not surprisingly, plant defense responses can be
complex, with both antagonistic and co-ordinated interactions

shown to occur between defensive pathways (Maleck and
Dietrich, 1999), as well as trade-offs between growth and defense
functions (Bastias et al., 2021).

Plant-Endophyte Interactions
The term ‘endophyte’ describes (micro)organisms living inside
plant tissues including roots, leaves, stems, flowers, and seeds
(Pinski et al., 2019), and can be both bacteria and fungi. In a strict
sense, an endophyte must not be detrimental to its host plant (see
Lodewyckx et al., 2002 for definitions), but the plant receives an
ecological benefit from the presence of the symbiont (Quispel,
1992). In most cases, these benefits include better germination
(Ulloa-Muñoz et al., 2020), mobilization of nutrients (Khalifa
et al., 2016), and antagonistic effects toward phytopathogens
(Pinski et al., 2019; Whitaker and Bakker, 2019).

While research on endophyte bioactivity has focussed on
fungi (Arnold et al., 2003; Strobel, 2018), bacterial endophytes,
especially those with entomopathogenic activity, are an emerging
research area. This is against a backdrop of an increasing
failure of conventional agricultural practices (Wemheuer et al.,
2016; Le Cocq et al., 2017) and pest management systems
(Lewis et al., 1997; Summers, 1998) to provide sustainable food
production systems.

A more novel utilization of endophytes is in bioprospecting
to identify biologically active compounds with antibiotic,
antioxidant, antiparasitic, or cytotoxic activities, or the
facilitation of reactive dye discoloration, where endophytes
are used as the main produces rather than the plant itself (Savi
et al., 2019). For a more in-depth overview on the concept of
endophytism and the various beneficial interactions between
endophytes and their host-plants and their impact on agriculture
and, ultimately, human health, refer to the comprehensive review
by Khare et al. (2018).

Both bacterial and fungal endophytes have been isolated from
M. sativa (Hardoim et al., 2008; López et al., 2018; Chen et al.,
2020), but there is a paucity of research that has examined the
stability and prevalence of these endophytes in the plant. For
example, one of problems for M. sativa cultivation is growth
under drought and salinity stress (Noori et al., 2018). Bacterial
endophytes related to Klebsiella, Kosakonia, and Sinorhizobium
found in M. sativa root nodules have demonstrated a positive
effect on resistance to salinity stress, and provide the potential
to extend the arable climate zones for M. sativa. Halomonas
and Bacillus endophytes isolated from plants that are capable of
growth in high salinity, have been shown to colonize M. sativa
and enable seedling growth in the presence of up to 1% NaCl,
a non-permissible salt concentration for non-inoculated plants
(Kearl et al., 2019).

Plant-Endophyte-Large Herbivore
Interactions
Induced responses in plants, initiated by herbivory, create
potential for trait-mediated indirect interactions among
herbivores, with saliva shown to alter plant response to feeding,
which may benefit plant pathogens or insect herbivores.
Research by Liu et al. (2016) on the transcriptome response
of two-week-old M. sativa seedlings following application of
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cow saliva to cut leaves, indicated negative effects on regrowth,
as well as modification of jasmonic acid synthesis, potentially
enhancing the susceptibility to pathogens. Artificial cutting of
perennial ryegrass (Lolium perenne L.) leaves induced synthesis
of an Epichloë endophyte alkaloid, which reduced feeding by
adult Argentine stem weevil [Listronotus bonariensis (Kuschel)].
However, this effect was mitigated by sheep (Ovis aries L.) saliva
applied to the cut sections (Bultman et al., 2018). The authors
speculated that the observed effect may involve salivary enzymes
or perhaps even metabolites from living microbes within the
saliva. Moose (Alces alces L.) browsing on Scots pine (Pinus
sylvestris L.) were found to improve the performance of the
sawfly (Neodiprion sertifer Geoffroy) compared to unbrowsed
trees (Nordkvist et al., 2019). Interestingly, the compound di-
terpene, known to affect sawfly performance, was not affected by
the browsing treatments nor correlated with sawfly performance
parameters, suggesting other secondary compounds were active
in the response.

Plant secondary compounds can also have direct impacts
on large herbivores. Coumestrol, a phytoestrogen compound
is naturally found in M. sativa, and if elevated in the leaves,
can have detrimental impacts on sheep reproductivity (Fields
et al., 2018). Foliar fungal infection or aphid feeding have
both been shown to increase the concentration of coumestrol,
sometimes to levels that could interfere with ewe reproductive
performance (Kain and Biggs, 1980; Purves et al., 1981; Fields
et al., 2018). Toxins associated with endophyte (Epichloë species;
Clavicipitaceae) commonly associated with cool season grasses
(Poaceae, subfamily Poöideae), not only have activity against
insects but also vertebrates (Johnson et al., 2013; Schardl et al.,
2013; Hume et al., 2016). However, whether bacterial endophytes
associated with M. sativa have an impact on large herbivores
is unknown.

Multitrophic Interactions
Tri-trophic relationships have also been shown to be intricate
in terms of plant signaling and concomitant response from
natural enemies. A study investigating plant host effect and
parasitism by the endoparasitoid Diaeretiella rapae (M’Intosh)
on cabbage aphid, Brevicoryne brassicae (L.) genotypes, found
that plant cultivar had significant effect on aphid reproduction,
rates of parasitism and parasitoid sex ratio (Mehrparvar et al.,
2019). As B. brassicae lacks facultative endosymbionts that may
provide protection from parasitism (Clark et al., 2012), the
effect on D. rapae reported by Mehrparvar et al. (2019) cannot
be attributed to known defensive endosymbionts. However, as
found with A. pisum, the effect of host plant on the incidence of
the defensive endosymbiontHamiltonella defensa, and associated
parasitism rates can be minimal (Sochard et al., 2019; Smith et al.,
2021). Insect herbivore-induced plant defenses are well-known
to influence the abilities of baculoviruses to infect, replicate in,
and kill their insect hosts (Ali et al., 1998; Shikano et al., 2017).
Helicoverpa zea (Boddie) (Lepidoptera: Noctuidiae) caterpillars
treated with a sublethal dose of baculovirus and feeding on
tomato (Solanum lycopersicum L.) plants, elicited the highest
plant anti-herbivore defense compared to plant responses to
healthy caterpillars (Pan et al., 2019). However, it was not

known if the increase in plant defenses induced by virus-
infected caterpillars benefited the virus or the caterpillar (Pan
et al., 2019). The use of volatiles that attract natural insect pest
enemies has been suggested as a way of controlling important
agricultural pests through a push-pull strategy (Pickett and
Khan, 2016) and has been successfully used in maize against
lepidopteron stem borers (Pickett et al., 2014). Increases in
plant peroxidase (POD) and catalase (CAT) activities, along
with salicylic acid (SA) concentration, have been suggested as
an explanation for enhanced defense response to A. pisum in
M. sativa inoculated with the mycorrhizal fungi Rhizophagus
intraradices (N.C.Schenck & G.S.Sm.) C.Walker & A.Schüssler
(Li et al., 2019).

FACTORS IMPACTING THESE
INTERACTIONS

Climate Change
While the environmental impacts of climate change are complex
(Pedrono et al., 2016; Yang et al., 2021), current and future
predictions indicate that crop losses associated with insect pests,
plant pathogens, and weeds, will become more frequent and
substantial (Baker et al., 2015; Deutsch et al., 2018; Anderson
et al., 2020). This includes shifts in insect distribution (Battisti
and Larsson, 2015; Ricciardi et al., 2021), loss of biodiversity
(Bellard et al., 2014), and associated impacts on ecosystem
services (Pedrono et al., 2016). There will also be increased
biosecurity impacts as pathways and vectors associated with trade
and tourism provide the means to move high impact pests and
diseases, rapidly and across vast distances (McNeill et al., 2021;
Ricciardi et al., 2021).

The effects of climate change, particularly elevated CO2 and
temperature, and water availability on M. sativa production and
persistence, has been and continues to be an area of significant
research. Research has demonstrated both positive and negative
impacts on photosynthesis, respiration, nodulation function and
efficiency, biomass allocation, growth and quality of M. sativa,
which are covered in the reviews by Liang et al. (2013), Aranjuelo
et al. (2014), and Soares et al. (2019).

Elevated CO2 levels will also change insect phenology and
their impact parameters. High carbon:nitrogen (C:N) ratios
associated with increased CO2 levels have been shown to affect
the performance of insect herbivores positively (aphids) but to
be mostly neutral for chewing insects (Whittaker, 1999). Aphids
grown at high CO2 levels were found to be more responsive
to aphid alarm pheromones, potentially making them more
vulnerable to parasitism (Awmack et al., 1997). Elevated CO2 was
also shown to increase the duration of nymphal stages, decrease
adult longevity and fecundity of A. pisum (Li C. et al., 2021).
The researchers also found changes in the nutritional profiles of
the aphid, with a significant interaction between CO2 levels, and
nymph generations.

A study on above- and below-ground herbivory on white
clover (T. repens L.) by clover root weevil (Sitona obsoletus,
(Gmelin), formerly S. lepidus) found that elevated CO2 resulted
in significantly increased root C:N ratios, increases in root mass
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(85% greater) and nodule abundance (220% more abundant)
(Johnson and McNicol, 2010). Adult S. obsoletus consumed
significantly more foliage but laid fewer eggs under elevated
CO2. Conversely, there was increased larval abundance and
performance at elevated CO2, which was positively correlated
with the number of nodules available (Johnson and McNicol,
2010). The authors concluded that reduced foliar quality at
elevated CO2 was generally disadvantageous for adult S. obsoletus
living above-ground, but very beneficial for larvae feeding on the
root system, due to enhanced nodulation (Johnson and McNicol,
2010). Research to determine if this response is found with other
Sitona species known to feed on M. sativa (e.g., S. discoideus
Gyllenhal, S. hispidulus F.) has yet to be undertaken.

Climate change may impact the seasonal ecology of
parasitoids, with consequences on host–parasitoid synchrony
and population cycles, food-web functioning, and ecosystem
services such as biological pest control (Jamieson et al.,
2012; Tougeron et al., 2020). Research on the effect of
abiotic and biotic factors on larch casebearer [Coleophora
laricella, (Hübner)] defoliation of larch (Larix spp.) and its
two parasitoids Agathis pumila (Ratzeburg) and Chrysocharis
laricinellae (Ratzeburg), found that warming temperatures
disrupted the complex interaction between trophic levels
possibly contributing to casebearer outbreaks in North America
(Ward et al., 2020). The broad concepts discussed above
for both above- and below- ground interactions are shown
in Figure 1.

Genotype
Despite the evident importance of endophytes–bacterial and
fungal–little is known about the genetic background that drives
the evolution of the plant-endophyte-pathogen relationship.
Plasmids are a recognized key driver of rapid evolution,
providing the means to acquire genes encoding novel metabolic
pathways, or gain resistance toward metals and antibiotics via
horizontal gene transfer (Schierstaedt et al., 2019). Similarly,
genes related to pathogenicity and host defense can be acquired
through plasmid encoded genes. However, to fully understand
the complex network of communication between host plants,
endophytes and pathogens/predators, it is necessary to take
on a holistic approach that encompasses many different-
Omic disciplines rather than pursuing a reductionist view
and investigating individual components in isolation (Kaul
et al., 2016; Pinski et al., 2019). Genome sequencing and
subsequent comparative genome analyses will provide the
necessary foundation to develop novel hypotheses to be
validated by a wide spectrum of -omics technologies. While
research on the genetic blueprint is slowly emerging, it often
is limited to the investigation of microbiome phylogeny via
16S rRNA and housekeeping gene sequencing (Kumar et al.,
2018; Liotti et al., 2018; Kang et al., 2019) or high-level
biochemical characterization via proteome and metabolome
studies (López et al., 2018). Genomic analysis of Bacillus spp.
strains has been proposed as being critical to understanding the
complex and intricate plant host-microbiome-(insect) pathogen
communication network (Lopes et al., 2018). Transcriptomics
datasets enable the study of changes in gene expression over

time, as endophytes and their hosts encounter environmental
changes such as insect pests. However, the varying levels of gene
expression do not reveal the function of the resulting proteins and
enzymes and proteomic/metabolomic approaches are required
to relate the genomic diversity to the functionality of microbes
(Rasmussen et al., 2012; Afroz et al., 2013). Studies into the
M. sativa interactome first emerged a decade ago (Rodriguez-
Llorente et al., 2009). These described the symbiosis interactome
between the model bacterium Sinorhizobium meliloti with its
legume host using computational methods and models that
provided a theoretical basis, but lacked experimental validation.

PRODUCTION AND PERSISTENCE

As a forage crop with a worldwide distribution, breeding of
germplasm to adapt to a range of climates has been essential
to achieve sustainable high quality forage production for
livestock (Undersander et al., 2011). Conventional plant breeding
techniques (e.g., selective breeding, cross breeding, male sterile
line breeding), have targeted yield, quality, persistence under
repeated grazing or cutting, heat and cold tolerance, salinity and
salt tolerance, drought, highmoisture, and insect pest and disease
resistance (Bouton, 2012; Scasta et al., 2012; Annicchiarico et al.,
2015; Shi et al., 2017). Selection of salinity-tolerant actinobacteria
has been demonstrated to improve rhizobia function and overall
M. sativa production under salt stress (Saidi et al., 2021). As
the demand for meat-based proteins increases in response to
human population growth, so too has the environmental limits
under whichM. sativa is being grown. This has led to evaluation
of genotypes adapted for subtropical conditions (Acharya et al.,
2020; Hoppen et al., 2022), for both high altitude and latitude
(Shi et al., 2017), and environments with high temperature and
low soil moisture (del Pozo et al., 2017; Lemaire et al., 2019).

Environment plays a critical role to determining yield and
persistence (Li et al., 2010). Pembleton et al. (2010) showed that
under a cool temperate climate, environment had a significant
impact on the persistence and yield of alfalfa genotypes,
with winter active genotypes having low persistence and DM
yield. Breeding for grazing tolerance has been shown to be
important in persistence (Sewell et al., 2011; Harvey et al.,
2014; Burnett et al., 2020), but there can be a trade off in
production, with winter active germplasm generally showing
poor persistence (Humphries et al., 2006; Harvey et al., 2014).
What is apparent, is that as the worldwide range of M. sativa
expands, breeding programs to meet regional conditions will
become more important (Bouton, 2012; Shi et al., 2017).

FUTURE RESEARCH

This review has examined several aspects of plant-insect-
microbe-interaction, and highlighted their complexity. In
relation to M. sativa, there are research opportunities to
address important gaps in our understanding of the biotic
and abiotic parameters that can be exploited to improve
the significance and utility of the plant. This includes the
role of endophytes on growth, colonization and transmission,
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FIGURE 1 | Abiotic and biotic challenges for the growth and maintenance of Medicago sativa as a forage crop.

subsequent persistence, their prevalence in M. sativa and their
impact on insect herbivory and pathogens. Bioprospecting for
endophyte strains that mediate resistance outside cultivated
strains would also seem worthwhile. Medicago sativa is believed
to have originated in the Caucasus region: north-eastern
Turkey, Turkmenistan and north-western Iran (Michaud et al.,
1988). Surveys in these regions may yield valuable “wild-
type” germplasm containing bacterial endophytes or traits that
provides tolerance or resistance to certain pests and diseases.
China also has potential unique M. sativa germplasm (Shi et al.,
2017), that may provide ecotype–endophyte associations with
protection from insect pests and diseases. However, while this
approach would intuitively seem a useful strategy, it may not
necessarily yield the desired outcome. For instance,M. sativa and
alfalfa weevil (H. postica) are sympatric in Turkey, but a search
for plants naturally resistant to the weevil were unsuccessful
(Ratcliffe and Campbell, 1995), although resistant germplasm
has been reported in Iran (Abbasi, 2020). Other factors also
need consideration, including the abiotic environment and its
influence on plant responses to pests and pathogens. Increasing
agricultural intensification has been found to have a strong
negative association with root fungal communities (Banerjee

et al., 2019). Fertilizer application may have a negative effect
on bacterial endophytes associated with M. sativa, as has been
demonstrated in grasses (Wemheuer et al., 2016). Conversely,
rhizobia need critical mineral nutrients for metabolic processes
to enable their survival and growth as free-living soil saprophytes,
and in their symbiotic relationship with legumes (O’Hara, 2001).
Non-rhizobia found in the rhizosphere and nodule microbiome
are also critical to nodule formation and legume fitness (Schaedel
et al., 2021). The impact of grazing or cutting on the ability ofM.
sativa to respond to pest and pathogen attack are also areas for
potential research.

Climate change presents an obvious challenge, not only
because there will be more instability in climatic events such
as drought or floods, but economically valuable plant species
will potentially be exposed to new pests and plant diseases
due to range expansion, (Trebicki et al., 2017; Ricciardi et al.,
2021), either through natural dispersal or spread along trade and
tourism pathways (McNeill et al., 2021). Elevated temperatures
will have both negative and positive consequences for biological
control (Thomson et al., 2010; Gerard et al., 2013), and plant
defense responses to pathogens (Venkatesh and Kang, 2019).
Creating crop varieties that are highly attractive to natural
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FIGURE 2 | Current and future research opportunities to improve the production, persistence, quality and geographic range of Medicago sativa as a forage crop.

pest enemies has been suggested as a simple way to achieve
better biological control of pests (Dhandaydham et al., 2008;
Dicke and Baldwin, 2010). Beyond traditional plant breeding
approaches (Annicchiarico et al., 2015; Capstaff and Miller,
2018), gene editing technology has been proposed as a way
of improving the adaptability of plants to challenging abiotic
and biotic conditions (Sanzari et al., 2019; Demirer et al.,
2021). Transgenic plants with desirable traits for growth or
pest resistance are already available (e.g., cotton or maize) and
applicable toM. sativa. For example, under laboratory conditions
Wang et al. (2019) demonstrated that by insertion of a gene
expressing an aphid alarm pheromone into M. sativa, repellency
by A. pisum to transformed plants was shown in subsequent
behavioral tests. Technologies such as CRISPR/Cas genome
editing (Cobb et al., 2019; Pixley et al., 2019), nanotechnologies
(Sanzari et al., 2019; Behl et al., 2022), or the combination of
both nanotechnologies with CRISPR-Cas technology (Demirer
et al., 2021), has also been suggested as a means of improving
plant production, quality, and persistence under challenging
environments. Nanotechnology may also provide a means of
monitoring crops by translating plant chemical signals into
digital information that can be monitored by standoff electronic

devices (Giraldo et al., 2019). While mainly conceptual, synthetic
engineering of the phytomicrobiome has also been suggested
as a way of improving plant performance (Ke et al., 2021).
These new technologies will also require both regulatory and
social license to operate, as well as biological-based research
to understand relationships and benefits across trophic levels
and different environments (Sanzari et al., 2019; Behl et al.,
2022). Understandably, adoption of these technologies will be
variable on a global scale as dictated by government and
public timeframes.

Although some progress has been made to increase insect
resistance to crops, research on M. sativa still provides
opportunities for improvement in this important field. Most
notably, the impact of bacterial endophytes on plant resistance
to pests and pathogens is yet to be fully explored, despite the
attractiveness of this target with regards to rapid evolution
and genetic engineering (Figure 2). This knowledge gap opens
significant opportunities in the future for new research that
focuses on unraveling the genetic and metabolic networks
between bacterial endophytes, host plants and insect pest and
beneficial species, with the aim to engineer or naturally evolve
bacterial endophytes with enhanced insecticidal properties. As
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a first step and to build the fundamentally required genomic
knowledge base, a comprehensive catalog of genomes of known
M. sativa bacterial endophytes needs to be established, preferably
from microbiomes isolated from a range of agricultural M.
sativa growth regions worldwide and wild-type relatives. Based
on this foundation, transcriptomic and metatranscriptomic
analyses will unravel how bacterial gene expression changes
over time and to plant and insect exposure. In a second
step, changes in gene expression levels of the host plant and
insect predators can be quantified and correlated to bacterial
endophytes. Novel insights gained from these experiments
will be critical in understanding key genetic building blocks
of insect resistance. Metaproteomic and metabolomics studies
will translate the genetic basis into identifying the presence,
absence and modification of biologically active compounds,
and their concomitant effects on both plant and associated
insect pests (Zogli et al., 2020). Once the intricate network
of interactions and metabolic responses is better understood,
bacterial endophyte strains may be directly evolved toward
specific metabolic changes that will specifically enhance insect
resistance–or target other limitations of M. sativa cultivation
such as drought or salinity.

CONCLUSION

A broader, inter-disciplinary approach that simultaneously
addresses plant-insect-endophyte-plant pathogen interaction
and their impacts viewed against abiotic and biotic aspects
is desirable, as it concurrently addresses a range of research
questions (Raffa et al., 2020). The benefits are research advances
and outcomes that support agricultural resilience, industry
stakeholders and farmers. However, achieving this aim obviously
depends on appropriate research to allowM. sativa to achieve its
potential in a challenging environment.
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